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Analysis on Surreal Numbers
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Abstract: The class No of surreal numbers, which John Conway discovered while
studying combinatorial games, possesses a rich numerical structure and shares
many arithmetic and algebraic properties with the real numbers. Some work has
also been done to develop analysis on No . In this paper, we extend this work with
a treatment of functions, limits, derivatives, power series and integrals.

We propose surreal definitions of the arctangent and logarithm functions using
truncations of Maclaurin series. Using a new representation of surreals, we present
a formula for the limit of a sequence, and we use this formula to provide a complete
characterization of convergent sequences and to evaluate certain series and infinite
Riemann sums via extrapolation. A similar formula allows us to evaluate limits
(and hence derivatives) of functions.

By defining a new topology on No , we obtain the Intermediate Value Theorem even
though No is not Cauchy complete, and we prove that the Fundamental Theorem
of Calculus would hold for surreals if a consistent definition of integration exists.
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1 Introduction

Since their invention by John Conway in 1972, surreal numbers have intrigued math-
ematicians who wanted to investigate the behavior of a new number system. Even
though surreal numbers were constructed out of attempts to describe the endgames
of two-player combinatorial games like Go and Chess, they form a number system
in their own right and have many properties in common with real numbers. Conway
demonstrated in his book [2] that out of a small collection of definitions, numerous
arithmetic and algebraic similarities could be found between reals and surreals. Using a
creation process, starting with the oldest number (called “0”) and progressing toward
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more nontrivial numbers, Conway proved that the surreals contain both the reals and
the ordinals. After defining basic arithmetic operations (comparison, negation, addition,
and multiplication) for surreals, he showed that the surreals contain never-before-seen
numbers, such as ω5− (ω + 3π)2×ω−ω , that arise out of combining reals and ordinals
(ω is the first transfinite ordinal). By determining the properties of surreal arithmetic
operations, Conway studied the algebraic structure of surreals, concluding that the
surreals form an object (called “No”) that shares all properties with a totally ordered
field, except that its elements form a proper class (in this regard, we write that No is a
“Field”). With surreal arithmetic and algebra in place, developing analysis on No is the
next step in building the theory of surreal numbers. Below, we discuss earlier work on
surreal analysis and introduce our own results.

The study of surreal functions began with polynomials, which were constructed using
the basic arithmetic operations that Conway introduced in his book [2]. Subsequently,
Gonshor found a definition of exp(x) that satisfies such fundamental properties as
exp(x + y) = exp(x) · exp(y) for all x, y ∈ No [7]. Moreover, Kruskal defined 1/x , and
Bach defined

√
x [2]. In this paper, we present a more rigorous method of constructing

functions inductively, and we show that Gonshor’s method for defining the exponential
function can be utilized to define arctangent and logarithm, as was independently
observed by O. Costin (personal communication, 2012).

Conway and Norton initiated the study of surreal integration by introducing a preliminary
analogue of Riemann integration on surreals, as described in [2]. The “Conway-Norton”
integral failed to have standard properties of real integration, however, such as translation
invariance:

∫ b
a f (x)dx =

∫ b−t
a−t f (x + t)dx for any surreal function f (x) and a, b, t ∈ No.

While Fornasiero fixed this issue in [6], the new integral, like its predecessor, yields
exp(ω) instead of the desired exp(ω)− 1 for

∫ ω
0 exp(x)dx .

One way of approaching the problem of integration on surreals is to give meaning to
infinitely long “Riemann” sums.1 To do this, we need to know how to evaluate limits of
surreal sequences. In the literature, surreal sequences are restricted to a limit-ordinal
number of terms, but such sequences are not convergent in the classical ε-δ sense.
Moreover, earlier work has not defined the limit, and hence the derivative, of a surreal
function. In this paper, using a new representation of surreals, we obtain a formula for
the limit of a surreal sequence. Although we show that No is not Cauchy complete, we
use this formula to completely characterize convergent sequences. Our formula for the
limit of a sequence also gives us a method of evaluating certain series and infinitely

1Because the surreals contain the ordinals, “Riemann” sums of infinite length are considered,
unlike in real analysis, where the term “Riemann” requires sums of finite length.
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long “Riemann” sums by extrapolation from the naturals to the ordinals, and we show
that this extrapolative method can correctly integrate the exponential function. We also
present a method of finding limits (and hence derivatives) of surreal functions.

The difficulty of creating a definition of integration for surreals is attributed by O. Costin
(lecture given at University of Notre Dame, 2010) to the fact that the topological space
of surreals is totally disconnected when the standard notion of local openness is used, ie
given any locally open interval (a, b) ∈ No we have (a, b) = (a, g) ∪ (g, b), where g
is a gap between a and b and the intervals (a, g) and (g, b) are locally open. In this
paper, to help deal with this difficulty, we define a new topology on No in which No is
connected. Using this topology, we prove that the Intermediate Value Theorem holds
even though No is not Cauchy complete, and we also prove that the Extreme Value
Theorem holds for certain continuous functions. We then show that the Fundamental
Theorem of Calculus would hold for surreals if we have a definition of integration that
satisfies certain necessary properties.

The rest of this paper is organized as follows. Section 2 discusses definitions and basic
properties of surreals as well as our new topology on No, and Section 3 introduces
our definitions for the arctangent and logarithm functions. Section 4 explains our
method of evaluating limits of sequences and discusses the characteristics of convergent
sequences. Section 5 discusses limits of functions and includes the Intermediate Value
Theorem, and Section 6 concerns series, Riemann sums and the Fundamental Theorem
of Calculus. Finally, Section 7 concludes the paper with a discussion of open problems.

2 Definitions and Basic Properties

In this section, we review all basic definitions and properties of surreals and introduce
our own definitions and conventions. Throughout the rest of the paper, unqualified
terms such as “number,” “sequence” and “function” refer to surreal objects only. Any
reference to real objects will include the descriptor “real” to avoid ambiguity. For an
easy introduction to surreal numbers, see Knuth’s book [8].

2.1 Numbers

Conway constructed numbers recursively, as described in the following definition:

Definition 1 (Conway, [2]) (1) Let L and R be two sets of numbers. If there do not
exist a ∈ L and b ∈ R such that a ≥ b, there is a number denoted as {L | R} with some
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name x. (2) For every number named x, there is at least one pair of sets of numbers
(Lx,Rx) such that x = {Lx | Rx}.

As is suggested by their names, Lx is the left set of x, and Rx is the right set of x.
Conway also represents the number x = {Lx | Rx} as x = {xL | xR}, where the left
options xL and right options xR run through all members of Lx and Rx , respectively.
(We explain the meaning of assigning a name x to a form {L | R} later.) Having
introduced the construction of numbers, we now consider properties of surreals. Let No
be the class of surreal numbers, and for all a ∈ No, let No<a be the class of numbers
< a and No>a be the class of numbers > a. The following are the basic arithmetic
properties of numbers:

Definition 2 (Conway, [2]) Let x1, x2 ∈ No. Then,

1. Comparison: x1 ≤ x2 iff (no xL
1 ≥ x2 and no xR

2 ≤ x1 ); x1 ≥ x2 iff x2 ≤ x1 ;
x1 = x2 iff (x1 ≥ x2 and x1 ≤ x2); x1 < x2 iff (x1 ≤ x2 and x1 6≥ x2); x1 > x2

iff x2 < x1 .
2. Negation: −x1 = {−xR

1 | −xL
1}.

3. Addition: x1 + x2 = {xL
1 + x2, x1 + xL

2 | xR
1 + x2, x1 + xR

2}.
4. Multiplication: x1 × x2 = {xL

1x2 + x1xL
2 − xL

1xL
2 , x

R
1 x2 + x1xR

2 − xR
1 xR

2 |
xL

1x2 + x1xR
2 − xL

1xR
2 , x

R
1 x2 + x1xL

2 − xR
1 xL

2}.

The first part of Definition 2 yields the following theorem relating x, xL, and xR :

Theorem 3 (Conway, [2]) For all x ∈ No, xL < x < xR .

Let On be the class of ordinals, and for all α ∈ On, let On<α be the set of ordinals
< α and On>α be the class of ordinals > α. Of relevance is the fact that On ( No;
in particular, if α ∈ On, α has the representation α = {On<α |}. Ordinals can be
combined to yield “infinite numbers,” and the multiplicative inverses of such numbers
are “infinitesimal numbers.” Representations of the form {L | R} are known as genetic
formulae. The name “genetic formula” highlights the fact that numbers can be visualized
as having birthdays, ie for every x ∈ No there exists α ∈ On such that x has birthday
α (Theorem 16 of Conway’s book [2]). We write b(x) = α if the birthday of x is α .
Because of the birthday system, the form {L | R} represents a unique number:

Theorem 4 (Conway, [2]) Let x ∈ No. Then, x = {Lx | Rx} iff x is the oldest
number greater than the elements of Lx and less than the elements of Rx .
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Because numbers are defined recursively, mathematical induction can be performed
on the birthdays of numbers, ie we can hypothesize that a statement holds for older
numbers and use that hypothesis to show that the statement holds for younger numbers.

We now demonstrate how a form {L | R} can have a name x . To do this, we need two
tools: (1) Basic arithmetic properties, and (2) R ( No. The first tool is established
in Definition 2. The second tool results from the construction of numbers. We now
illustrate the construction process:

(1) Day 0: 0 = {|} is taken as a “base case” for the construction of other numbers.
(2) Day 1: 0 can belong in either the left or right set of a new number, so we get

two numbers, named so: 1 = {0 |} and −1 = {| 0}.
(3) Day 2: We can now use the numbers 0,±1 in the left and right sets of newer

numbers still, which we name so: 2 = {1 |}, 1/2 = {0 | 1}, −2 = {| −1}, and
−1/2 = {−1 | 0}.

(4) All dyadic rationals are created on finite days.
(5) Day ω : All other reals are created, so R ( No.

It is easy to show that for any {L | R}, {L′ | R′} ∈ No such that their names, say
a = {L | R}, b = {L′ | R′}, satisfy a, b ∈ R, an arithmetic property governing
the reals a, b also holds for the surreals {L | R}, {L′ | R′}. For example, the sum
of two surreals equals the sum of their names, eg {0 |} = 1 and {1 |} = 2, so
{0 |} + {0 |} = 1 + 1 = 2 = {1 |}, where we use part 3 of Definition 2 to do the
surreal addition. Thus, assigning names like 1 to {0 |} and 2 to {1 |} makes sense.

Theorem 21 from [2] states that every number can be uniquely represented as a formal
sum over ordinals

∑
i∈On<β ri · ωyi , where the coefficients ri satisfy ri ∈ R and the

numbers yi form a decreasing sequence.2 This representation is called the normal form
of a number.

2.2 Gaps

Suppose we have already constructed No. Unlike its real analogue, the surreal number
line is riddled with gaps, which are defined as follows:

Definition 5 (Conway, [2]) Let L and R be two classes of numbers such that
L ∪ R = No. If there do not exist a ∈ L and b ∈ R such that a ≥ b, the form {L | R}
represents a gap.

2The method by which these transfinite sums are evaluated is not relevant to the rest of the
paper but is discussed thoroughly in [2].

Journal of Logic & Analysis 6:5 (2014)



6 S Rubinstein-Salzedo and A Swaminathan

Gaps are Dedekind sections of No, and in the language of birthdays, all gaps are born
on day On. Notice that gaps are distinct from numbers because if {L | R} is the
representation of a gap, then there cannot be any numbers between the elements of L
and the elements of R. The Dedekind completion of No, which contains all numbers
and gaps, is denoted NoD . Basic arithmetic operations (except for negation) on NoD

are different from those on No, as discussed in [6]. Three gaps worth identifying
are (1) On = {No |}, the gap larger than all surreals (surreal version of infinity); (2)
Off = −On, the gap smaller than all surreals (surreal version of −infinity); and (3)
∞ = {+finite and− numbers | +infinite numbers}, the object called “infinity" and
denoted ∞ in real analysis. The gap On is important for the purpose of evaluating
limits of sequences and functions. Throughout the rest of the paper, we say that a
sequence is of length On if its elements are indexed over all elements of the proper
class of ordinals On.

Gaps can be represented using normal forms as well [2]. All gaps can be classified into
two types, Type I and Type II, which have the following normal forms:

Type I :
∑
i∈On

ri · ωyi

Type II :
∑

i∈On<α

ri · ωyi ⊕
(
±ωΘ

)
where in both sums the ri are nonzero real numbers and {yi} is a decreasing sequence.
In the Type II sum, α ∈ On, Θ is a gap whose right class contains all of the
yi , and the operation ⊕ denotes the sum of a number n and gap g, defined by
n⊕ g = {n + gL | n + gR}. Also, ωΘ = {0, a · ωl | b · ωr}, where a, b ∈ R>0 and
l ∈ LΘ, r ∈ RΘ .

The real number line does not have gaps because it is Dedekind complete. The topology
that we present in Subsection 2.3 allows us to obtain results in surreal analysis, like the
Intermediate Value Theorem and the Extreme Value Theorem, that are analogous to
those in real analysis even though No is not Dedekind complete.

2.3 Functions

Functions on No also exist; namely, for A ⊂ No, a function f : A → No is an
assignment to each x ∈ A a unique value f (x) ∈ No. It is important for the purpose of
studying surreal analysis to define what it means for a surreal function to be continuous.
To this end, we define a topology on No as follows. We first define what it means to
have a topology on No:

Journal of Logic & Analysis 6:5 (2014)
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Definition 6 A topology on No is a collection A of subclasses of No satisfying the
following properties:

(1) ∅,No ∈ A.

(2)
⋃

i∈I Ai ∈ A for any subcollection {Ai}i∈I ⊂ A indexed over a proper set I .

(3)
⋂

i∈I Ai ∈ A for any subcollection {Ai}i∈I ⊂ A indexed over a finite set I .

The elements of A are declared to be “open.”

Remark In Definition 6, it is important to note that not all unions of open subclasses
of No are necessarily open; only those that are indexed over a proper set need to be
open. This stipulation is crucial for two purposes: (1) to make No connected, and (2)
to make the compactness arguments in Subsection 6.2 work.

The set-theoretic details of our constructions are not of particular importance to the
remainder of this article. (As Conway observes in [2, p. 66], we ought to be free to
construct new objects from previously constructed ones without fear.) However, we
point out that there are many ways of justifying our constructions from a set-theoretic
point of view. As Ehrlich has shown in [5], it is possible to construct a model of the
collection No of surreal numbers in the von Neumann-Bernays-Gödel (NBG) set theory.
This model suffices for our purposes, although a bit of care must be taken in Definition 6.
We are not free to put the open classes of a topology into a class; instead, we label the
open classes, and we check that the labelled classes satisfy the axioms of a topology:
for example, the empty class and the class of all surreals are open, the union indexed
over a set of open classes is open, and the intersection of two (or finitely many) open
classes is open. Similarly, when we refer to a “covering” of a subclass of No, we mean
a collection of labels assigned to classes. This does not pose any problems, because we
do not do anything of set-theoretic interest with the elements of our topology A.

We next define what we want an open subclass of No to be:

Definition 7 The empty set is open. A nonempty subinterval of No is open if it (1)
has endpoints in No ∪ {On,Off}, and (2) does not contain its endpoints.3 A subclass
A ⊂ No is open if it has the form A =

⋃
i∈I Ai , where I is a proper set and the Ai are

open intervals.

3We use the notation (a, b) to denote an interval not containing its endpoints and the notation
[a, b] to denote an interval containing its endpoints.
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Remark The open classes are the surreal analogues of the open sets discussed in real
analysis. Also, observe that our notion of openness is not equivalent to local openness,
ie it is not equivalent to the following statement: “A space S is open if every point in S
has a neighborhood contained in S .” For example, the interval (∞,On) does satisfy
the requirement that every point in the interval has a neighborhood in it, but according
to our definition, it is not open. However, our notion of openness indeed does imply
local openness.

Example 8 Now that we have specified the open subclasses of No, we provide two
examples of a union of open subclasses of No: one that is open, and one that is
not. Notice that the interval (Off,∞) is open, even though it has ∞ as an endpoint,
because it can be expressed as a union of open intervals over the (proper) set of integers:
(Off,∞) =

⋃
i∈Z(Off, i). On the other hand, we claim that the interval (∞,On) is

not open because it cannot be expressed as a union of open intervals over a proper
set. Indeed, suppose there exists a collection {Ai}i∈I of open subintervals of No with
endpoints in No ∪ {On} indexed over a proper set I such that (∞,On) =

⋃
i∈I Ai .

Then, consider x = {0, 1, 2, · · · | {inf Ai}i∈I}. By construction, x ∈ No, x >∞, but
x 6∈

⋃
i∈I Ai , contradicting (∞,On) =

⋃
i∈I Ai .

Proposition 9 Definition 7 defines a topology on No.

Proof Consider the collection A of open subclasses of No. By definition, ∅ ∈ A and
since No = (Off,On) has endpoints in No ∪ {On,Off}, it is also open. Because the
union over a proper set of unions over proper sets is itself a union over a proper set, any
union over a proper set of elements of A is itself an element of A. By induction, it
then suffices to show that if {Aα}α∈A and {Bβ}β∈B are collections of open intervals
indexed by proper sets A,B, then C =

⋃
α∈A Aα ∩

⋃
β∈B Bβ ∈ A. But we have that⋃

α∈A

Aα ∩
⋃
β∈B

Bβ =
⋃

(α,β)∈A×B

Aα ∩ Bβ,

and the expression on the right-hand-side is a union over a proper set of open intervals,
so indeed C ∈ A.

We take the subspace topology to be as usual: if X ⊂ No, then X′ ⊂ X is “open in
X” if there exists open X′′ ⊂ No such that X′ = X ∩ X′′ . We can now define what it
means for a function to be continuous, by which we mean continuous with respect to
the topology of Definition 7:

Journal of Logic & Analysis 6:5 (2014)
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Definition 10 Let A ⊂ No, and let f : A→ No be a function. Then f is continuous
on A if for any class B open in No, f−1(B) is open in A.

Because the surreal numbers themselves were constructed inductively with genetic
formulas {L | R}, it is only natural to wonder whether surreal functions can be
constructed in a similar way. The rest of this subsection describes the class of genetic
functions, ie functions that have inductive definitions.

We begin by presenting one method of constructing genetic functions defined on all
of No. Let S be a class of genetic functions defined on all of No. We will define a
function f : No→ No inductively as follows. The construction process can proceed in
one of two ways:

• Consider the Ring (capitalized because No is a proper class) K obtained by
adjoining to No the following collection of symbols: {g(a), g(b) : g ∈ S ∪ {f}},
where a, b are indeterminates (notice that the symbols f (a), f (b) are allowed, but
no other symbols involving f are allowed). We then obtain a class of symbols
S(a, b) = {c1h(c2x + c3) + c4 : c1, c2, c3, c4 ∈ K, h ∈ S} (now notice that h ∈ S ,
so we cannot take h to be f in this part of the construction). Next, consider
the Ring R(a, b) generated over No by adjoining the elements of S(a, b), and
let Lf ,Rf ⊂ R(a, b) be proper subsets. Fix x ∈ No, and suppose that f (y) has
already been defined for all y ∈ Lx ∪ Rx . Also let xL ∈ Lx, xR ∈ Rx . Then
replace a with xL and b with xR in R(a, b) and consider the resulting sets of
functions Lf (xL, xR),Rf (xL, xR) from No → No (these sets are obtained from
Lf ,Rf by substitution). Now, if for all xL, xL′ ∈ Lx , xR, xR′ ∈ Rx , f L ∈ Lf (xL, xR),
f R ∈ Rf (xL′, xR′) we have f L(x) < f R(x), we let f (x) be given by the expression

 ⋃
xL∈Lx,xR∈Rx

{f L(x) : f L ∈ Lf (xL, xR)}

∣∣∣∣∣∣
⋃

xL∈Lx,xR∈Rx

{f R(x) : f R ∈ Rf (xL, xR)}

 .

In this case, f is genetic. The elements of Lf are called left options of f and
denoted f L , and the elements of Rf are called right options of f and denoted f R .

• Let g, h ∈ S . Define f = g ◦ h by f (x) = g(h(x)). If for all x ∈ No we have
g(x) = {Lg(xL, xR) | Rg(xL, xR)} and h(x) = {Lh(xL, xR) | Rh(xL, xR)}, we have
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that f (x) is given by the expression ⋃
xL∈Lx,xR∈Rx

⋃
hL∈Lh(xL,xR),hR∈Rh(xL,xR)

{gL(h(x)) : gL ∈ Lg(hL(x), hR(x))}

∣∣∣∣∣∣
⋃

xL∈Lx,xR∈Rx

⋃
hL∈Lh(xL,xR),hR∈Rh(xL,xR)

{gR(h(x)) : gR ∈ Lg(hL(x), hR(x))}

 .

Example 11 All polynomial functions are genetic and can be constructed using the
method of the previous paragraph. For instance, let us illustrate the construction of
f (x) = x2 . Let S = {id} where id : No → No is the identity function. Then the
Ring obtained by adjoining the collection of symbols {g(a), g(b) : g ∈ S ∪ {f}}
to No contains the symbols 2a, 2b,−a2,−b2, a + b and −ab. Therefore, the class
S(a, b) (and consequently the ring R(a, b)) contains the symbols 2xa− a2, 2xb− b2 ,
and xa + xb − ab. Let Lf = {2xa − a2, 2xb − b2} and Rf = {xa + xb − ab}. Fix
x ∈ A, and suppose that f has been defined on all y ∈ Lx ∪ Rx . We then have that
Lf (xL, xR) = {2xxL − xL2

, 2xxR − xR2} and Rf (xL, xR) = {xxL + xxR − xLxR}. One
can use the following inequalities to verify that for all xL, xL′ ∈ Lx , xR, xR′ ∈ Rx ,
f L ∈ Lf (xL, xR), f R ∈ Rf (xL′, xR′) we have f L(x) < f R(x):

(x− xL)2 > 0, (x− xR)2 > 0, and (x− xL)(xR − x) > 0.

We then say that the function f (x) = x2 is represented as f (x) = {2xxL−xL2
, 2xxR−xR2 |

xxL + xxR − xLxR}. In this case, the “left options” can be either 2xa− a2 or 2xb− b2

and the “right options” can be xa + xb− ab.

In general, if f , g are functions constructed in the above way, then f + g, fg, f ◦ g are
also constructible by the above process.

The reason that we only consider functions defined on all of No in the above construction
process is that otherwise, we may end up evaluating functions at numbers outside of
their domains. For example, if a function f is only defined on the interval [1/2, 3/2],
then it is not clear what f (xL) is when x = 1 = {0 |}. However, it is still possible to
find genetic definitions of functions whose domains are proper subsets of No, although
we cannot necessarily write out a genetic formula for such functions. For example, a
genetic definition of the function f (x) = 1/x is given in [2], but this definition cannot
be stated purely in terms of symbols; it gives a genetic formula which depends on the
stipulation that we must “ignore options” when division by 0 occurs. In Section 3,
we provide examples of two functions whose genetic definitions require options to be
“ignored” when they satisfy certain conditions.

Journal of Logic & Analysis 6:5 (2014)
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Genetic functions need not be continuous, even if they are constructed using continuous
functions. Since we have an inductive definition for f (x) = 1/x , all rational functions
are genetic, so in particular, x

1+x2 is genetic. Then the unit step function

f (x) =

{
0 x < 0

1 x ≥ 0

is genetic, with the following simple genetic definition:{
x

1 + x2

∣∣∣∣} .
3 Two New Surreal Functions

In this section, we propose new genetic definitions of two functions, namely arctan(x)
and nlog(x) = − log(1− x). We show that our definitions match their real analogues
on their domains, and we also provide an example of how to evaluate our functions at
non-real values.

Maclaurin expansions are useful for defining surreal functions, as discussed in Gonshor’s
book [7]. Given n ∈ N, x ∈ No, and a real analytic function f (x), let [x]n denote
the n-truncation of the Maclaurin expansion of f (x), ie [x]n =

∑n
i=0

f (i)(0)xi

i! . To avoid
confusion with the corresponding functions on R, we will denote by arctan(x), nlog(x)
our definitions of arctan, nlog respectively.

Definition 12 On all of No we define the following function:

arctan(x) =

{
−π
2
, arctan(xL) +

[
x − xL

1 + xxL

]
4n−1

, arctan(xR) +
[

x − xR

1 + xxR

]
4n+1

∣∣∣∣∣
arctan(xR) −

[
xR − x
1 + xxR

]
4n−1

, arctan(xL) −
[

xL − x
1 + xxL

]
4n+1

,
π

2

}

under three conditions: (1) if y ∈ Lx ∪ Rx is such that∣∣∣∣ x− y
1 + xy

∣∣∣∣ > 1,

we ignore the options in the formula that involve y; (2) if xL is such that∣∣∣∣arctan(xL)±
[
±(x− xL)
1 + xxL

]
4n∓1

∣∣∣∣ > π

2
,

Journal of Logic & Analysis 6:5 (2014)
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then we ignore the options in the formula that involve xL ; and (3) if xR is such that∣∣∣∣arctan(xR)±
[
±(x− xR)
1 + xxR

]
4n±1

∣∣∣∣ > π

2
,

then we ignore the options in the formula that involve xR . On the domain (−∞, 0] we
define the function

nlog(x) =

{
nlog(xL) +

[
x − xL

1 − xL

]
n

, nlog(xR) +
[

x − xR

1 − xR

]
2n+1

∣∣∣∣∣
nlog(xR) −

[
xR − x
1 − x

]
n

, nlog(xL) −
[

xL − x
1 − x

]
2n+1

}

where if y ∈ Lx ∪ Rx is such that∣∣∣∣ x− y
1− y

∣∣∣∣ ≥ 1 or
∣∣∣∣ x− y
1− x

∣∣∣∣ ≥ 1

we ignore the options in the formula that involve y.

Remark As discussed in Subsection 2.3, the above two definitions require “verbal”
conditions in addition to formulas in order to be stated completely. For example, let us
consider arctan. The verbal conditions for this function tell us to ignore options in the
genetic formula when they satisfy at least one of three inequalities. It is then natural to
wonder whether for some x these conditions eliminate all possible options in Lx or in
Rx and thereby cause the definition to give a “wrong answer;” indeed, if x = 1/2 and
all right options are eliminated, then arctan(1/2) would be equal to arctan(1), which
is an undesirable result. As it happens, this problem does not occur in either the case
of arctan or nlog, ie if we write x = {Lx | Rx} and the sets L̃x, R̃x are the result of
eliminating all options that satisfy the verbal conditions in the definition of either arctan
or nlog, then x = {L̃x | R̃x}.

Also, the above genetic formula of nlog fails to work outside of the domain (−∞, 0].
Indeed, if x = {Lx | Rx} ∈ No lies outside of this domain, then the sets L̃x, R̃x that
result from eliminating all options that satisfy the verbal condition in the definition of
nlog may not be such that x = {L̃x | R̃x}.

To check that the two definitions are reasonable, we must verify that the real functions
arctan and nlog agree with arctan and nlog when the argument is real. To this end, we
state and prove the following theorem:

Theorem 13 For all x ∈ R, we have arctan(x) = arctan(x), and for all x ∈ R≤0 , we
have nlog(x) = nlog(x).
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Proof Notice that arctan(0) = arctan(0) = 0 and nlog(0) = nlog(0) = 0. We may
now proceed by induction upon the options of x, since we have base cases for both
functions. Thus, assume that f (xL) = f (xL) and f (xR) = f (xR), where f is either arctan
or nlog.

Let us begin by considering arctan. We will first show that (arctan(x))L < arctan(x) <
(arctan(x))R . It suffices to have the following four inequalities:[

x− xL

1 + xxL

]
4n−1

< arctan(x)− arctan(xL) = arctan
(

x− xL

1 + xxL

)
[

x− xR

1 + xxR

]
4n+1

< arctan(x)− arctan(xR) = arctan
(

x− xR

1 + xxR

)
[

xR − x
1 + xxR

]
4n−1

< arctan(xR)− arctan(x) = arctan
(

xR − x
1 + xxR

)
[

xL − x
1 + xxL

]
4n+1

< arctan(xL)− arctan(x) = arctan
(

xL − x
1 + xxL

)
From the Maclaurin series expansion of arctan(x), we know that [z]4n−1 < arctan(z)
when 0 < z ≤ 1 and [z]4n+1 < arctan(z) when −1 ≤ z < 0. So, it suffices to check
the following inequalities:∣∣∣∣ x− xL

1 + xxL

∣∣∣∣ ≤ 1 and
∣∣∣∣ x− xR

1 + xxR

∣∣∣∣ ≤ 1.

The above inequalities are precisely given by the extra conditions imposed on the
options of x in Definition 12. We next show that (arctan(x))L and (arctan(x))R both
“approach” arctan(x).4 If Lx 6= ∅, pick xL ∈ R such that 1 + xxL > 0, and if Rx 6= ∅,
pick xR ∈ R such that 1 + xxR > 0 (observe that we can always make such choices).
Since limn→∞[z]4n−1 = arctan(z) and limn→∞−[−z]4n+1 = arctan(z) when z ∈ R
such that 0 < z ≤ 1, we have the following limits:

lim
n→∞

arctan(xL) +

[
x− xL

1 + xxL

]
4n−1

= arctan(xL) + arctan
(

x− xL

1 + xxL

)
= arctan(x)

lim
n→∞

arctan(xR) +

[
x− xR

1 + xxR

]
4n+1

= arctan(xR) + arctan
(

x− xR

1 + xxR

)
= arctan(x)

4By “approach” we mean “approach as real sequences” so that {(arctan(x))L | (arctan(x))R} =

arctan(x).
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Similarly, since limn→∞[z]4n+1 = arctan(z) and limn→∞−[−z]4n−1 = arctan(z) when
z ∈ R such that −1 ≤ z < 0, we have the following limits:

lim
n→∞

arctan(xL)−
[

xL − x
1 + xxL

]
4n+1

= arctan(xL)− arctan
(

xL − x
1 + xxL

)
= arctan(x)

lim
n→∞

arctan(xR)−
[

xR − x
1 + xxR

]
4n−1

= arctan(xR)− arctan
(

xR − x
1 + xxR

)
= arctan(x)

It follows that arctan(x) = {{arctan(x)− 1
n : n ∈ Z>0} | {arctan(x) + 1

n : n ∈ Z>0}} =

arctan(x).

Let us now consider nlog. We will first show that (nlog(x))L < nlog(x) < (nlog(x))R .
It suffices to have the following four inequalities:

[
x− xL

1− xL

]
n
< nlog(x)− nlog(xL) = nlog

(
x− xL

1− xL

)
[

x− xR

1− xR

]
2n+1

< nlog(x)− nlog(xR) = nlog
(

x− xR

1− xR

)
[

xR − x
1− x

]
n
< nlog(xR)− nlog(x) = nlog

(
xR − x
1− x

)
[

xL − x
1− x

]
2n+1

< nlog(xL)− nlog(x) = nlog
(

xL − x
1− x

)

From the Maclaurin series expansion of nlog(x), we know that [z]n < nlog(z) when
0 < z < 1 and [z]2n+1 < nlog(z) when −1 < z < 0. So, it suffices to check the
following inequalities:

∣∣∣∣ x− xL

1− xL

∣∣∣∣ < 1,
∣∣∣∣x− xL

1− x

∣∣∣∣ < 1,
∣∣∣∣ x− xR

1− xR

∣∣∣∣ < 1, and
∣∣∣∣x− xR

1− x

∣∣∣∣ < 1.

The above four inequalities are precisely given by the extra conditions imposed on
the options of x in Definition 12. We next show that (nlog(x))L and (nlog(x))R both
“approach” nlog(x). Since limn→∞[z]n = nlog(z) and limn→∞[−z]2n+1 = nlog(−z)
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when z ∈ R such that 0 < z < 1, we have the following limits:

lim
n→∞

nlog(xL) +

[
x− xL

1− xL

]
n

= nlog(xL) + nlog
(

x− xL

1− xL

)
= nlog(x)

lim
n→∞

nlog(xR) +

[
x− xR

1− xR

]
2n+1

= nlog(xR) + nlog
(

x− xR

1− xR

)
= nlog(x)

lim
n→∞

nlog(xL)−
[

xL − x
1− x

]
2n+1

= nlog(xL)− nlog
(

xL − x
1− x

)
= nlog(x)

lim
n→∞

nlog(xR)−
[

xR − x
1− x

]
n

= nlog(xR)− nlog
(

xR − x
1− x

)
= nlog(x)

It follows that nlog(x) = {{nlog(x) − 1
n : n ∈ Z>0} | {nlog(x) + 1

n : n ∈ Z>0}} =

nlog(x).

We now provide an example of how to use Definition 12 in a computation:

Example 14 Consider ω = {Z>0 |}, and let us evaluate arctan(ω). The genetic
formula for arctan gives

arctan(ω) =

{
−π
2
, arctan(k) +

[
ω − k
1 + kω

]
4n−1

∣∣∣∣arctan(k)−
[

k − ω
1 + kω

]
4n+1

,
π

2

}
,

where k runs through the elements of Z>0 and where we have used Theorem 13 to say
that arctan(k) = arctan(k) for k ∈ Z>0 . Observe that we have the following equality:

ω − k
1 + kω

=
1
k
− k2 + 1

k(kω + 1)
.

Since the (4n− 1)-truncations of the Maclaurin series of arctan are increasing on the
interval (0, 1), we have that[

1
k

]
4n−1

≥
[

1
k
− k2 + 1

k(kω + 1)

]
4n−1

.

But we also have that [x]4n−1 < arctan(x) when x ∈ (0, 1), so we obtain the following
inequality: [

1
k

]
4n−1

< arctan
(

1
k

)
− 1
∞
.
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Combining our results, we have the following inequality:

arctan(k) +

[
ω − k

1 + kω

]
4n−1

< arctan(k) + arctan
(

1
k

)
− 1
∞

=
π

2
− 1
∞
.

But since [x]4n−1 > 0 for x ∈ (0, 1), we can make

π

2
−
(

arctan(k) +

[
ω − k
1 + kω

]
4n−1

)
< ε

for each n and for every real ε > 0 by taking k sufficiently large. It follows that the
left collection of arctan(ω) may be written as

{
π
2 −

1
n : n ∈ Z>0

}
. A similar analysis

of the right collection of arctan(ω) yields that all of the options of the form

arctan(k)−
[

k − ω
1 + kω

]
4n+1

are greater than π
2 , so the right collection of arctan(ω) may be written as

{
π
2

}
. It

follows that

arctan(ω) =

{
π

2
− 1

n

∣∣∣∣π2
}

=
π

2
− 1
ω
.

As is detailed in [3] and [4], it is possible to define a surreal extension of analytic
functions, including the arctangent function on the restricted domain (−∞,∞) and
the nlog function on the domain (−∞, 1 − 1

∞ ) (the definitions given in [3] and [4]
are not necessarily genetic, but are nonetheless interesting). It would be interesting to
determine whether their functions agree with ours on the intersections of the domains of
definition; however, it does not seem to be straightforward to check this in general. We
begin by considering the arctan function. Let x ∈ (−∞,∞), and observe that x can be
uniquely expressed as r + ε, where r ∈ R and ε is infinitesimal. Then if pr denotes
the Taylor series expansion of the (real) arctangent function at r , then define a function
arctan(x) ··= pr(r + ε), where the method of computing pr is given in Chapter 4 of [2].
We may similarly define a function nlog on the domain (−∞, 1− 1

∞ ). We then want
to determine whether arctan = arctan on (∞,∞) and whether nlog = nlog on (∞, 0].
Theorem 13 guarantees that arctan = arctan and nlog = nlog on R, for it can be easily
seen arctan(x) = arctan(x) and nlog(x) = nlog(x) when x ∈ R. The following theorem
establishes the equalities arctan(x) = arctan(x) and nlog(x) = nlog(x) for a certain
proper class of values x ∈ No:

Theorem 15 Let S ⊂ No be the proper class of numbers x such that either Lx = {0}
or Rx = {0}. Then, arctan(x) = arctan(x) for all x ∈ S and nlog(x) = nlog(x) for all
x ∈ S ∩ No≤0 .
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Proof We first consider the arctan function. Suppose Lx = {0}. Then we have that
arctan(x) is given by the expression

arctan(x) =

{
−π
2
, [x]4n−1 , arctan(xR) +

[
x− xR

1 + xxR

]
4n+1

∣∣∣∣
arctan(xR)−

[
xR − x
1 + xxR

]
4n−1

, [x]4n+1 ,
π

2

}
.

Notice that each x ∈ S has normal form x = rx ·ω−yx , where rx ∈ R and yx ∈ On. Pick
a, b ∈ Rx . Because the Maclaurin truncations in the definition of the arctan function
involve only finite powers, we obtain the following bound:

b

([
x− a
1 + xa

]
4n+1

+

[
b− x
1 + xb

]
4n−1

)
< zx,

where zx denotes the smallest limit ordinal that is larger than b
(
ω−yx

)
. Notice that for

all α ∈ On<zx , we can make

|[x]4n−1 − [x]4n+1| < ω−α

by taking n sufficiently large. It follows that for each choice of a, b ∈ Rx , we can take
n sufficiently large so that we have the inequality

|[x]4n−1 − [x]4n+1| <
∣∣∣∣[ x− a

1 + xa

]
4n+1

+

[
b− x
1 + xb

]
4n−1

∣∣∣∣ .
Thus, in our expression for arctan(x), we may simply throw out all options involving
xR . Thus, we find that

arctan(x) =

{
−π
2
, [x]4n−1

∣∣∣∣[x]4n+1 ,
π

2

}
,

and the expression on the right-hand-side of the above equality is precisely equal to
arctan(x) when x ∈ S . A similar argument works to handle the case when Rx = {0}.

We next consider the nlog function. Suppose Rx = {0} (we need not consider the
case of Lx = {0} because the domain of the nlog function does not contain positive
numbers). Then we have that nlog(x) is given by the expression

nlog(x) =

{
[x]n , nlog(xL) +

[
x− xL

1− xL

]
2n+1

∣∣∣∣nlog(xL)−
[

xL − x
1− x

]
n
,−
[

x
x− 1

]
2n+1

}
Notice that each x ∈ S has normal form x = rx · ω−yx , where rx ∈ R and yx ∈ On.
Pick a, b ∈ Lx . Because the Maclaurin truncations in the definition of the nlog function
involve only finite powers, we obtain the following bound:

b

([
x− a
1− a

]
2n+1

+

[
b− x
1− x

]
n

)
< zx,
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where zx denotes the smallest limit ordinal that is larger than b
(
ω−yx

)
. Notice that for

all α ∈ On<zx , we can make∣∣∣∣[x]n +

[
x

x− 1

]
2n+1

∣∣∣∣ < ω−α

by taking n sufficiently large. It follows that for each choice of a, b ∈ Rx , we can take
n sufficiently large so that we have the inequality∣∣∣∣[x]n +

[
x

x− 1

]
2n+1

∣∣∣∣ < ∣∣∣∣[ x− a
1− a

]
2n+1

+

[
b− x
1− x

]
n

∣∣∣∣ .
Thus, in our expression for nlog(x), we may simply throw out all options involving xL .
Thus, we find that

nlog(x) =

{
[x]n

∣∣∣∣− [ x
x− 1

]
2n+1

}
,

and the expression on the right-hand-side of the above equality is precisely equal to
nlog(x) when x ∈ S .

Remark It can be deduced from the proof of Theorem 15 that arctan
( 1
ω

)
is given by

the following normal form:

arctan
(

1
ω

)
=
∞∑

i=1

(−1)i · ω−i

2i− 1
.

Then from the result of Example 14, we have that arctan(ω) + arctan
( 1
ω

)
6= π

2 , whereas
for all x ∈ R>0 we have that arctan(x) + arctan

( 1
x

)
= π

2 , thus providing evidence that
the functional equation for the arctangent function does not necessarily extend from the
reals to the surreals.

Moreover, our method of finding a genetic formula for a surreal extension of a (real)
function cannot necessarily be applied to all real analytic functions. An important feature
of the (real) functions arctan and nlog that allows us to construct surreal extensions
with genetic formulas is that they satisfy simple functional equations. Specifically,

arctan(a) + arctan(b) = arctan
(

a + b
1− ab

)
and nlog(a) = nlog(b) + nlog

(
a− b
1− b

)
.

For functions (of one variable or of many variables) that satisfy more complicated
functional equations or no functional equations at all, it is more difficult to find surreal
extensions with genetic formulas.
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4 Sequences of Numbers and their Limits

In this section, we dicuss limits of sequences. We first explain why it is best to consider
On-length sequences. We then provide a tool (Dedekind representation) that we use to
define the limit of an On-length sequence and to give a complete characterization of
convergent sequences.

4.1 Finding a Suitable Notion of Limit

In earlier work on surreal calculus, sequences (and series, which are sequences of partial
sums) are restricted to have limit-ordinal length (as opposed to having length On).
The “need” for such a restriction can be explained informally as follows. Suppose we
have a sequence A = a1, a2, . . . of length On. It is possible that for every m ∈ On,
b(ai) > m for all i ∈ On>n and some n ∈ On. In an attempt to create a genetic formula
for the limit of A, we can write limi→On ai = {L | R}. But, because b(ai) can be made
arbitrarily large by taking i large enough, the elements of at least one of L,R would
depend on the options of all terms in some subsequence (with length On) of A. So,
the cardinality of at least one of L,R would have initial ordinal that is not less than
On, implying that at least one of L,R would be a proper class rather than a set. Thus,
the genetic formula {L | R} of limi→On ai would fail to satisfy Definition 1. However,
if c1, c2, . . . is a sequence of length α where α is a limit-ordinal, then there exists
m ∈ On such that for all i ∈ On<α , m > b(ci), so b(ci) is bounded. Thus, in any
reasonable genetic formula {L | R} for limi→α ci , L and R would be small enough to
be sets, and {L | R} would satisfy Definition 1. It is for this reason that earlier work
has found the need to restrict the length of sequences.

While it does preserve Conway’s construction of numbers (Definition 1), restricting
sequences to have limit-ordinal length prevents us from obtaining the standard ε-δ
notion of convergence for surreal sequences, as illustrated by the following theorem:

Theorem 16 Let b ∈ No. Then, there does not exist an eventually nonconstant
sequence A = t1, t2, . . . of length α , where α is a limit-ordinal, such that for
every (surreal) ε > 0, there is an N ∈ On<α satisfying |tn − b| < ε whenever
n ∈ On>N ∩On<α .

Proof Suppose such a sequence A exists, and assume without loss of generality
that none of the ti are equal to b. (If any ti are equal to b, discard them; the
remaining subsequence has the same limit as the original sequence.) Now let z be
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the smallest ordinal such that z > sup{|b| , b(t1), b(t2), . . . }, and let ε = 1/ωz . Then
there exists some N ∈ On<α such that for all n ∈ On>N ∩On<α , (1) tn 6= b; and (2)
−ε = −1/ωz < tn − b < 1/ωz = ε. (tn 6= b holds for all n ∈ On<α .) When (1) and
(2) are combined, either (b− 1/ωz < tn < b) or (b < tn < b + 1/ωz) holds. Thus, in
any genetic formula for tn , there is at least one left or right option whose birthday is
≥ z. So for all n ∈ On>N ∩ On<α , b(tn) ≥ z, which is a contradiction because we
chose z so that b(tn) < z.

From Theorem 16, it is clear that restricting sequences to be of limit ordinal length is
not optimal because such sequences do not have surreal limits (by “limit” we mean the
ε-δ notion). We must consider On-length sequences in No, not only for the above
reasons but also in light of work by Sikorski, who showed that in a field of character ωµ
(which is an initial regular ordinal number), we need to consider sequences of length ωµ
to obtain convergence for nontrivial sequences [10]. Thus in No, which has character
On, we need to consider sequences of length On.

As mentioned earlier in this subsection, any formula of the form {L | R} for the limit of
an On-length sequence must allow at least one of L,R to be a proper class. Since the
representation of numbers by genetic formulas forces L,R to be sets, we need a new
representation of numbers. The following is a particularly useful one:

Definition 17 For x ∈ NoD , the Dedekind representation of x is x = {No<x | No>x}.

When considering Dedekind representations, we use the following notational conven-
tions: x = {xL | xR} = {Lx | Rx}, where we write “L ,” “R ” instead of “L ,” “R” to
distinguish Dedekind representations from genetic formulas. The following proposition
allows us to use Dedekind representations of numbers in all basic arithmetic operations:

Proposition 18 Every property in Definition 2 holds when the numbers x1 = {Lx1 |
Rx1} and x2 = {Lx2 | Rx2} are written in their respective Dedekind representations.

Proof The proof is a routine calculation, so we omit it.

4.2 Evaluation of Limits of Sequences

The approach we take to defining the limit of an On-length sequence is analogous to
the method Conway uses in introducing the arithmetic properties of numbers in Chapter
0 of [2]. Specifically, we first define the limit of an On-length sequence to be a certain
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Dedekind representation and then prove that this definition is a reasonable one, ie show
that it is equivalent to the usual ε-δ definition for sequences that approach numbers.
Of course, we could have defined the limit of an On-length sequence in the usual way
with ε and δ , but our definition is more general because it works for sequences that
approach gaps as well as numbers. It is also in the spirit of the subject for the limit of a
sequence to be of the form “{left collection | right collection}.”

Definition 19 Let A = a1, a2, . . . be an On-length sequence. Then, define:

(1) `(A) ··=

a : a < sup

⋃
i≥1

⋂
j≥i

Laj

∣∣∣∣∣∣b : b > inf

⋃
i≥1

⋂
j≥i

Raj


Definition 20 Let A = a1, a2, . . . be an On-length sequence. We say that the limit
of A is ` and write limi→On ai = ` if the expression on the right-hand-side of (1) in
Definition 19 is a Dedekind representation and ` = `(A).

Remark In the above definition, we make no distinction as to whether `(A) is a
number or a gap. Definition 20 holds in both cases, although we do not say that surreal
sequences approaching gaps are convergent, just like we do not say real sequences
approaching ±∞ are convergent.

Before we state and prove Theorem 22, which proves the equivalence of Definition 20
with the standard ε-δ definition, we need the following lemma:

Lemma 21 Let A = a1, a2, . . . be an On-length sequence, and let B = ak, ak+1, . . .

be an On-length sequence. Then `(B) = `(A).

Proof We need to show that the following statements hold: (1) sup
(⋃

i≥k
⋂

j≥i Laj

)
=

sup
(⋃

i≥1
⋂

j≥i Laj

)
and (2) inf

(⋃
i≥k
⋂

j≥i Raj

)
= inf

(⋃
i≥1
⋂

j≥i Raj

)
. We first

prove (1). Let M =
(⋃

i≥k
⋂

j≥i Laj

)
and N =

(⋃
i≥1
⋂

j≥i Laj

)
. Note that⋂

j≥i Laj ⊆
⋂

j≥i+1 Laj . Therefore, P =
(⋃

1≤i<k
⋂

j≥i Laj

)
⊆ M . But P ∪M = N ,

implying M = N . So, sup(M) = sup(N). We now prove (2). Let S =
(⋃

i≥k
⋂

j≥i Raj

)
and T =

(⋃
i≥1
⋂

j≥i Raj

)
. Note that

⋂
j≥i Raj ⊆

⋂
j≥i+1 Raj . Therefore, U =(⋃

1≤i<k
⋂

j≥i Raj

)
⊆ S . But U ∪ S = T , implying S = T . So inf(S) = inf(T).

Statements (1) and (2) suffice to show that `(B) = `(A).
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Remark The analogue of Lemma 21 also holds on R and supports our intuition that
the first terms of a sequence have no bearing on the limit of that sequence.

Theorem 22 Let A = a1, a2, . . . be an On-length sequence. If limi→On ai = `(A) ∈
No, then for every (surreal) ε > 0, there is an N ∈ On satisfying |an − `(A)| < ε

whenever n ∈ On>N . Conversely, if ` is a number such that for every (surreal) ε > 0,
there is an N ∈ On satisfying |an − `| < ε whenever n ∈ On>N , then limi→On ai = `.

Proof For the forward direction, we must prove that for every ε > 0, there exists
N ∈ On such that whenever n ∈ On>N , |an−`(A)| < ε. Split A into two subsequences,
A+ = b1, b2, . . . being the subsequence of all terms ≥ `(A) and A− = c1, c2, . . . being
the subsequence of all terms ≤ `(A). Note that the limit of an On-length subsequence
equals the limit of its parent sequence. If either A+ or A− has ordinal length (they
cannot both be of ordinal length because A has length On), by Lemma 21, we can
redefine A ··= aβ, aβ+1, . . . for some β ∈ On such that the tail of the new sequence A

lies entirely in either A+ or A− , depending on which subsequence has length On. Let
us assume that both A+,A− have length On.

Observe |bn − `(A)| = bn − `(A). Suppose there does not exist N1 ∈ On such that
whenever n ∈ On>N1 , bn − `(A) < ε for some ε > 0. Then for arbitrarily many

n > N1 , bn ≥ `(A) + ε. Thus, y = inf
(⋃

i≥1
⋂

j≥i Rbi

)
≥ `(A) + ε, a contradiction

because y = `(A) if the expression on the right-hand-side of (1) is the Dedekind
representation of `(A). Therefore, there exists N1 ∈ On such that whenever n > N1 ,
bn− `(A) < ε. A similar argument shows that there exists N2 ∈ On such that whenever
n ∈ On>N2 , cn − `(A) < ε. Then N = max{N1,N2} satisfies Definition 20.

If A+ is of ordinal length, then instead of N = max{N1,N2} we have N = N2 .
Similarly, if A− is of ordinal length, then instead of N = max{N1,N2} we have
N = N1 .

For the other direction, if limi→On ai 6= `, then there are two cases to consider. The
first case is that the expression on the right-hand-side of (1) in Definition 19 is not a
Dedekind representation. This would imply that

(2) inf

⋃
i≥1

⋂
j≥i

Raj

− sup

⋃
i≥1

⋂
j≥i

Laj

 > ε,

for some ε > 0, because otherwise we would have elements of the right class of
a number smaller than elements of the left class. But since the ai can be made
arbitrarily close to ` by taking i sufficiently large, we can pick x ∈

⋃
i≥1
⋂

j≥i Raj
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and y ∈
⋃

i≥1
⋂

j≥i Laj such that |x− `| < ε/2 and |y− `| < ε/2. By the Triangle
Inequality, |x− y| ≤ |x− `|+ |y− `| < ε/2 + ε/2 < ε, which contradicts the claim
in (2). Thus, it follows that the expression on the right-hand-side of (1) in Definition 19
is a Dedekind representation.

The second case is that `(A) is a gap, not a number. Since the expression on the
right-hand-side of (1) in Definition 19 is a Dedekind representation, we have that

(3) inf

⋃
i≥1

⋂
j≥i

Raj

 = sup

⋃
i≥1

⋂
j≥i

Laj

 = `(A).

Now suppose that `(A) < `. Using notation from the proof of the first case above, we
know that for every ε > 0, we have |y− `| < ε. If we pick ε such that `− ε > `(A),
then we have y > `(A), which contradicts (3). Thus, `(A) 6< `. By analogous reasoning
in which we replace “left" with “right," we find that `(A) 6> `. Finally, we have
`(A) = `, so `(A) cannot be a gap. This completes the proof of the theorem.

It is only natural to wonder why in our statement of Theorem 22 we restrict our
consideration to sequences approaching numbers. The issue with extending the theorem
to describe gaps is nicely demonstrated in the example sequence A = a1, a2, . . . defined
by ai = ω1/i . Substituting A into the expression on the right-hand-side of (1) in
Definition 19 yields `(A) = ∞. However, it is clearly not true that we can make ai

arbitrarily close to∞ by picking i sufficiently large, because for every surreal ε ∈ (0, 1)
and every i ∈ On, we have that ai − ε >∞.

We next consider how our method of evaluating limits of sequences using Dedekind
representations can be employed to completely characterize convergent sequences.

4.3 Cauchy Sequences

We can now distinguish between sequences that converge (to numbers), sequences
that approach gaps, and sequences that neither converge nor approach gaps. On the
real numbers all Cauchy sequences converge, ie R is Cauchy complete. However, No
is not Cauchy complete; there are Cauchy sequences of numbers that approach gaps.
We devote this subsection to determining which types of Cauchy sequences converge
(to numbers) and which types do not. Let us begin our formal discussion of Cauchy
sequences by defining them as follows:

Definition 23 Let A = a1, a2, . . . be a sequence of length On. Then A is a Cauchy
sequence if for every (surreal) ε > 0 there exists N ∈ On such that whenever
m, n ∈ On>N , |am − an| < ε.
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As follows, we show that No is not Cauchy complete by providing an example of a
sequence that satisfies Definition 23 but approaches a gap.

Example 24 Let A = 1, 1+1/ω, 1+1/ω+1/ω2, 1+1/ω+1/ω2+1/ω3, . . . . Note that
A is a Cauchy sequence because it satisfies Definition 23, ie for every ε > 0, there exists
N ∈ On such that whenever m, n ∈ On>N ,

∣∣∣∑i∈On≤m
1/ωi −

∑
i∈On≤n

1/ωi
∣∣∣ < ε.

It is easy to check that the Dedekind representation of `(A) in this example, it is
easy to check that the Dedekind representation obtained for `(A) is that of the object∑

i∈On 1/ωi . However, as explained in Subsection 2.2,
∑

i∈On 1/ωi is the normal form
of a gap, so A is a Cauchy sequence that approaches a gap, a result that confirms the
fact that No is not Cauchy complete.

Four key steps make up our strategy for classifying Cauchy sequences: (1) prove
that sequences approaching Type II gaps are not Cauchy; (2) conclude that Cauchy
sequences either converge, approach Type I gaps, or diverge (as it happens, Cauchy
sequences do not diverge, but we only prove this in step 4); (3) prove that only a certain
kind of Type I gap can be approached by Cauchy sequences; and (4) prove that Cauchy
sequences that do not approach such Type I gaps are convergent. We execute this
strategy as follows.

To prove that sequences approaching Type II gaps are not Cauchy, we need a restriction
on the definition of gaps. We restrict Conway’s original definition of gaps as follows:

Definition 25 A surreal gap is any Dedekind section of No that cannot be represented
as either {No<x | No≥x} or {No≤x | No>x} for some x ∈ No. Furthermore, objects of
the form {No<x | No≥x} or {No≤x | No>x} are defined to be equal to x .

Remark From now on, the unqualified word “gap” refers only to gaps of the type
described in Definition 25.

Lemma 26 Let A = a1, a2, . . . . If limi→On ai = g for some gap g of Type II, then
the sequence A is not Cauchy.

Proof Suppose A is Cauchy. It follows that
∣∣aR

i − aL
j

∣∣ can be made arbitrarily close
to 0 if i, j ∈ On are taken sufficiently large. Then, if `(A) denotes the Dedekind
representation of g,

∣∣`(A)R − `(A)L
∣∣ can be made arbitrarily close to 0. It follows

that
∣∣`(A)R − g

∣∣ can be made arbitrarily close to 0 if i, j ∈ On are taken sufficiently
large. As discussed in the previous section, we know that g =

∑
i∈On<β riω

yi ⊕
(
±ωΘ

)
for some gap Θ. Also, as described in Subsection 2.1, h =

∑
i∈On<β riω

yi is a number,
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so
∣∣g− `(A)R

∣∣ =
∣∣h′ ⊕ (±ωΘ

)∣∣, where h′ ∈ No. Now,
∣∣h′ ⊕ (±ωΘ

)∣∣ is a gap, and
Θ > Off because ωOff = 1/On is not a gap by Definition 25. Because we can
make

∣∣h′ ⊕ (±ωΘ
)∣∣ smaller than any (surreal) ε > 0, pick ε = ωr for some number

r < Θ (which is possible to do because Θ > Off ). Then we can either have (1)
h′ > ωΘ > h′ − ωr ; or (2) h′ < ωΘ < h′ + ωr . In case (1) let z denote the largest
power of ω in the normal form of h′ . Clearly, z > Θ and z > r , so the largest power of
ω in the normal form of h′ − ωr is z. But it follows that h′ − ωr > ωΘ , a contradiction.
Similarly, in case (2) let z denote the largest power of ω in the normal form of h′ .
Clearly, z < Θ, so the largest power of ω in the normal form of h′ + ωr is max{z, r}.
But it follows that h′ + ωr < ωΘ , a contradiction. Thus we have the lemma.

It might seem like the gap restriction of Definition 25 was imposed as a convenient
means of allowing Lemma 26 to hold. Nevertheless, there is sound intuitive reasoning
for why we must restrict gaps in this way. In Definition 5, gaps are defined to be
Dedekind sections of No. This means that sections like 1/On = {No≤0 | No>0} are
gaps. But if we allow objects such as 1/On to be gaps, we can create similar “gaps” in
the real line by claiming that there exist: (1) for each a ∈ R, an object > a and less
than all reals > a; and (2) another object < a and greater than all reals < a. However,
such objects are not considered to be “gaps” in the real line. Additionally, without
Definition 25, On-length sequences like 1, 1/2, 1/4, . . . would be said to approach the
gap 1/On rather than the desired limit 0, and in fact no On-length sequences would
converge at all. For these reasons, we must restrict the definition of gaps.

Now, Cauchy sequences must therefore either converge, approach Type I gaps, or
diverge. Let us next consider the case of Cauchy sequences approaching Type I gaps.
Designate a Type I gap g1 =

∑
i∈On ri · ωyi to be a Type Ia gap iff limi→On yi = Off

and to be a Type Ib gap otherwise. We now state and prove the following lemma about
Type I gaps:

Lemma 27 Let A = a1, a2, . . . be a Cauchy sequence. If limi→On ai = g for some
gap g of Type I, then g is a gap of Type Ia.

Proof Suppose g =
∑

i∈On ri · ωyi is of Type Ib. Because the yi are a decreasing
sequence that does not approach Off , they are bounded below by some number, say
b. Now since A is Cauchy, it follows that

∣∣aR
i − aL

j

∣∣ can be made arbitrarily close
to 0 if i, j ∈ On are taken sufficiently large. Then, if `(A) denotes the Dedekind
representation of g,

∣∣`(A)R − `(A)L
∣∣ can be made arbitrarily close to 0. It follows

that
∣∣`(A)R − g

∣∣ can be made arbitrarily close to 0 if i, j ∈ On are taken sufficiently
large. In particular, we can choose `(A)R so that

∣∣`(A)R − g
∣∣ < ωb . Then, either (1)
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`(A)R > g > `(A)R − ωb ; or (2) `(A)R < g < `(A)R + ωb . In case (1), the largest
exponent z of ω in the normal form of the (positive) object `(A)R − g satisfies z ≥ yα
for some α ∈ On. Therefore, z > b, so clearly `(A)R − g > ωb , a contradiction. In
case (2), the largest exponent z of ω in the normal form of the (positive) object g−`(A)R

satisfies z = yα for some α ∈ On. Therefore, z > b, so clearly g − `(A)R > ωb , a
contradiction. Thus, we have the lemma.

Remark Consider the case of a Cauchy sequence A = a1, a2, . . . that approaches a
Type Ia gap g. Note that A approaches g iff it is equivalent to the sequence B defined
by successive partial sums of the normal form of g. Here, two sequences {an} and
{bn} are considered equivalent iff for every (surreal) ε > 0 there exists N ∈ On such
that whenever n > N , |an − bn| < ε.

From Lemmas 26 and 27, we know that there is a Cauchy sequence that approaches a
gap iff the gap is of Type Ia (the reverse direction follows easily from the properties of
the normal form of a Type Ia gap). We now prove that Cauchy sequences that do not
approach gaps of Type Ia must converge (to numbers).

Theorem 28 Let A = a1, a2, . . . be a Cauchy sequence that does not approach a gap
of Type Ia. Then limi→On ai ∈ No.

Proof We first prove that A is bounded. Let α ∈ On such that for all β, γ ∈ On≥α ,
we have that |aβ − aγ | < 1. Then for all β ≥ α , by the Triangle Inequality we have that
|aβ| < |aα|+1. So, for all β ∈ On, we have that |aβ| ≤ max{|a1| , |a2| , . . . , |aα|+1}.
Thus A is bounded.

Now consider the class C = {x ∈ No : x < aα for all α except ordinal-many}. We
next prove that sup(C) ∈ No. If not, then sup(C) is a gap, say g, and g 6= On since
A is bounded. Because A is Cauchy, we claim that D = {x ∈ No : x > aα for all α
except ordinal-many} satisfies inf(D) = g. If this claim were untrue, then we can find
two numbers p, q ∈ (sup(C), inf(D)) (there are at least two numbers in this interval
because of the gap restriction of Definition 25) so that |aβ − aγ | > |p−q| for On-many
β, γ ∈ On, which contradicts the fact that A is Cauchy. Thus the claim holds. Now
A satisfies Definition 20, so limi→On ai = g, where by assumption g must be a gap
of Type II or a gap of Type Ib. But, by Lemmas 26 and 27, A cannot be Cauchy, a
contradiction. So sup(C) = inf(D) ∈ No.

We finally prove that for every ε > 0, we can find α ∈ On so that for every β ∈ On>α ,
we have |aβ − sup(C)| < ε. Suppose the contrary, so that for some ε > 0 we have (1)
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aβ ≤ sup(C) − ε for On-many β ; or (2) aβ ≥ sup(C) + ε for On-many β . In the
first case, we find that there is an upper bound of C that is less than sup(C), which is a
contradiction, and in the second case, we find that there is a lower bound of D that his
greater than inf(D), which is again a contradiction. Thus we have the theorem.

5 Limits of Functions and Intermediate Value Theorem

In this section, we present a Dedekind representation for the limit of a function and
prove the Intermediate Value Theorem.

5.1 Evaluation of Limits of Functions

Finding a genetic formula for the limit of a function is a task that faces issues similar
to those described in Subsection 4.1. Suppose f is a function whose domain is No.
Then, by Definition 29, there exists δ > 0 such that for some β ∈ On and for all
ε ∈ (0, 1/ωβ), limx→a f (x)− ε < f (x) < limx→a f (x) + ε whenever |x− a| < δ . Thus,
we can make b(δ) arbitrarily large by taking β sufficiently large, so any reasonable
genetic formula {L | R} for limx→a f (x) would depend on values of x of arbitrarily large
birthday. Thus, L and R would again be too large to be sets. Because differentiation
is taking the limit of the function f (x+h)−f (x)

h as h → 0, we also cannot differentiate
functions while still satisfying Definition 1. We conclude that a different representation
of numbers (namely the Dedekind representation) that allows L and R to be proper
classes is necessary for limits and derivatives of functions to be defined for surreals.

The following is our definition of the limit of a surreal function. Notice that the definition
is analogous to that of the limit of an On-length surreal sequence, Definition 20.

Definition 29 Let f be a function defined on an open interval containing a, except
possibly at a. We say that f (x) converges to a limit ` as x → a and write that
limx→a f (x) = ` if the expression in (4) is the Dedekind representation of `.

(4)

p : p < sup

 ⋃
b<x<a

⋂
x≤y<a

Lf (y)

∣∣∣∣∣∣q : q > inf

 ⋃
a<x<c

⋂
a<y≤x

Rf (y)


Remark Definition 29 holds for all surreal functions f defined on an open interval
containing a, except possibly at a. In particular, f need not have a genetic definition.
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The Dedekind representation notion of the limit of a surreal function is equivalent to the
standard ε-δ definition.

Theorem 30 Let f be defined on (b, c) ( No containing a, except possibly at a. If
limy→a f (y) = ` ∈ No, then for every (surreal) ε > 0 there exists δ > 0 such that
whenever 0 < |y− a| < δ , |f (y)− `| < ε. Conversely, if ` is a number such that
for every (surreal) ε > 0 there exists δ > 0 such that whenever 0 < |y− a| < δ ,
|f (y)− `| < ε, then limy→a f (y) = `.

Proof The proof is analogous to that of Theorem 22, so we omit it.

Remark As with limits of On-length sequences, we restrict Theorem 30 to functions
that converge to numbers because the standard ε-δ definition does not generalize to gaps.
Also, notice that the expression on the right-hand-side of (1) in Definition 19 as well as
Definition 20 can be easily modified to provide a definition of a limit of a function f (x)
as x → On or x → Off . Finally, the notions of limx→a− f (x) and limx→a+ f (x) are
also preserved in Theorem 30. Specifically, the left class of limx→a f (x) describes the
behavior of f (x) as x→ a− and the right class of limx→a f (x) describes the behavior of
f (x) as x→ a+ .

Notice that derivatives are limits of functions, ie d
dx f (x) = limh→0 g(h), where g(h) =

f (x+h)−f (x)
h . Therefore, derivatives can be evaluated using Definition 29. Evaluating

limits and derivatives of functions can be made easier through the use of limit laws. We
introduce two limit laws in the following proposition:

Proposition 31 Let a ∈ No and f , g be functions, and suppose that limx→a f (x) and
limx→a g(x) both exist. Then, the following hold: (1) Addition: limx→a(f + g)(x) =

limx→a f (x) + limx→a g(x); and (2) Multiplication: limx→a(f · g)(x) = limx→a f (x) ·
limx→a g(x).

Proof The proof is a routine calculation, so we omit it. One can either use the standard
ε-δ arguments or the Dedekind representation of the limit of a function; because these
two notions of limit are equivalent, either method will work.

The notion of limits of functions gives rise to a weaker version of continuity, which is
defined as follows:

Definition 32 Let f : A→ No be a function defined on a locally open class A. Then
f is weakly continuous at a ∈ A if limx→a f (x) = f (a).
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We now justify the terminology weakly continuous:

Proposition 33 Let f : A→ No be a continuous function defined on a locally open
class A. Then f is weakly continuous on A.

Proof Let a ∈ A, ε > 0. Then f−1((f (a) − ε, f (a) + ε)) is open in A (under the
topology of Definition 7), because (f (a)−ε, f (a) +ε) is open (under the same topology).
There exists δ > 0 such that (a − δ, a + δ) ⊂ f−1((f (a) − ε, f (a) + ε)). Then
f ((a− δ, a + δ)) ⊂ (f (a)− ε, f (a) + ε). It follows that f is weakly continuous on A.

5.2 Intermediate Value Theorem

Even though the standard proof of the Intermediate Value Theorem (IVT) on R requires
completeness, we show in this subsection that we can prove the IVT for surreals
without using completeness by using Definitions 7 and 10 along with the following
results regarding connectedness in No. The proofs below are surreal versions of the
corresponding proofs from Munkres’ textbook [9].

Definition 34 A class T ⊂ No is connected if there does not exist a separation of T ,
ie there does not exist a pair of disjoint nonempty classes U,V that are open in T such
that T = U ∪ V .

Lemma 35 Every convex class T ⊂ No is connected.

Proof Suppose the pair of classes U,V forms a separation of T . Then, take u ∈ U
and v ∈ V , and assume without loss of generality that u < v (u 6= v because
U ∩ V = ∅). Because T is convex, we have that [u, v] ⊂ T , so consider the pair of
classes U′ = U ∩ [u, v],V ′ = V ∩ [u, v]. Notice that (1) because U ∩ V = ∅, we have
that U′ ∩ V ′ = ∅; (2) u ∈ U′ and v ∈ V ′ , so neither U′ nor V ′ is empty; (3) U′ and
V ′ are open in [u, v]; and (4) clearly U′ ∪ V ′ = [u, v]. So, the pair U′,V ′ forms a
separation of [u, v].

Now consider w = sup(U′). If w ∈ No, then we have two cases: (1) w ∈ V ′ and (2)
w ∈ U′ . In case (1), because V ′ is open, there is an interval contained in V ′ of the form
(x,w], for some number or gap x . Then x is an upper bound of U′ that is less than w,
because all numbers between w and v inclusive are not in U′ , which contradicts the
definition of w. In case (2), because U′ is open, there is an interval contained in U′

of the form [w, y), for some number or gap y. But then any z ∈ [w, y) satisfies both
z ∈ U′ and z > w, which again contradicts the definition of w.
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If w is a gap, then there is no x ∈ V ′ such that both x < w and (x,w) ⊂ V ′ hold, because
then w 6= sup(U′). Thus, the class V = {x ∈ V ′ : x > w} is open, for no intervals
contained in V ′ lie across w. Now, w = {U′ | V}, but because U′ and V are open,
they are unions of intervals indexed over sets. Consequently, w = {L | R} for some
pair of sets L,R, so w ∈ No, which contradicts our assumption that w is a gap.

Lemma 36 If f is continuous on [a, b], then the image f ([a, b]) is connected.

Proof Suppose f ([a, b]) is not connected. Then there exists a separation U,V of
f ([a, b]), ie there exists a pair of disjoint nonempty open classes U,V such that
f ([a, b]) = U ∪ V . Then, we have the following: (1) f−1(U) and f−1(V) are disjoint
because U,V are disjoint; (2) f−1(U) and f−1(V) are nonempty because the map from
[a, b] to the image f ([a, b]) under f is clearly surjective; (3) f−1(U) and f−1(V) are
open in [a, b] because f is continuous, so the preimages of open classes are open
in [a, b]; and (4) [a, b] = f−1(U) ∪ f−1(V) because any point whose image is in
U or V must be in the corresponding preimage f−1(U) or f−1(V). Thus, the pair
f−1(U), f−1(V) forms a separation of [a, b]. But this contradicts Lemma 35, because
intervals are convex, so f ([a, b]) is connected.

Theorem 37 (IVT) If f is continuous on [a, b] ⊂ No, then for every u ∈ No that
lies between f (a) and f (b), there exists a number p ∈ [a, b] such that f (p) = u.

Proof Assume that neither f (a) = u nor f (b) = u (if either of these were true,
we would have the theorem). Consider the classes U = f ([a, b]) ∩ (Off, u) and
V = f ([a, b]) ∩ (u,On). Notice that (1) U ∩ V = ∅ because (Off, u) ∩ (u,On) = ∅;
(2) neither U nor V is empty because either f (a) < f (b) so f (a) ∈ U and f (b) ∈ V , or
f (a) > f (b) so f (a) ∈ V and f (b) ∈ U ; and (3) both U and V are open in f ([a, b]) (but
not necessarily in No) because each is the intersection of f ([a, b]) with an open ray.
Now assume there is no p ∈ [a, b] such that f (p) = u. Because f ([a, b]) = U ∪ V , we
have that the pair U,V is a separation for f ([a, b]), so f ([a, b]) is not connected. But
this violates Lemma 36, so there is a p ∈ [a, b] such that f (p) = u.

That the IVT holds for surreals does not of course prevent functions from reaching
numbers at gaps, but it does prevent continuous functions from having isolated zeroes
at gaps.5 More precisely, a continuous function f can reach 0 at a gap g iff for every
(surreal) ε > 0 there exists a zero of f in some open interval of width ε containing g.
The only continuous functions we know of that reach a number at a gap are constant on
an open interval containing the gap, but we do not yet know whether it is impossible for
a continuous function to reach a number at a gap without being locally constant.

5The zero-function reaches 0 at every gap.
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6 Series and Integrals

In this section, we present our methods of evaluating series and infinite “Riemann”
sums. We also prove the Fundamental Theorem of Calculus as a method of evaluating
integrals easily, as long as we have a definition of integration. A consistent genetic
definition or Dedekind representation of Riemann integration that works for all functions
nevertheless remains to be discovered.

6.1 Series

The evaluation of series in real analysis usually entails finding a limit of a sequence of
partial sums. Because Definition 20 allows us to find limits of sequences, it might seem
as though evaluating series as limits of partial sum sequences is possible. However, it is
often the case that we do not know a closed-form expression for the αth partial sum
of a series, where α ∈ On. Without such an expression we cannot determine the left
and right options of the αth partial sum and therefore cannot use Definition 20. Also,
suppose ζ is a limit-ordinal. Then by Theorem 16 we cannot claim that the ζ th partial
sum is the limit of previous partial sums, for this limit might be a gap. The next example
illustrates how the partial sums of an On-length series can become “stuck" at a gap:

Example 38 Consider the series s =
∑

i∈On 1/2i . The sum of the first ω terms,∑
i∈On<ω 1/2i , is the gap g between numbers with real part less than 2 and numbers

with real part at least 2. By the definition of gap addition described in Conway’s
book [2], it is clear that g + ε = g for all infinitesimals ε. But note that all remaining
terms in the series, namely 1/2ω, 1/2ω+1, . . . , are infinitesimals, so the sequence of
partial sums for the entire series is: 1, 3/2, 7/4, . . . , g, g, . . . , g, g, . . . . So, if we define
the sum of a series to be the limit of its partial sums, we find that s = g, a result that is
against our intuition that s = 2 (which is true for the real series

∑∞
i=0 1/2i ).

Because of the problem described in Example 38, we cannot use the standard notion of
“sum” in order to create surreal series that behave like real series. Our solution to this
problem is to extrapolate natural partial sums (which can be evaluated using part 3 of
Definition 2) to ordinal partial sums. We define this method of extrapolation as follows.
Denote by K the closure of the set of functions K containing rational functions, exp(x),
log(x), and arctan(x) under the operations of addition, multiplication, and composition.
Then, we have the following:

Definition 39 Let
∑On

i=0 ai be a series. Suppose that for all n ∈ N,
∑n

i=0 ai = f (n),
where f ∈ K . Then for all α ∈ On, define

∑α
i=0 ai ··= f (α).
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Remark The elements of K are what we mean by “closed-form expressions.” Notice
that closed-form expressions are well-defined.

Definition 39 is intended to be used with Definition 20. Specifically,
∑On

i=0 ai =

limα→On f (α), which is easy to evaluate using Definition 20. The rule in Definition 39
does not necessarily work when the nth partial sum of a series is not an element of
K . If we return to the case in Example 38 we see that Definition 39 does indeed yield∑

i∈On 1/2i = 2, as desired. Moreover, we find that 1
1−x = 1 + x + x2 + . . . holds

on the interval −1 < x < 1, as usual. However, the power series of other known
functions including ex, arctan(x) and nlog(x) cannot be evaluated using Definition 39.
Nevertheless, extrapolation seems to be useful for evaluating series, and further
investigation might lead to a more general method of evaluating series.

6.2 Integrals and the Fundamental Theorem of Calculus

Real integrals are usually defined as limits of Riemann sums. Because Definition 20
gives us the limits of On-length sequences and since we know how to evaluate certain
kinds of sums using Definition 39, we now discuss how we can evaluate certain Riemann
sums. We define distance and area, which are necessary for integration. We now define
distance in No2 to be analogous to the distance metric in R2 :

Definition 40 Let A = (a1, a2),B = (b1, b2) ∈ No2 . Then the distance AB from A to
B is defined to be AB =

√
(b1 − a1)2 + (b2 − a2)2 .

It is shown in Alling’s book [1] that distance as defined in Definition 40 satisfies the
standard properties of distance that holds in R. Also, in R2 a notion of the area of a
rectangle exists. We define the area of a rectangle in No2 to be analogous to the area of
a rectangle in R2 :

Definition 41 If ABCD is a rectangle in No2 , its area is [ABCD] = AB · BC .

Because we have defined the area of a rectangle in No2 , we can consider Riemann sums.
It is easy to visualize a Riemann sum in which the interval of integration is divided into
finitely many subintervals. However, when the number of subintervals is allowed to be
any ordinal it is not clear what adding up the areas of an infinite number of rectangles
means. For this reason, earlier work has restricted Riemann sums to have only finitely
many terms. Just as we did with series earlier, we make an “extrapolative” definition
for what we want the αth Riemann sum of a function to be, thereby defining what we
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mean by an infinite Riemann sum. Denote by K′ the closure of the set of functions K′

containing rational functions of three variables, exp(x), log(x) and arctan(x) under the
operations of addition, multiplication and composition (again, we refer to the elements
of K′ as “closed-form expressions”). Then, we have the following:

Definition 42 Let f be a function continuous except at finitely many points on
[a, b]. Suppose that for all n ∈ N and c, d ∈ [a, b] such that c ≤ d , g(n, c, d) =∑n

i=0
d−c

n f
(
c + i

(d−c
n

))
, where g ∈ K′ . Then, for all α ∈ On define the αth Riemann

sum of f on [a, b] to be g(α, a, b).

For functions like polynomials and exponentials, Definition 42 in combination with
Definition 20 evaluates integrals correctly. In particular, if g(α, a, b) is known for
some function f (x) on the interval [a, b] then

∫ b
a f (x)dx = limα→On g(α, a, b). We

demonstrate this method as follows:

Example 43 Let us evaluate
∫ b

a exp(x)dx by using our “extrapolative notion” of
Riemann sums. In this case, we have the following, which results when we use
Definition 42:

g(α, a, b) =
b− a
α

α∑
i=0

exp
(

a + i
(

b− a
α

))
=

(a− b) exp(a + a/α)
α(exp(a/α)− exp(b/α))

(
−1 + exp

(
(b− a)(α+ 1)

α

))
It is now easy to see that g ∈ K′ and that limα→On g(α, a, b) = exp(b) − exp(a), as
desired. In the case where a = 0 and b = ω we have

∫ ω
0 exp(x)dx = exp(ω) − 1,

which resolves the issue with the integration methods used in Conway’s book [2] and
Fornasiero’s paper [6].

In real calculus, limits of Riemann sums are difficult to evaluate directly for most
functions. In order to integrate such functions, the notion of primitive is used. However,
we require the Fundamental Theorem of Calculus (FTC) in order to say that finding a
primitive is the same as evaluating an indefinite integral.

We now state and prove the surreal analogue of the Extreme Value Theorem (EVT),
which is required to prove the FTC. To prove the EVT, we need some results regarding
“strong compactness,” which is defined in the surreal sense as follows:

Definition 44 Let X ⊂ No. Then X is strongly compact if there exists a covering of
X by a proper set of subintervals open in X , where each subinterval has endpoints in
No ∪ {On,Off}, and if for every such covering there exists a finite subcovering.
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Remark A subinterval of X is by definition the intersection of a subinterval of No
with X . The endpoints of a subinterval are its lower and upper bounds.

Observe that a strongly compact subset of No is a finite union of subintervals with
endpoints in No ∪ {On,Off}.

The restriction of coverings to proper sets in Definition 44 is crucial, for otherwise the
next lemma would not hold:

Proposition 45 (From Fornasiero’s paper [6]) No is strongly compact.

Lemma 46 Let [a, b] ⊂ No be any closed subinterval with a, b ∈ No ∪ {On,Off}
(not necessarily bounded). Then [a, b] is strongly compact.

Proof Let A = {Aα} be a proper set of subintervals open in [a, b] such that A is a
covering of [a, b] (notice that such a covering exists because a, b ∈ No ∪ {On,Off}).
For each α , we can find subinterval Bα open in No and with endpoints in No∪{On,Off}
such that Aα = [a, b] ∩ Bα . Now

⋃
α Bα = (c, d) for some c, d ∈ NoD . Then if

c′ ∈ (c, a] ∩ (No ∪ {On,Off}), d′ ∈ [b, d) ∩ (No ∪ {On,Off}), and B = {Bα},

C = B ∪ {(Off, c′) ∪ (d′,On)}

is an open covering of No by a proper set of subintervals whose endpoints are in
No ∪ {On,Off}. By Lemma 45, C has a finite subcovering C′ . Then the covering
{C ∩ [a, b] : C ∈ C′} (after removing the empty set if it appears) is a finite subcovering
of A that covers [a, b]. So, the closed interval [a, b] is strongly compact.

Remark It is not necessarily true that if X is strongly compact and X′ ⊂ X is closed
in X then X′ is strongly compact. For example, the interval (∞,On) is closed because
its complement (Off,∞) is open, but (∞,On) does not have a covering by a proper
set of open subintervals with endpoints in No ∪ {On,Off}.

In order for the EVT to hold, we need to restrict the functions we consider to those that
are strongly continuous:

Definition 47 Let A ⊂ No, and let f : A → No be a function. Then f is strongly
continuous on A if f is continuous on A and if for every strongly compact bounded
A′ ⊂ A there exists a covering of f (A′) by a proper set of subintervals open in f (A′) and
with endpoints in No ∪ {On,Off}.
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Example 48 Without the added condition of Definition 47, the EVT would not hold.
Indeed, consider the function f defined as follows. Let g be the gap defined by

g =
∑
α∈On

(−1)α · ω−α,

where (−1)α is taken to be 1 when α is a limit-ordinal. Let gβ be the βth partial sum
in the normal form of g. Then let f (gβ) be given as follows:

f (gβ) =
∑

α∈On≤β

ω−α.

For all x > g0 , let f (x) = f (g0) and for all x < g1 , let f (x) = f (g1). For all other x,
let f be the piecewise-linear function that joins the values of f at the points gβ . Then
notice that f is strictly increasing on (g1, g) and is strictly decreasing on (g, g0), so f
fails to attain a maximum value on [g1, g0], even though f is continuous, ie f violates
the EVT. But we also claim that f is not strongly continuous. Indeed, notice that
f ([g1, g0]) = [1, h), where h =

∑
α∈On ω

−α , and there does not exist a cover of [1, h)
by a proper set of subintervals open in [1, h) and with endpoints in No ∪ {On,Off}.
This example justifies the terminology “strongly continuous.”

Lemma 49 Let A ⊂ No be a strongly compact and bounded, and let f : A→ No be
strongly continuous. Then f (A) is strongly compact.

Proof Let A = {Aα} be a covering of f (A) by a proper set of subintervals open in A
and with endpoints in No ∪ {On,Off} (such a covering exists because A is strongly
compact and bounded and f is strongly continuous). For each α , we can find subinterval
Bα open in No and with endpoints in No ∪ {On,Off} such that Aα = f (A) ∩ Bα .
Then let B = {Bα}. Note that for all B ∈ B , f−1(B) is a union over a proper set
of subintervals open in No and with endpoints in No ∪ {On,Off} by Definition 10
because f is continuous. In this regard, denote f−1(B) =

⋃
α∈SB

CB,α , where CB,α is a
subinterval open in No with endpoints in No ∪ {On,Off} for each α and the union is
taken over a proper set SB . Then C = {f−1(CB,α) ∩ A : B ∈ B, α ∈ SB} is a covering
of A with subintervals open in A and with endpoints in No ∪ {On,Off}. Since A is
strongly compact, C has a finite subcovering, say {f−1(Ci) ∩ A : i ∈ N≤n} for some
n ∈ N. For each i, there exists Bi ∈ B such that Ci ⊂ Bi . Then {Bi ∩ f (A) : i ∈ N≤n}
is a finite subcovering of A that covers f (A). So, f (A) is strongly compact.

Theorem 50 (EVT) Let A ⊂ No be a strongly compact and bounded, and let
f : A→ No be strongly continuous and bounded. Then there exists c, d ∈ A such that
f (c) ≤ f (x) ≤ f (d) for all x ∈ A.
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Proof Because A is a strongly compact and bounded and f is strongly continuous, f (A)
is strongly compact by Lemma 49. Suppose that sup(f (A)) is a gap. Since f is bounded
we have that sup(f (A)) < On. Then f (A) cannot be covered by a finite number of
open subintervals with endpoints in No ∪ {On,Off}, so f (A) is not strongly compact,
which is a contradiction. Thus, sup(f (A)) = d ∈ No, and by a similar argument,
inf(f (A)) = c ∈ No. Now suppose that f does not attain an absolute maximum value
on A. Then, f (A) is either [c, d) or (c, d) and is therefore not strongly compact, which
is again a contradiction. So, f attains an absolute maximum value d on A, and by a
similar argument, f attains an absolute minimum value c on A.

To prove the FTC on No, we also need (at least) a characterization of the definite integral
of a function f on the interval [a, b] that works for all strongly continuous bounded
functions f . (Our extrapolative method of evaluating Riemann sums only works for
functions that satisfy the conditions of Definition 42.) We present our characterization
of integration as follows:

Definition 51 The definite integral of a strongly continuous bounded function f on
an interval [a, b] with a, b ∈ No is a function T(a, b) that satisfies the following
three properties: (1) If for all x ∈ [a, b] we have that f (x) = c for some c ∈ No,
T(a, b) = c(b − a); (2) If m is the absolute minimum value of f on [a, b] and
M is the absolute maximum value of f on [a, b] (m,M exist by Lemma 46 and
Theorem 50), then m(b− a) ≤ T(a, b) ≤ M(b− a); and (3) for any number c ∈ [a, b],
T(a, c) + T(c, b) = T(a, b).

Remark Note that in Definition 51, we do not characterize T(a, b) completely; we
merely specify the properties that a definite integral must have in order for the FTC to
be true. In fact, T(a, b) can be any function having these properties, and the FTC will
still hold. Observe that if we only consider functions that satisfy the requirements of
Definition 42, our extrapolative notion of Riemann sums does satisfy Definition 51.

We are now ready to state and prove the FTC on No.

Theorem 52 (FTC) If f is strongly continuous and bounded on [a, b] ⊂ No, then
the function g defined for all x ∈ [a, b] by g(x) =

∫ x
a f (t)dt is weakly continuous on

[a, b] and satisfies g′(x) = f (x) for all x ∈ (a, b).

Proof The standard proof of the FTC from real analysis (see Spivak [11] for this proof)
works for surreals because: (1) We can find derivatives of functions using Definition 29;
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(2) the Extreme Value Theorem holds on No; and (3) we have characterized integration
in Definition 51. We outline the proof as follows.

Pick x, x + h ∈ (a, b). Then by Definition 51, g(x + h)− g(x) =
∫ x+h

x f (t)dt , so as long
as h 6= 0,

(5)
g(x + h)− g(x)

h
=

1
h

∫ x+h

x
f (t)dt.

Suppose h > 0. We know that f is continuous on [x, x + h], so by the EVT, there exist
c, d ∈ [x, x + h] such that f (c) is the absolute minimum value of f on [x, x + h] and
f (d) is the absolute maximum value of f on [x, x + h]. By Definition 51, we know that
h · f (c) ≤

∫ x+h
x f (t)dt ≤ h · f (d), so substituting the result of (5) we have:

(6) f (c) ≤ g(x + h)− g(x)
h

≤ f (d),

which holds when h < 0 too, but the argument is similar so we omit it. If we let h→ 0,
it is clear by the Squeeze Theorem (which follows from Definition 29 and Theorem 30)
that g′(x) = f (x).

The FTC tells us that given a suitable definition of integral, the integral of a function is
also its primitive. It is therefore natural to wonder whether one can define integration
on surreals by antidifferentiation. One issue with relying solely upon antidifferentiation
to evaluate integrals is that surreal functions do not have unique primitives, even up to
additive constant. For example, in the case of the function f (x) = 1, there are many
possible strongly continuous primitives in addition to F(x) = x , including

(7) F(x) =

{
x x <∞
x− 1 x >∞.

The piecewise function F above is strongly continuous because both x and x − 1
approach ∞ as x approaches ∞, which would not be the case if x− 1 were replaced
by, say, x− ω in the definition of F .

We might want the primitive of a genetic function to be genetic. One reason is that if we
have a genetic definition of integration (ie an integral that yields a genetic formula when
given the genetic formula of a function), then the integral of a genetic function will be
genetic by construction. By the FTC, the integral of a function is also a primitive, and
so we would want the primitive of a genetic function to be genetic. In this regard, we
make the following conjecture:

Conjecture 53 Let f : A → No be a genetic function defined on a locally open
subinterval A ⊂ No. If there exists a genetic function F : A → No such that
F′(x) = f (x) for all x ∈ A, then F is unique up to additive constant.
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If Conjecture 53 were true, we would be able to integrate a genetic function f using
the method of antidifferentiation, for it would just suffice to find a genetic primitive
F . Note that this method of integration would work for all surreal functions which
have known genetic primitives, not just functions for which we can evaluate limits of
Riemann sums using the method of extrapolation in combination with Definition 20.

7 Open Questions

Several open questions remain. In order to complete the analogy between real and
surreal functions, consistent genetic formulae of other transcendental functions, such as
sine, along with their necessary properties remain to be found. The most significant
open problem that remains in surreal analysis is finding a genetic formula or a Dedekind
representation for the definite integral of a function. Such a definition of integration
must also satisfy the requirements of Definition 51.

Two other aspects of real analysis that remain incomplete for surreals are series and
differential equations. A method of evaluating series in greater generality remains to be
developed, one that does not depend on the form of the nth partial sum. In addition,
using such a method to evaluate power series should allow basic properties, such as
f (x) = (power series of f (x)) on its region of convergence, to hold. To extend surreal
analysis even further, it is necessary to investigate functions of multiple variables as well
as more general versions of the results presented in this paper. For example, a future
study could consider proving a surreal version of Stokes’ Theorem as a generalization
of the FTC once a consistent theory of surreal differential forms has been developed.

A comprehensive study of differential equations remains to be performed, and as part
of such a study, many questions should be answered. The following are two possible
questions about the behavior of an analytic function f under basic calculus operations
that such a study should answer: (1) What is dα

dxα f (x) for any α ∈ On?; and (2) Does
the function that results from integrating f some ordinal α number of times and then
differentiating α times equal f for all α ∈ On? Finding answers to such questions
would help us understand surreal differential equations and would determine whether
surreal differential equations are more general than their real analogues.
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