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Locating subsets of B(H) relative to seminorms inducing the
strong-operator topology

DOUGLAS BRIDGES

Abstract: Let H be a Hilbert space, and A an inhabited, bounded, convex subset
of B(H). We give a constructive proof that A is weak-operator totally bounded if
and only if it is located relative to a certain family of seminorms that induces the
strong-operator topology on B(H).
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This paper is a contribution to the programme of research in constructive functional
analysis and operator theory. It lies entirely within a Bishop-style constructive frame-
work; in other words, the logic is intuitionistic, and we use an underlying set theory,
such as that presented by Aczel and Rathjen [1, 2], which avoid axioms that would
imply essentially nonconstructive principles such as the law of excluded middle.1

Although carried out by strictly constructive means, our work is not insignificant
within classical-logic-based computational functional analysis: each of our results and
proofs is, a fortiori, classical. But constructive proofs, by their very nature, embody
algorithms, and hence estimates,2 that can be extracted—sometimes with surprising
ease—and then implemented; such program-extraction and implementation can be
found in Constable [8], Hayashi [9], and Schwichtenberg [13]. For example, consider
our main result, Theorem 1, which deals with an inhabited,3 bounded, convex set A
of operators on an infinite-dimensional Hilbert space H . The first half of its proof is,
essentially, an algorithm for converting

1A popular alternative foundation for constructive mathematics is Martin-Löf’s type theory
[12].

2A very different approach to the extraction of estimates (often optimal ones) is adopted
by Kohlenbach: working with classical logic, he uses proof-mining to extract computational
information from classical proofs; see Kohlenbach [11].

3To say that a set is inhabited means that we can construct an element of it. This is a
constructively stronger notion that nonempty (although, confusingly, some earlier work on
constructive analysis uses nonempty in the sense of inhabited).
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2 Douglas Bridges

– finite ε-approximations to A relative to the seminorms defining the weak-
operator topology on B(H)

– into a computation of distances from A relative to a certain family of seminorms
that induces the strong-operator topology on B(H).

The second half is an algorithm for carrying out this conversion in reverse. Of course,
the practical extraction and implementation of these algorithms would be a nontrivial
business; but it could be done.

We begin by recalling some definitions from the constructive theory of locally convex
spaces. A subset S of a locally convex space

(
X, (pi)i∈I

)
, where the pi are the

seminorms defining the topology on X , is said to be located in X if

inf

{∑
i∈F

pi(x− s) : s ∈ S

}
exists for each x ∈ X and each finitely enumerable4 subset F of I . On the other hand,
S is said to be totally bounded if for each finitely enumerable subset F of I and each
ε > 0, there exists a finitely enumerable subset T of S with the property that for each
x ∈ S there exists y ∈ T with

∑
i∈F pi(x− y) < ε; such a set T is then called a finitely

enumerable ε-approximation to S relative to the seminorm
∑

i∈F pi .

We note these facts about total boundedness and locatedness:

– The image of a totally bounded set under a uniformly continuous mapping
between locally convex spaces is totally bounded ([6], Proposition 5.4.2).

– Every totally bounded subset of X is located, and every located subset of a totally
bounded set is totally bounded ([6], Propositions 5.4.4 and 5.4.5).

The following two locally convex topologies play a fundamental role in the classical
theory of subalgebras of the space B(H) of bounded operators on a Hilbert space H :

B The strong operator topology τs : the weakest topology on B(H) with respect
to which the mapping T  Tx is continuous for each x ∈ H ; sets of the form

{T ∈ B(H) : ‖Tx‖ < ε} ,

with x ∈ H and ε > 0, form a sub-base of strong-operator neighbourhoods of
the zero operator.

4A set is finitely enumerable if it is the range of a mapping from {1, . . . , n} for some
natural number n; the set is finite if the mapping can be chosen one-one.
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B The weak operator topology τw : the weakest topology on B(H) with respect
to which the mapping T  〈Tx, y〉 is continuous for all x, y ∈ H ; sets of the
form

{T ∈ B(H) : |〈Tx, y〉| < ε} ,

with x, y ∈ H and ε > 0, form a sub-base of weak-operator neighbourhoods of
the zero operator.

These topologies are induced, respectively, by the seminorms of the form T  ‖Tx‖
with x ∈ H , and those of the form T  |〈Tx, y〉| with x, y ∈ H .

For each integer N > 2 we denote, for example, by x the N -tuple (x1, . . . , xN) of
elements of H , and we define HN to be the Hilbert direct sum of N copies of H .
Although one frequently describes the strong-operator topology by means of the L1 -
like seminorms

‖ ‖1,x : T  
N∑

n=1

‖Txn‖ ,

where x ∈ HN , in this paper we focus our attention on an alternative family of
seminorms inducing τs : namely, the family of L2 -like seminorms

‖ ‖2,x : T  

(
N∑

n=1

‖Txn‖2

)1/2

,

where x ∈ HN . We say that a subset A of B(H) is k-located if it is located relative
to the family of Lk -like seminorms (k = 1, 2). Note that although each of the two
Lk -families induces the strong-operator topology on B(H), it is not a priori the case
that the metric-dependent notions of 1-locatedness and 2-locatedness coincide on a
given subset A of B(H). It will be a consequence of our main result, which we now
state, that these two notions of locatedness do coincide when A is inhabited, bounded,
and convex.

Theorem 1 Let H be an infinite-dimensional Hilbert space, and A an inhabited,
bounded, convex subset of B(H). Then A is 2-located if and only if it is weak-
operator totally bounded.

In the case where H is separable, the equivalence of 1-locatedness and weak-operator
total boundedness for inhabited, bounded, convex subsets of B(H) was proved by
Spitters ([14], Corollary 10), who took a non-elementary route through trace-class
operators and normal states. In the non-separable case, the implication from weak-
operator total boundedness to 1-locatedness is proved by Bridges, Ishihara and Vı̂ţă [7]
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(Theorem 3.8), using general results about infima of real-valued continuous functions
on convex sets in normed spaces (a counterpart of which plays a role in our work
below).

We shall prove Theorem 1 without separability and by relatively elementary methods.
Before doing so, we remind ourselves of a common construction and deal with some
preliminary results. The complicated proof of the first of these, due to Ishihara, can be
found in [10] (Corollary 5) or Bridges and Vı̂ţă [6] (Corollary 6.2.9).

Proposition 2 Let C be an inhabited, bounded, convex subset of an inner product
space H . Then C is located if and only if

sup {Re 〈x, y〉 : y ∈ C}

exists for each x ∈ H .

Our second preliminary result is a version of a classically trivial result about Banach
spaces ([6], Proposition 5.3.4), whose known constructive proof is not trivial as it uses
the Hahn-Banach theorem. However, in the case where X is a Hilbert space, there is
a natural, more elementary proof, for which we need two items of information about
dimensionality in a normed space X . First, we note that every finite-dimensional
subspace of X is located ([6], Lemma 4.1.2). Secondly, we say that X is infinite-
dimensional if for each finite-dimensional subspace V of X , there exists x ∈ X with
ρ (x,V) > 0 (in which case the orthogonal complement of V contains a unit vector).
For additional material on finite- and infinite-dimensionality in normed spaces, see
Chapter 4 of Bridges and Vı̂ţă [6].

Lemma 3 Let H be an infinite-dimensional Hilbert space, and let x1, . . . , xN be vec-
tors in H . Then for each t > 0, there exist pairwise orthogonal unit vectors e1, . . . , eN

in H such that the vectors x′n ≡ xn + ten (1 6 n 6 N) are linearly independent.

Proof To begin with, pick a unit vector e1 such that x′1 ≡ x1 + te1 6= 0. Suppose
that for some n < N we have found the desired vectors e1, . . . , en , and let V be the
n-dimensional subspace of H generated by the vectors x′k ≡ xk + tek (1 6 k 6 n).
Either ρ

(
xn+1,V

)
> 0 or ρ

(
xn+1,V

)
< t . In the first case, V ∪ {xn+1} generates an

(n + 1)-dimensional subspace W of H , and we can pick a unit vector e orthogonal to
W . Then for each v ∈ V,

‖xn+1 + te− v‖ = t
∥∥e− t−1 (v− xn+1

)∥∥ > tρ(e,W) = t.

Hence ρ
(
xn+1 + te,V

)
> t > 0, so xn+1 + te is linearly independent of V , and we

can take en+1 ≡ e.
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In the case where ρ
(
xn+1,V

)
< t , we pick a unit vector e orthogonal to V . With P

the projection of H on V , and I the identity operator on H , we have∥∥(I − P)
(
xn+1 + te

)∥∥ > ‖t (I − P) e‖ − ‖(I − P) xn+1‖
= t − ρ

(
xn+1,V

)
> 0.

Hence ρ
(
xn+1 + te,V

)
> 0, so xn+1 + te is linearly independent of V , and we can

take en+1 ≡ e.

Returning to the set-up of Theorem 1, for each T ∈ B(H) define

T̃x ≡ (Tx1, . . . ,TxN) ,

and for any subset A of B(H) define

Ã ≡
{

T̃ : T ∈ A
}
.

Lemma 4 If A is an inhabited, bounded, 2-located subset of B(H), and x ∈ HN ,
then

Ãx ≡
{

T̃x : T ∈ A
}

is located in HN .

Proof We may assume that A ⊂ B1(H). Let 0 < α < β , and set ε ≡ 1
3 (β − α). By

Lemma 3, since H is infinite-dimensional, there exist pairwise orthogonal unit vectors
e1, . . . , eN such that the vectors

x′n ≡ xn +
ε√
N

en

are linearly independent. Given y ∈ HN , construct S ∈ B(H) such that Sx′n = yn

for each n. (This is possible since the locatedness of the n-dimensional span V of
{x′1, . . . , x′N} implies the existence of the projection P of H onto V , and hence enables
us to set Sx = 0 if x is in the orthogonal complement of V .) Since A is 2-located in
B(H),

λ ≡

inf

(
N∑

n=1

∥∥(S− T)x′n
∥∥2

)1/2

: T ∈ A


Journal of Logic & Analysis 3:3 (2011)
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exists. Either λ > α+ ε or λ < β − ε. In the former case, for each T ∈ A we have(
N∑

n=1

‖yn − Txn‖2

)1/2

>

(
N∑

n=1

∥∥(S− T) x′n
∥∥2

)1/2

−

(
N∑

n=1

∥∥T(xn − x′n)
∥∥2

)1/2

> λ−

(
N∑

n=1

∥∥xn − x′n
∥∥2

)1/2

> α+ ε−

(
N∑

n=1

ε2

N

)1/2

= α.

In the case λ < β − ε, there exists T ∈ A such that(
N∑

n=1

∥∥yn − Tx′n
∥∥2

)1/2

< β − ε

and therefore(
N∑

n=1

‖yn − Txn‖2

)1/2

6

(
N∑

n=1

∥∥yn − Tx′n
∥∥2

)1/2

+

(
N∑

n=1

∥∥T(xn − x′n)
∥∥2

)1/2

< β − ε+

(
N∑

n=1

ε2

N

)1/2

= β.

It now follows from the constructive greatest-lower-bound principle ([6], Theorem
2.1.19) that

ρ
(

y, Ãx
)
= inf


(

N∑
n=1

‖yn − Txn‖2

)1/2

: T ∈ A


exists.

The following lemma is similar to Lemma 3.2 of Bridges and Vı̂ţă [7], and is needed
to remove a preliminary restriction in part of the proof of Theorem 1.

Lemma 5 Let f1, . . . , fN be bounded, nonnegative functions on a set S such that for
each δ > 0,

mδ ≡ inf


(

N∑
n=1

(fn(x) + δ)2

)1/2

: x ∈ S


Journal of Logic & Analysis 3:3 (2011)
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exists. Then inf
{(∑N

n=1 fn(x)2
)1/2

: x ∈ S
}

exists.

Proof Compute c > 0 such that
∑N

n=1 fn(x) 6 c for each x ∈ S . Given ε > 0, pick
δ > 0 such that

2cδ + Nδ2 <
ε

2
.

Since mδ exists, we can find x0 ∈ S such that
N∑

n=1

(fn(x0) + δ)2 <
N∑

n=1

(fn(x) + δ)2 +
ε

2

for each x ∈ S . Then
N∑

n=1

fn(x0)2 6
N∑

n=1

(fn(x0) + δ)2 <
N∑

n=1

(fn(x) + δ)2 +
ε

2

=
N∑

n=1

fn(x)2 + 2δ
N∑

n=1

fn(x) + Nδ2 +
ε

2

6
N∑

n=1

fn(x)2 + 2cδ + Nδ2 +
ε

2
<

N∑
n=1

fn(x)2 + ε.

Since ε > 0 is arbitrary, it follows that

inf

{
N∑

n=1

fn(x)2 : x ∈ X

}
exists; whence the desired infimum also exists.

We now give the proof of Theorem 1.

Proof Assume that A is 2-located in B(H). Let N be any positive integer, and define
HN , T̃, Ã as above. Then Ã is an inhabited, bounded, convex subset of B(HN). By
Lemma 4, for each x ∈ HN the inhabited, bounded, convex set

Ãx ≡
{

T̃x : T ∈ A
}

is located in HN . It follows from Proposition 2 that for all x, y in HN ,

σx,y ≡ sup
{

Re
〈

T̃x, y
〉

: T ∈ A
}
= sup

{
Re
〈

y, T̃x
〉

: T ∈ A
}

exists. Now,
Sx,y ≡

{(
〈Tx1, y1〉 , . . . , 〈TxN , yN〉

)
: T ∈ A

}
Journal of Logic & Analysis 3:3 (2011)
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is an inhabited, bounded, and convex subset of the Hilbert space CN , taken with the
usual inner product. Moreover, for each η ∈ CN ,

sup {Re 〈η, ζ〉 : ζ ∈ Sx,y} = sup

{
Re

N∑
k=1

ηkζk : ζ ∈ Sx,y

}

= sup

{
Re

N∑
k=1

〈ηkyk,Txk〉 : T ∈ A

}
= σx,z

exists, where
z ≡ (η1y1, . . . , ηNyN) ∈ HN .

Again applying Proposition 2, we see that Sx,y is located in CN , regarded as a Hilbert
space over C; being also bounded, Sx,y is therefore totally bounded. Since all norms
on CN are equivalent, it follows that for each ε > 0, there exists a finitely enumerable
subset {T1, . . . ,Tm} of A such that the elements(

〈Tkx1, y1〉 , . . . , 〈TkxN , yN〉
)

(k = 1, . . . ,m)

form a finitely enumerable ε-approximation to Sx,y relative to the norm

(ζ1, . . . , ζN) 
N∑

n=1

|ζn|

on CN . Hence for each T ∈ A there exists k 6 m such that
N∑

n=1

|〈(T − Tk) xn, yn〉| < ε.

Thus {Tk : 1 6 k 6 m} is a finitely enumerable ε-approximation to A relative to the
seminorm T  

∑N
n=1 |〈Txk, yk〉|. It follows that A is weak-operator totally bounded.

To prove the converse, assume that A is weak-operator totally bounded. Let S ∈ B(H)
and x ∈ HN . We need to prove that

(1) inf


(

N∑
n=1

‖(S− T) xn‖2

)1/2

: T ∈ A


exists. For each n 6 N and each y ∈ H , since the mapping T  Re 〈y,Txn〉 is
weak-operator uniformly continuous on the weak-operator totally bounded set A,

sup {Re 〈y,Txn〉 : T ∈ A}

exists, by Corollary 2.2.7 of Bridges and Vı̂ţă [6]; whence Axn is located, by Proposi-
tion 2. Suppose for the moment that

(2) ρ (Sxn,Axn) > 0 (1 6 n 6 N) .

Journal of Logic & Analysis 3:3 (2011)
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Note that Ã is bounded, convex, and weak-operator totally bounded in B(HN). It
follows that

C ≡
{(

S̃− T̃
)

x : T ∈ A
}

is a bounded, weakly totally bounded, convex subset of the Hilbert space HN . Define
f : C→ R by

f
((

S̃− T̃
)

x
)
≡

(
N∑

n=1

‖(S− T) xn‖2

)1/2

.

Then f is a convex function. In view of (2) and Lemma 3.6 of Bridges, Ishihara and Vı̂ţă
[7], we see that the mappings

(
S̃− T̃

)
x ‖(S− T) xn‖ are uniformly differentiable

on C , and hence (again note (2)) that f is also. It follows from Theorem 2.2 of the
same reference that the infimum in (1) exists.

We now remove the condition (2). Let H′ denote the direct sum H ⊕ H of two copies
of H , let δ > 0, and let A′ ≡ A⊕

{
δ1/2I

}
, where I is the identity operator on H and(

T ⊕ δ1/2I
)

(x, y) ≡
(

Tx, δ1/2y
)

(T ∈ B(H); x, y ∈ H) .

Define S ∈ B(H′) by S′ (x, y) ≡ (Sx, 0). Fix a unit vector e ∈ H , and let x′n ≡ (xn, e)
(1 6 n 6 N). Then for each n 6 N and each T ∈ A,∥∥∥S′x′n −

(
T, δ1/2

)
xn

∥∥∥2
= ‖Sxn − Txn‖2 + δ > δ,

so ρ
(
S′x′n,A′x′n

)
> 0. It is easy to verify that A′ is weak-operator totally bounded.

Applying the first part of the proof to A′, S′ , and x′ , we see that

mδ ≡ inf


(

N∑
n=1

∥∥∥S′x′n −
(

T, δ1/2
)

x′n
∥∥∥2
)1/2

: T ∈ A


= inf


(

N∑
n=1

‖(S− T) xn‖2 + δ

)1/2

: T ∈ A


exists. Since δ > 0 is arbitrary, it follows from Lemma 5 that the infimum at (1) exists
in the general case. Since S and x are arbitrary, we conclude that A is 2-located.

Referring to Spitters [14] (Corollary 10) and Bridges, Ishihara and Vı̂ţă [7] (Theorem
8), we immediately obtain

Corollary 6 Let H be an infinite-dimensional Hilbert space, and A an inhabited,
bounded, convex subset of B(H). Then A is 1-located if and only if it is 2-located.

Journal of Logic & Analysis 3:3 (2011)
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Let A be a linear subspace of B(H) with weak-operator totally bounded unit ball A1 .
Taken with the case N = 1 of Lemma 4, Theorem 1 tells us, in particular, that A1x is
located in H for each x ∈ H . A major open question in constructive operator theory
is this: under what conditions on the linear subspace A and the element x is the linear
space Ax located (in which case the projection on its closure exists)? The case of real
interest is when A is a von Neumann algebra: a strong-operator closed subalgebra
that contains the identity operator, has weak-operator totally bounded unit ball, and is
closed under adjoints (in the sense that if T ∈ A and the adjoint T∗ exists,5 then T∗

∈ A). Spitters has shown that if A is an abelian von Neumann algebra, then the space
Ax is located for each x in a dense subset of H ([14], Proposition 17). It is conjectured
that the same conclusion holds when the word abelian is dropped from the antecedent.
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