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Computing the exponent of a Lebesgue space

TIMOTHY H. MCNICHOLL

Abstract: We consider the question as to whether the exponent of a computably
presentable Lebesgue space whose dimension is at least 2 must be computable. We
show this very natural conjecture is true when the exponent is at least 2 or when the
space is finite-dimensional. However, we also show there is no uniform solution
even when given upper and lower bounds on the exponent. The proof of this result
leads to some basic results on the effective theory of stable random variables.
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1 Introduction

Computable structure theory studies computable presentations of mathematical structures
and their relationship to each other. These investigations support the advancement of
computable model theory and effective mathematics and the theory of computation
generally. Roughly speaking, a computable presentation of a structure is a way of
defining computation on the structure. In the case of countable structures, this is achieved
by numbering the elements of the structure in a suitable way; namely so that the induced
relations and operations on the natural numbers are computable. Recently, the field
has expanded its purview by investigating metric structures such as metric spaces and
Banach spaces (see eg Melnikov [19], Melnikov and Nies [21], Melnikov and Ng [20],
McNicholl [17], Clanin, McNicholl and Stull [6], and Brown and McNicholl [3]). In
the case of Banach spaces, a computable presentation is a numbering of a linearly dense
sequence in such a way that the norm and the vector space operations can be computed.
A formal definition is given in Section 2 below.

Computable presentations of Banach spaces have been studied at least since the seminal
monograph of Pour-El and Richards [23]. In that text, and in subsequent developments,
much attention is paid to computing on Lebesgue spaces; that is, Lp spaces for some
value of p (see eg Zhong and Zhang [29] and Kunkle [13]). This focus makes sense
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2 Timothy H. McNicholl

since such spaces are of fundamental importance for analysis and applied mathematics.
It is usually assumed that the exponent of the space is computable. This is a natural
assumption; in fact, one might even consider the specification of the exponent to be part
of the presentation. Using the classification of separable Lp spaces (see eg Cembranos
and Mendoza [5]) it is fairly easy to show that when p is computable, every separable
Lp space has a computable presentation.

Here, we wish to take a step back and question the necessity of assuming the computability
of the exponent. That is, we consider the question: “If a Lebesgue space is computably
presentable, does it follow that its exponent is computable?” Stated this way, the answer
is easily seen to be ‘no’. For, no matter the exponent, a one-dimensional Lebesgue
space is just the field of scalars. So, we restrict our attention to spaces of dimension at
least 2. Thus, we ask: “If a Lebesgue space whose dimension is at least 2 is computably
presentable, does it follow that its exponent is computable?”

A partial answer to this question is given by Brown, McNicholl and Melnikov in [4].
Namely, it is shown that if a Lebesgue space is computably presentable then its exponent
is right-c.e. if it is smaller then 2, otherwise it is left-c.e. Here, we strengthen this result
by showing that the exponent must be computable if it is larger than 2 or if the space is
finite-dimensional.

While we do not have a complete answer to our question, we nevertheless present
some strong evidence that the answer is likely to be ‘no’. Namely, we show that even
given rational upper and lower bounds on the exponent as advice, there is no uniform
procedure for computing the exponent of a Lebesgue space from an index of one of its
presentations.

In part, the motivation for trying to answer this question is that, while it is somewhat
technical, it nevertheless is a fundamental question to consider for the theory of
computing on Banach spaces. In particular, it would be very surprising to find one
could compute on a Lebesgue space without knowing its exponent, for then even the
norm would seem to be out of reach. But, the larger part of the motivation is the
number of interesting connections that are made between computability and a broad
swath of material in functional analysis and probability. For example, the proof of
the aforementioned result by Brown, McNicholl and Melnikov utilizes the modulus
of convexity for a strictly convex Banach space and a method due to O. Hanner for
computing this modulus for a Lebesgue space from its exponent [10]. The proof of the
result presented here for exponents larger than 2 makes use of a syntactic characterization
due to J. L. Krivine [12] of the Banach spaces that contain a copy of an Lp space, as well
as some non-embedding results due to Banach [1] and Paley [22]. The non-uniformity
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result will lead us to consider effective aspects of the theory of stable random variables in
probability theory. This is for the sake of proving an effective version of an embedding
result due to Bretagnolle, Dacunha-Castelle and Krivine [2].

The paper is organized as follows. Section 2 summarizes background information from
probability, functional analysis, and computable analysis. Section 3 contains some
preliminary results from computable analysis. The result for exponents larger than 2 is
then presented in Section 4. In Section 5, we leave the main track of our thought to
prove the results we require from the effective theory of stable random variables. In
Section 6, we demonstrate the effective version of the embedding result just mentioned,
and then in Section 7, we demonstrate the non-uniformity result. Finally, the proof of
the result for finite-dimensional spaces is given in Section 8. In the conclusion, we
summarize the results again and state a conjecture.

2 Background

2.1 Background from functional analysis

Let F denote the field of scalars, which can be R or C. Let FQ = F ∩Q(i). That is,
FQ is the field of rational scalars.

Most of our arguments are not affected by the choice of scalars. When the field of
scalars is of concern, we use the notations Lp(Ω;R) and Lp(Ω;C) for the real and
complex Lp spaces over the measure space Ω.

The following was introduced in McNicholl [18] and will later be used to build isometric
embeddings of Lp spaces.

Definition 2.1 Suppose 1 ≤ p <∞, B is a Banach space, and v1, . . . , vn ∈ B . We
say v1, . . . , vn are Lp -formally disjointly supported if∥∥∥∥∥∥

∑
j

αjvj

∥∥∥∥∥∥
p

B

=
∑

j

|αj|p ‖vj‖p
B

for all scalars α1, . . . , αn . We say that a sequence {vn}n∈N of vectors is Lp -formally
disjointly supported if v0, . . . , vM are Lp -formally disjointly supported for all M .

The choice of terminology in Definition 2.1 is motivated by the following two facts.
First, if f1, . . . , fn ∈ Lp(Ω) are disjointly supported, then they are Lp -formally disjointly
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4 Timothy H. McNicholl

supported. By a result of J. Lamperti, if p 6= 2 then Lp -formally disjointly supported
vectors in Lp(Ω) are disjointly supported [14].

Our computation of exponents larger than 2 utilizes the following two theorems. The
first is a result on non-embeddings, and the second is a syntactic characterization of
spaces containing a copy of a Lebesgue space.

Theorem 2.2 Suppose 2 < p1 < p2 <∞.

(1) No infinite-dimensional Lp2 space isometrically embeds into an Lp1 space.
(2) No infinite-dimensional Lp1 space isometrically embeds into an Lp2 space.

Theorem 2.3 Suppose 1 ≤ p <∞, and let B be a Banach space. Let r, s be positive
integers so that 2(r − 1) < p < 2r ≤ 4s. Then, B isometrically embeds into an Lp

space if and only if for all v1, . . . , vn ∈ B and all α1, . . . , αn ∈ R,

(−1)r
∑

σ∈{−1,1}2s

∑
τ∈{1,...,n}2s

∥∥∥∥∥∥
∑
j<2s

σ(j)vτ (j)

∥∥∥∥∥∥
q

B

·
∏
j<2s

ατ (j) ≥ 0

provided
∑

j αj = 1.

Part (1) of Theorem 2.2 appears in Banach’s seminal 1932 monograph [1]. Part (2)
of Theorem 2.2 was proven by Paley in 1936 [22]. Theorem 2.3 was proven by J.L.
Krivine in 1965 [12].

2.2 Background from probability: stable random variables

The theory of stable random variables was initiated by P. Levy in 1925 [15] and further
formalized in his 1951 monograph [16]. Applications of stable random variables
actually began in 1919 with Holtsmark’s work in astronomy [11]. Afterward, they
were been applied to many fields including physics, biology, economics, finance, and
signal processing (see eg Samorodnitsky and Taqqu [24] and Zolotarev [30] for surveys).
Today stable distributions continue to be a very active area of investigation in both
pure and applied probability theory; see eg Uchiyama [25], Xu [27], and Yu, Li and
Zhang [28].

The material in this subsection is drawn from [24] and [30].

The following is a consequence of the proof of Theorem 1.2.2 of Durrett [7] and will be
used to generate random variables from distribution functions.
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Proposition 2.4 If F is a cumulative distribution function, and if g(t) = sup F−1[(0, t)]
for all t ∈ (0, 1), then F is the distribution function of g.

We write X =d Y when X and Y are identically distributed random variables.

A random variable X is said to be symmetric if X =d −X .

Definition 2.5 Let X be a random variable.

(1) X is said to be stable if for all positive A, B, there is a positive C and a real D so
that whenever X1 and X2 are independent random variables and X1 =d X2 =d X ,
AX1 + BX2 =d CX + D.

(2) If, in addition, we can always choose D to be zero, then X is strictly stable.

The property of stability is a property of the distribution of a random variable. Thus, we
shall also speak of stable distributions. Every stable distribution is characterized by
four parameters. The first of these is the stability index whose existence is given by the
following theorem which is proved in Section VI.1 of Feller [9].

Theorem 2.6 Suppose X is stable. Then there is a unique real number r ∈ (0, 2] so
that whenever A,B > 0 and X1,X2 are independent copies of X (ie X1 =d X2 =d X ),
AX1 + BX2 =d (Ar + Br)1/rX + D for some D ∈ R.

Definition 2.7 If X is stable, then the number r in Theorem 2.6 is called the index of
stability of X . We also say X is α-stable.

It is well known that the 2-stable random variables are precisely the Gaussian random
variables and that the 1-stable random variables are precisely the Cauchy random
variables. The aforementioned distribution of Holtsmark is 3/2-stable.

When X is a random variable, let φX denote the characteristic function of X ; that is
φX(t) = E[eiXt]. Recall that two random variables are identically distributed if and only
if they have the same characteristic function. Characteristic functions are the main tools
for the analysis of stable random variables. In particular, the form of the characteristic
function of a stable random variable leads to the remaining three parameters that
characterize a stable distribution. This is the content of the next theorem.

Theorem 2.8 Let X be a random variable.

(1) If X is r-stable, then there exist unique σ ≥ 0, β ∈ [−1, 1], and δ ∈ R so that:

(1) φX(t) =

{
exp

(
−σr|t|r(1− iβ(sgn(t) tan(πr

2 )) + iδt)
)

r 6= 1
exp

(
−σ|t|(1 + iβ 2

π sgn(t) ln |t|) + iδt
)

r = 1
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6 Timothy H. McNicholl

(2) If ΦX has the form in Equation (1), then X is r-stable.

The numbers σ , δ , and β are known as the scale, shift, and skewness parameters of X
as well as its distribution. We note that a stable random variable is symmetric if and
only if its skewness and shift parameters are 0. In addition, a 1-stable random variable
is strictly stable if and only if its skewness parameter is 0. On the other hand, when
r 6= 1, an r-stable random variable is strictly stable if and only if its shift parameter is 0.

For the sake of computing moments, we will need to know the asymptotic behavior
of the tail distributions of stable random variables. These are given by the following
theorem.

Theorem 2.9 Suppose X is an r-stable random variable, and suppose σ , β , and δ
are its scale, skewness, and location parameters respectively. Then, there is a positive
number C so that the following hold for all sufficiently large x .

(1) If r = 2, then:

P[X < −x] = P[X > x] ≤ C
x

exp(−x2/(4σ2))

(2) If r < 2, then max{P[X > x],P[X < −x]} < Cx−r .

Part (1) is proven in Feller [8]. Part (2) follows from Property 1.2.15 of [24].

We will also use complex-valued stable random variables. The definition of stability for
these random variables is a straightforward adaptation of the definition for the real case.

Definition 2.10 Suppose X is a complex-valued random variable.

(1) X is stable if for all A,B > 0 there exist a C > 0 and a D ∈ C so that whenever
X1 and X2 are independent copies of X , AX1 + BX2 =d CX + D.

(2) If we can always choose D = 0, then we say X is strictly stable.

Complex random variables also posses indices of stability.

Theorem 2.11 Suppose X is a stable complex-valued random variable. Then, there is
a unique r ∈ (0, 2] so that for all A,B > 0, there is a D ∈ C so that whenever X1 and
X2 are independent copies of X , AX1 + BX2 =d (Ar + Br)1/r + D.

Again, the number r is called the index of stability of X .

When dealing with complex-valued random variables, we will need a stronger property
than symmetry.
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Definition 2.12 A complex-valued random variable X is isotropic if ζX =d X for
every unimodular complex number ζ .

The characteristic function of a complex-valued random variable X is defined to be
φX(z) = E[i〈X, z〉] (where 〈, 〉 is the standard inner product on R2 ). Again, these
functions characterize the distribution of X . Their forms are known, but these results
will not play any role in our investigations. The interested reader is referred to Chapter
2 of [24].

2.3 Background from computable analysis

Here we present the formal definitions of presentation and computable presentation of
a Banach space. We also define the computable vectors and sequences of a presentation
and the computable maps between presentations. Our approach is essentially that in
Pour-El and Richards [23]. See also Weihrauch [26].

Let B be a Banach space. A presentation of B is a pair (B, {vn}n∈N) where {vn}n∈N is
a linearly dense sequence of vectors of B (ie B is the closed linear span of {v0, v1, . . .}).
If B# = (B, {vn}n∈N) is a presentation of B , then we refer to vn as the n-th distinguished
vector of B# . Thus, to define a presentation of a Banach space, it suffices to specify the
distinguished vectors.

Suppose B# is a presentation of a Banach space B . A rational vector of B# is a rational
linear combination of distinguished vectors of B# , ie a vector that can be expressed in
the form

∑n
j=0 αjvj where each αj is a rational scalar and each vj is a distinguished

vector of B# .

A presentation B# is computable if the norm function is computable on the rational
vectors of B# , ie there is an algorithm that, given a k ∈ N and a (code of) a rational
vector v of B# , computes a rational number q so that |q− ‖v‖B | < 2−k . A code of
such an algorithm is called an index of the presentation.

Among all presentations of a Banach space B , one may be designated as standard; in
this case, we will identify B with its standard presentation. The standard presentation
of the field of scalars F is defined by declaring 1 to be the n-th distinguished vector
for all n. The standard presentations of `p

n and `p are defined via the standard bases.
The standard presentation of Lp[0, 1] is defined via the indicator functions of dyadic
subintervals of [0, 1]. The standard presentation of Lp(0, 1) is defined similarly. The
standard presentation of Lp((0, 1)ω) is defined by declaring the 〈n, k〉-th distinguished
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8 Timothy H. McNicholl

vector to be the indicator function of (0, 1)n × Ik × (0, 1)ω where Ik is the k-th dyadic
subinterval of (0, 1). Note that these presentations are computable if p is.

Fix a presentation B# of a Banach space B . We say that a vector v of B is a computable
vector of B# if there is an algorithm that given any k ∈ N produces a rational vector u
of B# so that ‖u− v‖B < 2−k . A sequence {vn}n∈N is a computable sequence of B#

if vn is a computable vector of B# uniformly in n.

We now discuss computability properties of sets of vectors. Let B# be a presentation
of a Banach space B , and let X ⊆ B . We say X is c.e. open if it is the union of a
computable sequence of rational balls of B# (ie a sequence of rational balls whose
centers and radii form computable sequences). We say X is c.e. closed if it is closed
and the set of all rational balls of B# that contain a point of X is c.e. We say X is
computably compact if it is compact and if there is an algorithm that enumerates all
finite sets {B1, . . . ,Bn} of rational balls of B# so that X ⊆

⋃
j Bj and Bj ∩ X 6= ∅ for

each j.

We will utilize the following which is essentially Lemma 5.2.5 of [26]

Proposition 2.13 If X ⊆ Rn is bounded and c.e. closed, and if Rn − X is c.e. open,
then X is computably compact.

Presentations B#
0 and B#

1 of Banach spaces B0 and B1 respectively induce an associated
class of computable maps from B#

0 into B#
1 . Informally, for such a map T it is possible to

compute arbitrarily good approximations of T(v) from sufficiently good approximations
of v for any vector v. More precisely, a map T : B0 → B1 is said to be a computable
map of B#

0 into B#
1 if there is an algorithm P with the following properties:

(1) Given a (code of a) rational ball B1 of B#
0 as input, if P halts then it produces a

rational ball B2 of B#
1 so that T[B1] ⊆ B2 .

(2) If U is a neighborhood of T(v), then there is a rational ball B1 of B#
0 so that

v ∈ B1 and given B1 , P produces a rational ball B2 ⊆ U .

The computability of a map can often be demonstrated by means of computable moduli
of continuity. Specifically, when T maps a Banach space B0 into a Banach space B1 ,
we say h : N→ N is a modulus of continuity for T if for every k ∈ N and all vectors
v0 and v1 of B0 , if ‖v0 − v1‖B < 2−h(k) , then ‖T(v0)− T(v1)‖B < 2−k . Now, fix
presentations B#

0 and B#
1 of B0 and B1 respectively. It is fairly easy to show that if

T : B0 → B1 has a computable modulus of continuity, and if T maps a computable
and linearly dense sequence of B#

0 onto a computable sequence of B#
1 , then T is a

computable map of B#
0 into B#

1 . It then follows that if T is linear and bounded, then T
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is a computable map of B#
0 into B#

1 if and only if T maps a computable and linearly
dense sequence of B#

0 onto a computable sequence of B#
1 .

The following, which is a fairly straightforward consequence of the definitions, is
folklore.

Proposition 2.14 Suppose B#
0 and B#

1 are computable presentations of Banach spaces,
and let T be a computable map of B#

0 into B#
1 .

(1) If U is a c.e. open subset of B#
1 , then, T−1[U] is a c.e. open subset of B#

0 .

(2) If C is a c.e. closed subset of B#
0 , then T[C] is a c.e. closed subset of B#

1 .

3 Preliminary results from computable analysis

We first state and prove a number of fairly straightforward results on the effective theory
of integration. We then prove some preliminary results on effective presentations of
Banach spaces.

3.1 Effective integration

For the sake of computing the densities and cumulative distribution functions of stable
distributions, we will need the following lemmas concerning the effective theory of
integration. It will suffice to consider functions defined on the real line. Let m denote
Lebesgue measure on R.

Lemma 3.1 Suppose f : R2 → C, ψ : R→ R, and
∫
R ψ dm are computable. Assume

further that |f (x, y)| ≤ ψ(y) for all (x, y) ∈ R2 . Then, the map

x 7→
∫
R

f (x, y)dm(y)

is computable.

Proof Let φ(x) =
∫
R f (x, y)dm(y). For each n ∈ N, let gn(x) =

∫ n
−n f (x, y)dy for all

x ∈ R. Thus, gn is computable uniformly in n. Since ψ and
∫
R ψ dm are computable,

there is a computable h : N→ N so that
∫
|x|≥n ψ(x) dx < 2−k for all k ∈ N. Suppose

n ∈ N and n ≥ h(k). Then, for all x ∈ R:

|gn(x)− φ(x)| ≤
∫
|y|≥n
|f (x, y)| dy

≤
∫
|y|≥n

ψ(y) dy < 2−k

Journal of Logic & Analysis 12:7 (2020)



10 Timothy H. McNicholl

Thus, {gn}n∈N converges uniformly to φ with a computable modulus of convergence.
Thus, φ is computable.

If I is an interval, then a measurable function f : I → C is said to be computably
integrable if

∫
I |f | dm is a computable real.

Lemma 3.2 Suppose ψ : R→ R is a computable and computably integrable function.
Suppose f : R→ R is a computable function for which there exists an a ∈ N so that
|f (x)| ≤ ψ(x) whenever |x| ≥ a. Then, f is computably integrable.

Proof Let k ∈ N be given. Since ψ is computably integrable, it is possible to compute
an n0 ∈ N so that n0 ≥ a and

∫
|x|≥n0

ψ(x)dx < 2−(k+1) . Since f is computable, it is
possible to compute a rational number q so that |q−

∫
|x|≤n0

|f (x)|dx| < 2−(k+1) .

|q−
∫
R
|f | dm| ≤ |q−

∫
|x|≤n0

|f (x)| dx|+
∫
|x|≥n0

|f (x)| dxThus:

≤ 2−(k+1) +

∫
|x|≥n0

ψ(x) dx < 2−k

Lemma 3.3 If f : R→ R is computable and computably integrable, then
∫
R f dm is

computable.

Proof Since f is computable, f+ and f− are computable. Since f is computably
integrable, f+ and f− are computably integrable by Lemma 3.2. It follows that

∫
R f dm

is computable.

Lemma 3.4 If r is a computable positive real number, then
∫∞
−∞ exp(−|t|r) dt is

computable.

Proof We first show that whenever |t| is sufficiently large, exp(−|t|r) ≤ (1 + t2)−1 .
By L’Hospital’s Rule:

lim
s→∞

ln(1 + s2)
sr = lim

s→∞

2s(1 + s2)−1

rsr−1

= lim
s→∞

2
r(sr + sr−2)

= 0

Thus, ln(1+s2) ≤ sr whenever s is sufficiently large. Therefore, exp(−sr) ≤ (1+s2)−1

whenever s is sufficiently large.

The computability of
∫∞
−∞ exp(−|t|r) dt now follows from Lemmas 3.2 and 3.3.
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Lemma 3.5 Suppose f : R→ R is computable and computably integrable. Then

y 7→
∫ y

−∞
f (t)dt

is computable.

Proof Set

F(y) =

∫ y

−∞
f (t)dt.

Since f is computable and computably integrable, there is a computable and increasing
a : N→ N so that ∫

|t|≥a(k)
|f (t)|dt < 2−k

for all k ∈ N.

We first show that F has a computable modulus of continuity. To see this, for each
n ∈ N, let Fn : [−n, n]→ R be defined by

Fn(y) =

∫ y

−n
f (t)dt.

Since f is computable, Fn is computable uniformly in n. Thus, there is a uniformly
computable sequence {gn}n∈N of functions so that gn is a modulus of continuity for Fn

for each n ∈ N. Let h(k) = ga(k+1)(k + 1).

Since a is computable and {gn}n∈N is uniformly computable, it follows that h is
computable. We now claim that h is a modulus of continuity for F . To see this, let
y1, y2 ∈ R, and suppose |y1−y2| < 2−h(k) . Without loss of generality, suppose y1 < y2 .
Let y′1 = max{−a(k + 1), y1}, and let y′2 = min{y2, a(k + 1)}. Then, by inspection of
cases:

|F(y1)− F(y2)| ≤
∫ a(k+1)

−∞
|f (t)|dt + |F(y′2)− F(y′1)|+

∫ ∞
a(k+1)

|f (t)|dt

Since |y1 − y2| < 2−h(k) , |y′1 − y′2| < 2−h(k) . Thus, |F(y′2) − F(y′1)| < 2−(k+1) by
definition of h. Therefore, by definition of a, |F(y2)− F(y1)| < 2−k .

We now show that {F(q)}q∈Q is computable. Let q ∈ Q, and let k ∈ N. Compute
k′ ∈ N so that −a(k′ + 1) < q. Compute q1 ∈ Q so that∣∣∣∣q1 −

∫ q

−a(k′+1)
f (t)dt

∣∣∣∣ < 2−(k+1).

Then |q1 − F(q)| < 2−k . Thus, F is computable.
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12 Timothy H. McNicholl

The following more or less effectivizes a well-known trick from measure theory, and
will be used for calculating absolute moments of random variables.

Lemma 3.6 Let X be a random variable, and suppose ψ(x) = P[|X| ≥ x] for all
x ≥ 0. If ψ is computable, and if there is a computable and computably integrable
h : [0,∞) → R so that ψ(x) ≤ h(x) for all sufficiently large x, then E[|X|] is
computable.

Proof By a standard measure theory result,

E[|X|] =

∫ ∞
0

ψ(x)dx.

It now follows from Lemma 3.2 that E[|X|] is computable.

3.2 Effective presentations of Banach spaces

Our first goal is to prove the following effective version of a well-known classical result
on finite-dimensional Banach spaces.

Proposition 3.7 If B# is a computable presentation of a finite-dimensional Banach
space, then the closed unit ball of B is a computably compact set of B# .

We will need the following lemma.

Lemma 3.8 Let n be a positive integer. Suppose B# is a computable presentation
of a Banach space whose dimension is at least n. Then there exist n rational vectors
v1, . . . , vn of B# so that {v1, . . . , vn} is linearly independent.

Proof By way of contradiction suppose otherwise. Let m be the largest natural number
so that there exists a linearly independent set of m rational vectors of B# . Thus, m < n.
Let E be a linearly independent set of m rational vectors of B# , and let V denote the
linear span of E . Thus, since dim(B) > m, B−V 6= ∅. Since V is a finite-dimensional
subspace of B , V is closed, and so B − V is open. Thus, since the rational vectors of
B# are dense in B , B − V contains a rational vector v of B# . Hence, E ∪ {v} is a
linearly independent set of rational vectors of B# , and E ∪ {v} contains m + 1 vectors-
a contradiction.
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Proof of Proposition 3.7 Suppose B# is a computable presentation of a finite-di-
mensional Banach space, and let n = dim(B). Let B denote the closed unit ball of
B .

By Lemma 3.8 there exist n rational vectors v1, . . . , vn of B# so that {v1, . . . , vn} is
linearly independent. Thus, {v1, . . . , vn} is a basis of B .

For all (α1, . . . , αn) ∈ Fn , let T(α1, . . . , αn) = α1v1 + . . . + αnvn . Thus, T is an
isomorphism of Fn onto B . Since v1, . . . , vn are computable vectors of B# , it follows
that T is a computable map of Fn onto B# .

Let S = T−1 . Since T is a computable map of Fn onto B# , S is a computable map of
B# onto Fn . Let V = S[B]. Since S is bounded, V is bounded.

We claim that Fn − V is c.e. open. To see this, note that since T is bijective,
Fn − V = S[B − B]. Since B − B is the union of all rational open balls B(v; r) of B#

so that ‖v‖B − r > 1, B − B is computably open. By Proposition 2.14, Fn − V is
computably open.

We now show V is c.e. closed. By definition of B, if B(v; r) is a rational ball of B# ,
then B(v; r) ∩ U 6= ∅ if and only if ‖v‖B − r < 1. Thus, B is c.e. closed. Since
V = S[B], it now follows from Proposition 2.14 that V is c.e. closed.

It now follows from Proposition 2.13 that V is computably compact.

We conclude this section by introducing the concept of a uniformly computably
presentable sequence of Banach spaces. In addition, we prove a useful result for
encoding a c.e. set into such a sequence.

Definition 3.9 (1) A sequence (B#
e )e∈N of Banach space presentations is uniformly

computable if there is a computable g : N→ N so that g(e) is an index of Be for
all e.

(2) A sequence (Be)e∈N of Banach spaces is uniformly computably presentable if
there is a uniformly computable sequence (B#

e )e∈N of presentations.

Proposition 3.10 Suppose B#
0 and B#

1 are computable presentations of Banach spaces.
Let A ⊆ N be c.e., and for all e ∈ N, let:

Ae =

{
B1 e 6∈ A
B0 e ∈ A

If there is a computable isometric embedding of B#
1 into B#

0 , then (Ae)e∈N is uniformly
computably presentable.

Journal of Logic & Analysis 12:7 (2020)



14 Timothy H. McNicholl

Proof Fix a computable isometric embedding T of B#
1 into B#

0 . Let vj
n denote the

n-th distinguished vector of B#
j . Let (As)s∈N be a computable enumeration of A. For

all e, n, let:

ue
n =


v1

n e 6∈ A
T(v1

n) e ∈ A− An

v0
(n)0

e ∈ An

It follows that (ue
n)n∈N is linearly dense in Ae . Let A#

e = (Ae, (ue
n)n∈N).

We show (A#
e)e∈N is uniformly computable. By the s-m-n Theorem, it suffices to show

there is a computable function f : N2 × F<ωQ → Q so that for all e, k ∈ N and all

α ∈ F<ωQ , |f (e, k, α)−
∥∥∥∑j<|α| α(j)ue

j

∥∥∥
Ae
| < 2−k .

Let Rj denote the set of all rational vectors of B#
j . Since B#

0 is computable, there is
a computable g : N × R0 → Q so that |g(k, v) − ‖v‖B0

| < 2−k for all k ∈ N and
all v ∈ R0 . Since T is computable, there is a computable h : N×R1 → R0 so that
| ‖T(v)‖B0

− h(k, v)| < 2−k for all k ∈ N and all v ∈ R1 . Let:

f (e, k, α) = g
(
k + 1, h

(
k + 1,

∑
j<|α|

α(j)((1− χAj(e))v1
j + χAj(e)v0

j )
))

By definition, f is computable. Let e, k ∈ N, and let α ∈ F<ωQ .

x0 =
∑
j<|α|

α(j)χAj(e)v0
jSet:

x1 =
∑
j<|α|

α(j)(1− χAj(e))v1
j

x2 = h(k + 1, x1)

y =
∑
j<|α|

α(j)ue
j

q = g(k + 1, x2 + x0)

Thus, q = f (e, k, α).

Case 1: e 6∈ A.
Thus, Ae = B1 , x0 = 0B0 , and y = x1 . Therefore:

|q− ‖y‖Ae
| = |q− ‖x1‖B1

|
= |q− ‖T(x1)‖B0

|
≤ |q− ‖x2‖B0

|+ | ‖x2‖B0
− ‖T(x1)‖B0

|
< 2−(k+1) + 2−(k+1) = 2−k
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Case 2: e ∈ A.
Thus, Ae = B0 , and y = T(x1) + x0 . We have:

|q− ‖T(x1) + x0‖B0
| ≤ |q− ‖x2 + x0‖B0

|+ | ‖x2 + x0‖B0
− ‖T(x1) + x0‖B0

|

By definition of g, |q− ‖x2 + x0‖B0
| < 2−(k+1) . By definition of h:

| ‖x2 + x0‖B0
− ‖T(x1) + x0‖B0

| ≤ ‖x2 − T(x1)‖B0
< 2−(k+1)

So, again |q− ‖y‖Ae
| < 2−k .

4 Exponents larger than 2

Theorem 4.1 If 2 ≤ p <∞, and if there is a computable presentation of an Lp space
whose dimension is at least 2, then p is computable.

Proof We seek to deploy Krivine’s Theorem (Theorem 2.3). Suppose 2 ≤ p < ∞,
and let B# be a computable presentation of an Lp space B whose dimension is at least 2.
We can assume p is not an integer. Fix integers r, s so that 2 ≤ 2(r− 1) < p < 2r ≤ 4s.

Let n be a positive integer. For all (x1, . . . , xn) ∈ Rn , let Tn(x1, . . . , xn) =
∑

j xj . For
all v1, . . . , vn ∈ B and all α1, . . . , αn, q ∈ R, let Fn(v1, . . . , vn, α1, . . . , αn, q) denote
the expression on the left side of the main inequality in Theorem 2.3 with the exponent
p replaced by a trial exponent q. That is:

Fn(v1, . . . , vn, α1, . . . , αn, q) = (−1)r
∑

σ∈{−1,1}2s

∑
τ∈{1,...,n}2s

∥∥∥∥∥∥
∑
j<2s

σ(j)vτ (j)

∥∥∥∥∥∥
q

B

·
∏
j<2s

ατ (j)

Thus, Fn is a computable map from (Bn)# × Rn+1 into R. Let Un denote the set of all
triples (B1,B2, I) that satisfy the following conditions.

(1) B1 is a rational ball of (Bn)# .
(2) B2 is a rational ball of Rn .
(3) I is an open rational interval.
(4) Fn[B1 × B2 × I] ⊆ (−∞, 0).
(5) B2 ∩ T−1

n [{1}] 6= ∅.
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We now let:

Vn = {I : ∃B1,B2 (B1,B2, I) ∈ Un}

Vn =
⋃
Vn

V =
⋃
Vn

V =
⋃
V

We first claim that V ∩ [2(r− 1), 2r] = [2(r− 1), 2r]− {p}. To this end, we first show
that V ∩ [2(r − 1), 2r] ⊆ [2(r − 1), 2r] − {p}. Let q ∈ Vn ∩ [2(r − 1), 2r]. Then,
q ∈ I for some I ∈ Vn . Since I ∈ Vn , there exists B1 , B2 so that (B1,B2, I) ∈ Un .
Thus, Fn[B1 × B2 × I] ⊆ (−∞, 0) and B2 ∩ T−1

n [{1}] 6= ∅. Let (v1, . . . , vn) ∈ B1 ,
and let (α1, . . . , αn) ∈ B2 ∩ T−1

n [{1}]. Then, Fn(v1, . . . , vn, α1, . . . , αn, q) < 0 and∑
j αj = 1. So, by Theorem 2.3, B does not isometrically embed into an Lq space.

Therefore, q 6= p, and so V ∩ [2(r − 1), 2r] ⊆ [2(r − 1), 2r]− {p}.

Now, conversely, let q ∈ [2(r − 1), 2r] − {p}. Thus, by Theorem 2.2, B does
not isometrically embed into an Lq space. Hence, by Theorem 2.3, there exists a
positive integer n, vectors v1, . . . , vn ∈ B , and (α1, . . . , αn) ∈ T−1

n [{1}] so that
Fn(v1, . . . , vn, α1, . . . , αn, q) < 0. By continuity, there exist (B1,B2, I) ∈ Un so
that (v1, . . . , vn) ∈ B1 , (α1, . . . , αn) ∈ B2 , and q ∈ I . Thus, q ∈ V , and so
V ∩ [2(r − 1), 2r] ⊇ [2(r − 1), 2r]− {p}.

We now claim that for every k ∈ N, there exists k′ ∈ N, q ∈ Q, and I1, . . . , Im ∈ V
so that k′ ≥ k , 2(r − 1) < q − 2−k′ < q + 2−k′ < 2r , and [2(r − 1), 2r] −
(q − 2−k′ , q + 2−k′) ⊆

⋃
j Ij . Let k ∈ N. There exists q ∈ Q and k′ ∈ N so

that k′ ≥ k and p ∈ (q − 2−k′ , q + 2−k′) ⊆ (2(r − 1), 2r). By our first claim, if
s ∈ [2(r − 1), q− 2−k′] ∪ [q + 2−k′ , 2r], then s ∈ I for some I ∈ V . By compactness,
there exist I1, . . . , Im ∈ V so that [2(r − 1), q− 2−k′] ∪ [q + 2−k′ , 2r] ⊆

⋃
j Ij .

We can now demonstrate p is computable. Given k ∈ N, wait for k′ ∈ N, q ∈ Q,
I1 , . . ., Im ∈ V so that k′ ≥ k , 2(r − 1) < q − 2−k′ < q + 2−k′ < 2r , and
[2(r − 1), 2r]− (q− 2−k′ , q + 2−k′) ⊆

⋃
j Ij , and then output q. By our second claim,

this search always terminates. By our first claim, p ∈ (q − 2−k′ , q + 2−k′) and so
|q− p| < 2−k .

It follows from Lemma 6.2 of Brown, McNicholl and Melnikov [4] that if 1 ≤ p < 2,
and if there is a computable presentation of an Lp space, then p is right-c.e.
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5 Detour: computable stable random variables

Our approach to proving that exponents of Lebesgue spaces can not be uniformly
computed from presentations now requires consideration of the effective content of the
basic theory of stable random variables. We begin with a computable inversion theorem
for characteristic functions.

Theorem 5.1 Every distribution whose characteristic function is computable and com-
putably integrable has a computable density and a computable cumulative distribution
function.

Proof Let φ : R→ C be computable, and suppose φ is the characteristic function of a
probability measure µ on R. Let F be the distribution function of µ. For all y ∈ R, let

f (y) =

∫ ∞
−∞

e−iytφ(t)dt.

By Theorem 3.3.14 of Durrett [7], f is the density of F .

Since φ is computably integrable, it follows from Lemma 3.1 that f is computable.

Since F is a distribution function for a probability measure on R, and since f is the
density of F ,

∫
R f dm = 1. So, by Lemma 3.5, F is computable.

Corollary 5.2 If the parameters of a stable distribution are computable, then its density
and distribution functions are computable.

Proof Let µ be a stable distribution whose parameters are computable. Then, by
Theorem 2.8, the characteristic function of µ is computable, and by Lemma 3.4 it is
computably integrable. Thus, by Theorem 5.1, the density and distribution function of
µ are computable.

We now address existence of computable random variables with a given stable distribu-
tion.

Theorem 5.3 If µ is a stable distribution, and if the parameters of µ are computable,
then there is a computable random variable on (0, 1) whose distribution is µ.
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Proof Let r denote the stability index of µ. Let σ , β , and δ denote the scale, skewness,
and shift parameters of µ respectively. Let F be the cumulative distribution function
of µ, and let f be the density of µ. Set g(t) = sup F−1[(0, t)] for each t ∈ (0, 1). By
Proposition 2.4, F is the distribution function of g. It now remains to show that g is
computable.

Let:

I =


(δ,∞) α < 1 ∧ β = 1

(−∞, δ) α < 1 ∧ β = −1
R otherwise

By Remark 2.2.4 of Zolotarev [30], the density of F is positive on I , and so F is
increasing on I .

Let G = F|I . We claim that g = G−1 . To see this, we first show that ran(G) = (0, 1);
that is F[I] = (0, 1). Since F is a continuous distribution function, (0, 1) ⊆ ran(F) ⊆
[0, 1]. By Remark 2.2.4 of [30], the density of F is 0 on R−I . Thus, F[R−I] ⊆ {0, 1}.
Therefore, (0, 1) ⊆ F[I]. Since the density of F is positive on I , F[I] does not contain
0 or 1. Thus, F[I] = (0, 1).

Now, let t ∈ (0, 1). It suffices to show G−1(t) = sup F−1[(0, t)]. To this end, we first
show that if a ∈ F−1[(0, t)], then a ≤ G−1(t). Let a ∈ F−1[(0, t)], and by way of
contradiction suppose a > G−1(t). Since F(a) > 0, a ∈ I (since the density of F is
zero on R − I ). Since F is increasing on I , F(a) > F(G−1(t)) = t- a contradiction.
Thus, a ≤ G−1(t).

Now we show G−1(t) = sup F−1[(0, t)]. By what we have just shown, G−1(t) ≥
sup F−1[(0, t)]. By way of contradiction, suppose G−1(t) > sup F−1[(0, t)]. Suppose
G−1(t) > a > sup F−1[(0, t)]. Then, a ∈ I . So, t > F(a) and thus a ∈ F−1[(0, t)]- a
contradiction.

Finally, we demonstrate g is computable. Since the parameters of µ are computable,
by Theorem 2.8, the characteristic function of µ is computable. Thus, F is computable
by Theorem 5.1. Therefore, since g = G−1 , g is computable.

We now attend to the computability of the absolute moments of stable random variables.

Theorem 5.4 Let X be an r-stable random variable, and suppose the parameters of
the distribution of X are computable.

(1) If r < 2, and if p is a computable real so that 0 ≤ p < r , then E[|X|p] is
computable.
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(2) If r = 2, then E[|X|p] is computable for every nonnegative real p.

Proof Let F be the distribution function of X . Let p be a computable nonnegative
real. For each x ≥ 0, let ψ(x) = m({t : |X(t)|p ≥ x}).

We first claim that ψ is computable. Since the parameters of the stable distribution of X
are computable, the characteristic function of F is computable and so F is computable
by Theorem 5.1. Since F is continuous, for each a ∈ R, m({t : X(t) = a}) = 0. Thus,
ψ(x) = 1− F(x1/p) + F(−x1/p) for each x ≥ 0. Since p is computable, it follows that
ψ is computable.

We now treat the case r = 2. We begin by showing there is a computable and
computably integrable h : [0,∞) → R so that h ≥ ψ . By Theorem 2.9, there
exist a positive integer C and a positive rational number q so that P[|X| > x] <
C exp(−qx2)x−1 for all sufficiently large x . Thus, for all sufficiently large x , P[|X|p >
x] < C exp(−qx−2/p)x−1/p . However, exp(qx2/p) > x2−1/p for all sufficiently large x .
Thus, there is a positive integer N0 so that ψ(x) ≤ x−2 for all x ≥ N0 . For all x ≥ 0,
let:

h(x) =

{
1 x < N0

N2
0x−2 x ≥ N0

Thus, h is computable and computably integrable, and ψ ≤ h. It now follows from
Lemma 3.6 that E[|X|p] is computable.

Let us now consider the case r < 2. Assume p < r . Again, we proceed by showing
there is a computable and computably integrable h : [0,∞) → R so that h ≥ ψ . It
follows from Theorem 2.9 that there is an integer C > 1 so that ψ(x) ≤ Cx−r/p for all
sufficiently large x . For all x ≥ 0, let:

h(x) =

{
C x < 1

Cx−r/p x ≥ 1

Since r > p, h is computably integrable. It again follows from Lemma 3.6 that E[|X|p]
is computable.

We note that if r < 2, and if X is r-stable, then E[|X|p] =∞ whenever p ≥ r .

From Theorem 5.4, we immediately obtain the following which will be used in the next
section to construct an embedding.

Corollary 5.5 Suppose p, r are computable reals so that 1 ≤ p < r ≤ 2. Let µ be
a stable distribution whose parameters are computable and whose stability index is r .
Then, Lp((0, 1);R) contains a computable vector whose distribution is µ.
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We will also require a complex version of the conclusion in Corollary 5.5.

Proposition 5.6 Suppose p, r are computable reals so that 1 ≤ p < r < 2. Then,
Lp((0, 1)3;C) contains a computable vector whose distribution is isotropic and strictly
r-stable.

Proof Let τ = cos(πr
4 )2/r . By Theorem 5.3, there is a computable A : (0, 1)→ R so

that the distribution of A is symmetric r/2-stable with skewness parameter 1 and scale
τ . By the same theorem, there is a normally distributed and computable G : (0, 1)→ R
whose mean is 0.

For all t1, t2, t3 ∈ (0, 1), let:

A(t1, t2, t3) = A(t1)

G1(t1, t2, t3) = G(t2)

G2(t1, t2, t3) = G(t3)

Then, let X = A1/2(G1 + iG2).

By Corollary 2.6.4 of [24], the distribution of X is isotropic r-stable and symmetric.
Since X is a computable function from (0, 1)3 into C, it now suffices to show that ‖X‖p
is computable. By Tonelli’s Theorem,

E[|X|p] = E[|A|p/2]E[|G1 + iG2|p].

By Theorem 5.4, E[|A|p/2] is computable. So, it remains to show that E[|G1 + iG2|p]
is computable. For all x ≥ 0, let ψ(x) = m({~t : |G1(~t) + iG2(~t)|p ≥ x}).

We claim there are an integer C and a positive rational number q so that ψ(x) ≤
exp(−qx2/p) for all sufficiently large x . To demonstrate this, we first note that

{~t : |G1(~t) + iG2(~t)| ≥ x} = {~t : G1(~t)2 + iG2(~t)2 ≥ x2/p}

⊆ {~t : G1(~t)2 ≥ x2/p/2} ∪ {~t : G2(~t)2 ≥ x2/p}

Since Gj and G are identically distributed, ψ(x) ≤ 2m({t : |G(t)| ≥ 2−1/2x1/p}). The
conclusion now follows from Theorem 2.9.

Thus, by Lemma 3.6, E[|G1 + iG2|p] is computable. Hence, E[|f |p] is computable.
Since p is computable, it follows that ‖f‖p is computable. Since f and ‖f‖p are
computable, f is a computable vector of Lp((0, 1)3;C).
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6 A computable embedding result

We now apply the material in the previous section by proving the following.

Theorem 6.1 Suppose p, r are computable reals so that 1 ≤ p < r ≤ 2. Then, there
is a computable isometric embedding of `r into Lp[0, 1].

Theorem 6.1 is an effective version of a famous theorem due to Bretagnolle, Dacuhna-
Castelle and Krivine [2]. We divide the main part of the proof into the following two
lemmas.

Lemma 6.2 Suppose 1 ≤ p < r ≤ 2.

(1) If {gn}n∈N is an independent family of symmetric and strictly r-stable random
variables in Lp(Ω;R), then {gn}n∈N is Lr -formally disjointly supported.

(2) If {gn}n∈N is an independent family of isotropic and strictly r-stable complex
random variables in Lp(Ω;C), then {gn}n∈N is Lr -formally disjointly supported.

Proof (1): Let M ∈ N, and suppose aj ∈ R for each j ≤ M .

h0 =
M∑

j=0

ajgjLet:

h1 =

 M∑
j=0

|aj|r
1/r

g0

Since gj is symmetric, ajgj and |aj|gj have the same distribution. Since g0 is strictly
r-stable and {g0, . . . , gM} is independent, it follows that h0 and h1 have the same
distribution. Thus, ‖h0‖p = ‖h1‖p .∥∥∥∥∥∥

M∑
j=0

ajgj

∥∥∥∥∥∥
r

p

= ‖h0‖r
pTherefore:

= ‖h1‖r
p

=

M∑
j=0

|aj|r ‖g0‖r
p

=
M∑

j=0

|aj|r ‖gj‖r
p

The proof of (2) is similar.
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Lemma 6.3 Suppose 1 ≤ p < r ≤ 2.

(1) There is a computable sequence {gn}n∈N of Lp((0, 1)ω;R) so that each gn is
symmetric strictly r-stable and so that {gn}n∈N is independent.

(2) There is a computable sequence {gn}n∈N of Lp((0, 1)ω;C) so that each gn is
isotropic strictly r-stable and so that {gn}n∈N is independent.

Proof By Corollary 5.5, there is a computable vector h0 of Lp((0, 1);R) whose
distribution is symmetric strictly r-stable. By Proposition 5.6, there is a computable
vector h1 of Lp((0, 1)3;C) that is isotropic strictly r-stable.

Let:

g =

{
h0 F = R
h1 F = C

For each f ∈ (0, 1)ω , let:

gn(f ) =

{
g(f (n)) F = R

g(f (3n), f (3n + 1), f (3n + 2)) F = C

By construction, gn and g have the same distribution, and {gn}n∈N is an independent
sequence of random variables. Thus, if F = R, then gn is symmetric strictly r-stable,
and if F = C, then gn is isotropic r-stable.

We now show {gn}n∈N is a computable sequence of Lp((0, 1)ω). By construction, gn

is a computable function uniformly in N. Since gn and g have the same distribution,
‖gn‖p = ‖g‖p . Since ‖h0‖p and ‖h1‖p are computable, ‖g‖p is computable. Thus,
{gn}n∈N is a computable sequence of Lp((0, 1)ω).

Proof of Theorem 6.1 By Lemmas 6.3 and 6.2, there is a computable sequence
{gn}n∈N of Lp((0, 1)ω) that is Lr -formally disjointly supported and so that each gn is
nonzero. Let hn = ‖gn‖−1

p gn .

We first demonstrate that for each f ∈ `r ,
∑∞

n=0 f (n)hn converges in the Lp -norm and
‖
∑∞

n=0 f (n)hn‖p = ‖f‖r . Let f ∈ `r . If k < m, then since {gn}n∈N is Lr -formally
disjointly supported, ∥∥∥∥∥

m∑
n=k

f (n)hn

∥∥∥∥∥
r

p

=
m∑

n=k

|f (n)|r.

Since f ∈ `r , it follows that the partial sums of
∑∞

n=0 f (n)hn form a Cauchy sequence
in the Lp -norm. Since Lp spaces are complete,

∑∞
n=0 f (n)hn converges in the Lp -norm.

It also follows that ‖
∑∞

n=0 f (n)hn‖p = ‖f‖r .
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For each f ∈ `r , let T1(f ) =
∑

n f (n)hn . By definition, T1 is linear, and by what has
just been shown, T1 is an isometry. By definition, T1 maps the standard basis of `r

onto a computable sequence of Lp((0, 1)ω). Thus, T1 is computable.

By Theorem 1.1 of [6], there is a computable isometric isomorphism of Lp((0, 1)ω)
onto Lp[0, 1]. Let T = T2 ◦ T1 . Thus, T is a computable isometric embedding of `r

into Lp[0, 1].

7 Computing exponents from an index with advice

We are now ready to state and prove our main negative result.

Theorem 7.1 Suppose I ⊂ [1, 2] is an open interval. There is no computable
f :⊆ N → N so that for all e ∈ N, if e is the index of a presentation of a Lebesgue
space B whose index lies in I , then f (e) is an index of the exponent of B .

Proof By way of contradiction, suppose such a function exists. Fix rational numbers
r1, r2 ∈ I so that r1 < r2 . Let k0 be the least natural number so that r2 − 2−k0 > r1 .
Fix a computable surjection νQ of N onto Q. Let S denote the set of all e ∈ dom(f ) so
that k0 ∈ dom(φf (e)) and |νQ(φf (e)(k0))− r2| < 2−k0 . Thus, S is c.e.

Let

Be =

{
Lr1[0, 1] e ∈ S
`r2 e 6∈ S

By Proposition 3.10, (Be)e∈N is uniformly computably presentable. Thus, there is a
computable g : N → N so that g(e) indexes a presentation of Be for all e ∈ N . By
the Recursion Theorem, there is an e0 ∈ N so that φg(e0) = φe0 . Thus, e0 indexes Be0 .
Therefore, f (e0) is defined. Since e0 ∈ dom(f ), if e0 6∈ S , then f (e0) does not index r2 .
Thus, Be0 = Lr1[0, 1], and e0 ∈ S . But, then e0 does not index r1 - a contradiction.

8 The finite-dimensional case

Although there is no uniform solution of our problem, we can take some comfort in
the fact that in the finite-dimensional case, the exponent of a Lebesgue space can be
computed from one of its presentations.

Theorem 8.1 If n ≥ 2, and if `p
n is computably presentable where 1 ≤ p <∞, then

p is computable.

Journal of Logic & Analysis 12:7 (2020)



24 Timothy H. McNicholl

Proof We can assume p > 1. Let (`p
n)# be a computable presentation of `p

n .

By Lemma 3.8, there exist n computable unit vectors v1, . . . , vn of (`p
n)# so that

{v1, . . . , vn} is linearly independent.

Let I denote the set of all rational open intervals I ⊆ (1,∞) for which there exist
rational open balls B1, . . . ,Bk of `∞n2 that satisfy the following two conditions.

(1) {B1, . . . ,Bk} covers the closed unit ball of `∞n2 .

(2) For each j ∈ {1, . . . , k}, there exist rational scalars α(j)
1 , . . ., α(j)

n so that∥∥∥∥∥
n∑

t=1

α(j)
t vt

∥∥∥∥∥
p

6=

∥∥∥∥∥
n∑

t=1

α(j)
t ut

∥∥∥∥∥
r

for all r ∈ I and all u1, . . . , un ∈ `∞n so that uj ∈ Bj for each j.

We first show that
⋃
I = (1,∞)− {p}. Suppose r ∈

⋃
I . Then, there exists I ∈ I so

that r ∈ I . Thus, by definition of I , r ∈ (1,∞). Let B1, . . . ,Bk and {α(j)
t }t,j witness

that r ∈ I . Since ‖vj‖∞ ≤ ‖vj‖p , ‖vj‖∞ ≤ 1. Thus, by (1), (v1, . . . , vn) ∈ Bj for some
j. Therefore, by (2): ∥∥∥∥∥

n∑
t=1

α(j)
t vt

∥∥∥∥∥
p

6=

∥∥∥∥∥
n∑

t=1

α(j)
t vt

∥∥∥∥∥
r

Thus, r 6= p.

Conversely, suppose r ∈ (1,∞)− {p}. Let B denote the closed unit ball of `∞n2 . Note
that u ∈ B if and only if there exist u1, . . . , un ∈ `∞n so that u = (u1, . . . , un).

We claim that for all x ∈ B, there exist a rational ball Bx of `∞n2 , rational scalars
βx,1, . . . , βx,n , and a rational open interval Ix ⊆ (1,∞) so that x ∈ Bx , r ∈ Ix , and∥∥∥∥∥∥

∑
j

βx,jvj

∥∥∥∥∥∥
p

6=

∥∥∥∥∥∥
∑

j

βx,juj

∥∥∥∥∥∥
r′

for all r′ ∈ Ix and all u1, . . . , un ∈ `∞n so that (u1, . . . , un) ∈ B.

Let x ∈ B. There exist x1, . . . , xn ∈ `∞n so that x = (x1, . . . , xn). Since {v1, . . . , vn}
is linearly independent, there is a unique linear function T : Fn → Fn so that
T(vj) = xj for each j ∈ {1, . . . , n}. Since r 6= p, T is not an isometry of `r

n into `p
n

(otherwise, since T is an endomorphism, T is onto). However, since T is linear, T is a
continuous map of Fn into `p

n . Thus, there exist rational scalars βx,1, . . . , βx,n so that∥∥∥T(
∑

j βx,jvj)
∥∥∥

p
6=
∥∥∥∑j βx,jvj

∥∥∥
r
. That is,

∥∥∥∑j βx,jxj

∥∥∥
p
6=
∥∥∥∑j βx,jvj

∥∥∥
r
. By continuity

again, there is a rational interval Ix ⊆ (1,∞) and a rational open ball Bx as required.
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Since B is compact, there exist x(1), . . . , x(k) ∈ B so that B ⊆
⋃

j Bx(j) .

I =
⋂

j

Ix(j)Let:

Bj = Bx(j)

α(j)
t = βx(j),t

Then, I , B1 , . . . , Bk , and {α(j)
t }t,j satisfy (1) and (2). Thus, I ∈ I and so r ∈

⋃
I .

This completes the demonstration that
⋃
I = (1,∞)− {p}.

We now show that I is c.e. By Proposition 3.7, condition (1) is Σ0
1 . Since (`p

n)# is a
computable presentation and each vj is a rational vector of this presentation, it follows
that condition (2) is Σ0

1 . Thus, I is c.e.

We can now show p is computable. Fix an integer N0 > p. Given k ∈ N, search
for a rational number q and rational open intervals I1, . . . , Ik ∈ I so that [q −
2−(k+1), q + 2−(k+1)] ⊆

⋃
j Ij , and output q. Since

⋃
I = (1,∞)− {p}, it follows that

p ∈ [q− 2−(k+1), q + 2−(k+1)] and so |p− q| < 2−k .

9 Conclusion

We began our deliberations with a very natural question: “Does the computable
presentability of a Lebesgue space imply the computability of its exponent?” We
immediately see that the answer is negative for Lebesgue spaces of dimension 1. For
Lebesgue spaces of dimension at least 2, the “obvious” answer is ‘yes’, but this turns
out to be difficult to prove even in the particular cases considered here. However,
even though the consideration of these cases turns out to be unexpectedly difficult,
their resolution and the demonstration of the non-uniformity result led to a number of
surprising connections with functional analysis and probability.

The one remaining case is that of infinite-dimensional spaces whose exponent is smaller
than 2. The best result so far for this case is that the exponent must be right-c.e. [4].
This result is obtained via the modulus of uniform convexity. There are a number of
other moduli for describing geometric properties of Banach spaces, but these all lead to
the exact same conclusion as does the consideration of p-types. On the basis of these
observations and our non-uniformity result, we conjecture that if p is a right-c.e. real so
that 1 ≤ p ≤ 2, then every infinite-dimensional and separable Lp space is computably
presentable.
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