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On finite index subfactors of super McDuff II1 factors
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Abstract: A II1 factor M has the super McDuff property if the central sequence
algebra M′ ∩ MU is a II1 factor. Suppose that N ⊂ M be an inclusion of II1

factors with finite Jones index. In this note we prove that N has the super McDuff
property if and only if M has the super McDuff property. We prove also that the
same permanence result holds in the case of the uniform super McDuff property
introduced recently in [16]. This answers a question posed by I. Goldbring.
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To fuffle with affection.

1 Introduction

The study of von Neumann algebras has been a central theme of study in functional
analysis over the last century. These operator algebras have a very robust structure and
often require interdisciplinary approaches of study, as evidenced by connections with
probability theory and entropy [30], ergodic theory and dynamical systems [29], knot
theory and quantum algebra [20]. This article will address an aspect of the continuous
model theory of von Neumann algebras, especially II1 factors (see [15, 13]), which
are centerless continuous von Neumann algebras admitting a trace. The foundational
work of Murray and von Neumann [24], and then crucial works of McDuff [22, 23]
and Connes [11] provided striking reasons for why the study of approximately central
sequences of elements in II1 factors is important for the subject. Since then there have
been several important insights in this thread, see for instance [12, 6, 28, 25, 29, 4, 18].

There is a natural central sequence algebra associated to a II1 factor M , namely the
von Neumann algebra M′ ∩MU , where MU is the tracial ultrapower over a countably
incomplete ultrafilter U . It can be that M′ ∩ MU = C, in which case M is said to
have property Gamma. M′ ∩MU can also be nontrivial but abelian. If M′ ∩MU is
non-abelian, M is said to have McDuff’s property [23], in which case, per [23], the
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central sequence algebra either has center or is a II1 factor. The property of M′ ∩MU

being II1 factor has been called the super McDuff property and has been studied in
recent works [14, 2, 9]. A recent paper [16] introduced the notion of a uniformly super
McDuff II1 factor which is a quantitative strengthening of the super McDuff property.
This property asks if the central sequence algebra N′ ∩NU is a II1 factor for all N ≡ M .
It is also equivalent to MU being super McDuff. This property has applications to the
elementary equivalence classification program for II1 factors which has seen activity in
recent years [14, 7, 10, 21, 17, 19]. In [16], several natural examples of these factors
were shown including N ⊗ R for any non Gamma factor N , and the family of infinitely
generic II1 factors.

Since the emergence of modern subfactor theory [20], studying finite index subfactors
has been crucial due to connections with various other disciplines including quantum
algebra and tensor categories. We still don’t understand fully what II1 factors can occur
as subfactors of finite index, even in basic examples like free group factors. It is also
interesting to know what what axiomatizable properties are also stable under finite
index inclusions. This note shows that super McDuff and uniformly super McDuff II1

factors are preserved by taking subfactors and superfactors of finite Jones index [20],
a heretofore open basic problem concerning these factors. In the case of uniformly
super McDuff II1 factors, this answers a question posed by I. Goldbring in a private
correspondence. We remark that subfactors of finite index are a central object of study
in the subfactor theory. They also naturally correspond to finite index subgroups.

Theorem A Suppose that N ⊂ M be an inclusion of separable II1 factors with finite
Jones index. Then N has the (uniform) super McDuff property if and only if M has the
(uniform) super McDuff property.

The proof of this theorem is of course inspired by a result of Pimsner and Popa [26,
Proposition 1.11] which proves this permanence for the McDuff property. However, to
control the center of the central sequence algebra, there are added subtleties that need to
be addressed. Due to the short nature of this note, we do not spell out preliminaries
and we assume the reader is familiar with the standard terminology in II1 factors, the
definition of ultraproducts, and basic facts on subfactors.
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2 Proof of the Main Theorem

Let (M, τ ) be a finite von Neumann algebra and Q ⊂ M be a von Neumann subalgebra.
The basic construction 〈M, eQ〉 is defined as the von Neumann subalgebra of B(L2M)
generated by M and the orthogonal projection eQ from L2(M) onto L2(Q). There is
a semifinite faithful normal trace on 〈M, eQ〉 satisfying Tr(xeQy) = τ (xy), for every
x, y ∈ M . Recall also the notion of finite index for subfactors ([1, Definition 9.4.9]):
Q ⊂ M is finite index if L2(M) as a right Q module is finite dimensional. Equivalently,
the conditional expectation EQ satisfies EQ ≥ λI for some scalar λ.

We will need some lemmas for the main result. The following is extremely elementary:

Lemma 2.1 Let N,M ⊂ B(H) be two von Neumann algebras s.t. N′ ⊂ M . Let e ∈ N′

be a projection. Then (N ∩M)e = Ne ∩ eMe.

Proof First note that (N ∩M)e ⊂ Ne∩ eMe is clear. Conversely, let p ∈ Ne∩ eMe be
a projection. Let q be the projection onto N′pH . Then q is the minimal projection in
N majorizing p, so qe = p. We also have p ∈ M , so for any x ∈ M′ ⊂ N ,

xN′pH ⊂ N′pxH ⊂ N′pH

Thus, q ∈ N ∩M and p = qe ∈ (N ∩M)e. Since projections densely span any von
Neumann algebra, this shows Ne ∩ eMe ⊂ (N ∩M)e.

We thank Adrian Ioana for pointing out to us that the following lemma is already
obtained by Sorin Popa, see Lemma 3.1 in [27] (see also [8, page 4]). Nevertheless we
include a proof for convenience of the reader.

Lemma 2.2 Let N ⊂ M be an inclusion II1 factors with finite Jones index and M ⊂ M̃
be an inclusion of II1 factors. Then M′ ∩ M̃ ⊂ N′ ∩ M̃ is of finite index.

Proof By [20, Corollary 3.1.9], there exists M0 ⊂ N , a finite index subfactor, s.t.
N ⊂ M is obtained via the basic construction to M0 ⊂ N , i.e., M = 〈N, eM0〉′′ . Thus,
there is a natural representation ψ : M → B(L2(N)) where N acts via the standard left
action of N on L2(N) and eM0 acts as the orthogonal projection of L2(N) onto L2(M0).
Now, let π : M̃ → B(K) be an infinite index representation. Then π|M is an infinite
index representation of M , so we may write,

K = L2(N)⊗ H
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where H is an infinite-dimensional Hilbert space and π|M = ψ ⊗ 1H . Let

J : L2(N)→ L2(N)

be the canonical anti-linear involution. Then,

M′ = JM0J ⊗ B(H) and N′ = JNJ ⊗ B(H)

Since JM0J ⊂ JNJ is a finite index inclusion, the expectation E : N′ → M′ , defined by
E = EJM0J ⊗ 1B(H) where EJM0J : JNJ → JM0J is the trace-preserving expectation, is a
finite index expectation. Now, recall that eM0 = JeM0J ∈ (JM0J)′ , so,

ι : JM0J → JM0JeM0 , ι(x) = xeM0

is an isomorphism. Furthermore, the expectation EJM0J is given by,

EJM0J(x) = ι−1(eM0xeM0)

where we always have, whenever x ∈ JNJ , eM0xeM0 ∈ JM0JeM0 . So, E is given by,

E(x) = (ι⊗ 1B(H))−1(eM0xeM0)

Since eM0 ∈ M ⊂ M̃ , we have, if x ∈ N′ ∩ M̃ = (JNJ ⊗ B(H)) ∩ M̃ , then

eM0xeM0 ∈ (JM0JeM0 ⊗ B(H)) ∩ eM0M̃eM0 .

Note that (JM0J ⊗ B(H))′ = M ⊂ M̃ , so by Lemma 2.1,

(JM0JeM0 ⊗ B(H)) ∩ eM0M̃eM0 = [(JM0J ⊗ B(H)) ∩ M̃]eM0

Therefore, whenever x ∈ N′ ∩ M̃ = (JNJ ⊗ B(H)) ∩ M̃ ,

E(x) = (ι⊗ 1B(H))−1(eM0xeM0) ∈ (JM0J ⊗ B(H)) ∩ M̃ = M′ ∩ M̃

That is, there is a normal conditional expectation of finite index from N′ ∩ M̃ to
M′ ∩ M̃ , namely the restriction of E to N′ ∩ M̃ . By [?, Corollary 3.20], this implies
M′ ∩ M̃ ⊂ N′ ∩ M̃ is of finite index.

The following lemma is probably well known to experts.

Lemma 2.3 If N ⊂ M is a finite index inclusion of tracial von Neumann algebras,
then Z(N) is finite-dimensional if and only if Z(M) is finite-dimensional.
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Proof Using the basic construction, we see that it suffices to show if Z(N) is finite-
dimensional, then so is Z(M). Assume to the contrary that Z(M) is infinite-dimensional.
Then there exists a sequence of nonzero projections pn ∈ Z(M) s.t. pn → 0 strongly.
Let EN : M → N be the trace-preserving conditional-expectation. It is easy to see that
EN(Z(M)) ⊂ Z(N), so as pn → 0 strongly, EN(pn)→ 0 strongly in Z(N). As Z(N) is
finite-dimensional, ‖EN(pn)‖ → 0. However, as N ⊂ M is of finite index, there exists
λ > 0 s.t. EN ≥ λI , so, EN(pn) ≥ λpn for all n, which is a contradiction.

Proof of Theorem A, super McDuff case By the basic construction, if N ⊂ M is of
finite index, then M is a finite index subfactor of Nt for some t . Since being super
McDuff is clearly preserved under amplifications, it suffices to show that, if N ⊂ M is
of finite index and M is super McDuff, then so is N .

Now, by Lemma 2.2, we have M′ ∩MU ⊂ N′ ∩MU is of finite index. So, as M is
super McDuff, we have M′ ∩MU = C and thus by Lemma 2.3, Z(N′ ∩MU ) is finite-
dimensional. We note that the trace-preserving conditional expectation ENU : MU → NU

is given by,
ENU ((xn)U ) = (EN(xn))U

from which it is easy to see that N ⊂ M being of finite index implies NU ⊂ MU is of
finite index as well. It is also easy to see that ENU (N′ ∩MU ) = N′ ∩ NU , i.e., ENU

restricts to the trace-preserving conditional expectation from N′ ∩ MU to N′ ∩ NU .
Thus, N′ ∩ NU ⊂ N′ ∩MU is also of finite index. Applying Lemma 2.3 again, we see
that Z(N′ ∩ NU ) is finite-dimensional. By [23, Theorem 5], we have Z(N′ ∩ NU ) = C
and N is super McDuff.

For the proof about the uniformly super McDuff case, we need the downward Löwenheim-
Skolem theorem. For the convenience of readers, we include the version we specifically
need here (cf [5, Proposition 7.3]):

Theorem 2.4 (Downward Löwenheim-Skolem theorem, as applied to inclusions of II1

factors) Let N ⊂ M be an inclusion of II1 factors, A ⊂ N be a subset separable under
the 2-norm. Then there exists separable II1 factors N0 ⊂ N , M0 ⊂ M s.t. N0 ⊂ M0 , the
structure (N0 ⊂ M0,EN0) is an elementary substructure of (N ⊂ M,EN), and A ⊂ N0 .

We will also need the following lemma:

Lemma 2.5 Let N1 ⊂ M1 and N2 ⊂ M2 be two inclusions of II1 factors. If the
structures (N1 ⊂ M1,EN1) and (N2 ⊂ M2,EN2) are elementarily equivalent, then one
inclusion is of finite index if and only if the other is of finite index.
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Proof N ⊂ M being of finite index is equivalent to EN − λI ≥ 0 for some λ > 0,
which in turn can be characterized as the existence of λ > 0 such that

τ (y∗y(EN(x∗x)− λx∗x)) ≥ 0

for all x, y ∈ B1(M) where B1(M) denote the operator norm closed unit ball of M .
Equivalently, there exists λ > 0 such that

inf
x,y∈B1(M)

τ (y∗y(EN(x∗x)− λx∗x)) ≥ 0

Since the left-hand side is a formula in the language of inclusions of II1 factors with
conditional expectations, the above property of inclusions is preserved by elementary
equivalence, whence the lemma follows.

Proof of Theorem A, uniformly super McDuff case In [16, Theorem 3.5], the im-
plication (6 ⇒ 4) shows that if every separable N ≡ M is super McDuff, then M is
uniformly super McDuff. In the proof, it is shown that, to prove M is uniformly super
McDuff, it suffices to prove for any finitely many x1, · · · , xn ∈ MU , there is a separable
elementary substructure M0 of MU containing x1, · · · , xn s.t. M0 is super McDuff.
Now, assume N ⊂ M is of finite index and M is super McDuff. Let x1, · · · , xn ∈ NU .
Since {x1, · · · , xn} ⊂ NU ⊂ MU , by downward Löwenheim-Skolem, there exist sepa-
rable II1 factors N0 ⊂ NU and M0 ⊂ MU s.t. N0 ⊂ M0 , the structure (N0 ⊂ M0,EN0)
is an elementary substructure of (NU ⊂ MU ,ENU ), and x1, · · · , xn ∈ N0 . The inclusion
NU ⊂ MU is of finite index, so by Lemma 2.5, N0 ⊂ M0 is of finite index as well. Since
M is uniformly super McDuff, M0 is super McDuff. Hence, N0 is super McDuff, which
suffices to show N is uniformly super McDuff. The proof where N is a finite index
extension of M can be carried out similarly. Alternatively, it follows from taking the
basic construction and then applying the previous case for finite index subfactors.
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445–477; http://dx.doi.org/10.4171/022-1/18

[30] D Voiculescu, Free entropy, Bull. London Math. Soc. 34 (2002) 257–278;
http://dx.doi.org/10.1112/S0024609301008992

Department of Mathematics, University of California, San Diego
9500 Gilman Drive # 0112, La Jolla, CA 92093, USA

Department of Mathematics, University of California, San Diego
9500 Gilman Drive # 0112, La Jolla, CA 92093, USA

weg002@ucsd.edu, srivatsav.kunnawalkam.elayavalli@vanderbilt.edu

https://sites.google.com/ucsd.edu/david-gao,

https://sites.google.com/view/srivatsavke

Received: 3 February 2025 Revised: 7 May 2025

Journal of Logic & Analysis 17:5 (2025)

https://doi.org/10.1016/j.jfa.2024.110719
http://dx.doi.org/10.2307/1970730
http://dx.doi.org/10.1112/plms/s3-21.3.443
http://dx.doi.org/10.2307/1968693
http://dx.doi.org/10.1007/BF02441087
http://dx.doi.org/10.1515/crll.2002.017
http://dx.doi.org/10.1007/s00222-006-0501-4
http://dx.doi.org/10.4171/022-1/18
http://dx.doi.org/10.1112/S0024609301008992
mailto:weg002@ucsd.edu
mailto:srivatsav.kunnawalkam.elayavalli@vanderbilt.edu
https://sites.google.com/ucsd.edu/david-gao
https://sites.google.com/view/srivatsavke

	1 Introduction
	2 Proof of the Main Theorem
	Bibliography

