
Journal of Logic & Analysis 2:4 (2010) 1–15
ISSN 1759-9008

1

Splitting in solvable groups of finite Morley rank

OLIVIER FRÉCON

Abstract: We exhibit counterexamples to a Conjecture of Nesin, since we build a
connected solvable group with finite center and of finite Morley rank in which no
normal nilpotent subgroup has a nilpotent complement.

The main result says that each centerless connected solvable group G of finite
Morley has a normal nilpotent subgroup U and an abelian subgroup T such that
G = U o T , if and only if, for any field K of finite Morley rank, the connected
definable subgroups of K∗ are pseudo-tori.

Also we build a centerless connected solvable group G of finite Morley rank with
no definable representation over a direct sum of interpretable fields.
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1 Introduction

The main question about groups of finite Morley rank is the Algebraicity Conjecture,
which states that the infinite simple ones are isomorphic as abstract groups with an
algebraic group over an algebraically closed field. It was independently formulated
by Cherlin and Zil’ber in the 70’s. This conjecture motivated the search for analogues
in groups of finite Morley rank of classical theorems about affine algebraic groups.
In this vein, a central question concerning solvable groups of finite Morley rank is
a Conjecture of Nesin. It states that the connected ones decompose as G = U o T
for some normal nilpotent definable subgroup U and an abelian subgroup T (see [8,
Conjecture p.687] and [3, Section 9.3]). We recall that the term connected for a group
G of finite Morley rank means that G is equal to its connected component G◦ , which
is the smallest definable subgroup of finite index. The first result of the present paper
shows that this conjecture fails, even for groups with finite center (Proposition 2.1). Our
counterexample is a central product of two algebraic groups, with finite intersection;
the intersection is unipotent in one group and semisimple in the other.
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2 Olivier Frécon

In §3 and §4, we consider some weak forms of the Nesin Conjecture, and their
restriction to centerless groups. In particular, we study the following questions.

Question 1.1 (1) Do connected solvable groups of finite Morley rank have a de-
composition as a product of a normal nilpotent subgroup by an abelian subgroup ?

(2) Does the Nesin Conjecture hold for centerless groups ?

Moreover, we notice that, in contrast with Proposition 2.1 below, Wagner proved that
any connected solvable group G of finite Morley rank is a product of two connected
definable nilpotent subgroups U and C with U normal in G [11]. However, no
information is given about the size of the intersection U ∩C , and we will consider this
question too (see the second part of Theorem 4.2).

Actually, we will show that these questions are related to the structure of fields of finite
Morley rank. More precisely, first we state the following conjecture, where pseudo-tori
are analogs of tori in algebraic groups introduced in [7], and are defined as abelian
divisible groups of finite Morley rank with no definable quotient definably isomorphic
to K+ for any interpretable field K .

Conjecture 1.2 For any field K of finite Morley rank, the connected definable sub-
groups of K∗ are pseudo-tori.

We notice that the main result of [12] implies that Conjecture 1.2 holds in positive
characteristic. The main theorem of this paper is proven in the third section and in
the more technical fourth section, and it concerns the link between Question 1.1 and
Conjecture 1.2.

Theorem 1.3 (1) (Proposition 3.6) If Conjecture 1.2 holds, then any connected
solvable group G of finite Morley rank decomposes as G = UT for a normal
nilpotent connected definable subgroup U and a divisible abelian subgroup T
such that U ∩ T is finite and central in G.

(2) (Theorem 4.2) On the other hand, if Conjecture 1.2 does not hold, then there is
a centerless connected solvable group G of finite Morley rank satisfying:

(a) G has no decomposition as a product of a normal nilpotent subgroup by
an abelian subgroup;

(b) G has no decomposition as a product of a normal nilpotent subgroup U by
another nilpotent subgroup C such that U ∩ C is finite.
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Splitting in solvable groups of finite Morley rank 3

The conjugacy of the complements will be considered in §3, and we will show that
there is a centerless connected solvable group G of finite Morley rank such that no
normal nilpotent subgroup U with nilpotent quotient G/U has the conjugacy of its
complements in G (Proposition 3.7). Also, the definability of the complements will
be considered in §5, and we will see that a centerless connected solvable group G of
finite Morley rank can have no decomposition of the form G = U o T for U a normal
nilpotent subgroup and T a definable nilpotent subgroup (Proposition 5.1)

On the other hand, Poizat showed in the 80’s that, if an infinite simple group G is
isomorphic as abstract group with an algebraic group over an algebraically closed
field, then we may define in the pure group G an algebraically closed field K and an
isomorphism from G to an algebraic group over K [10]. In view of this situation, the
linearity and the definable linearity of groups of finite Morley rank have been continuing
concerns. Notably, among the most recent results, we may notice the construction of
a torsion-free centerless solvable group of finite Morley rank [2], that is a solvable
group of finite Morley rank not isomorphic as abstract group with a direct sum of
algebraic groups over algebraically closed fields. Also, it is now known that all the
torsion-free nilpotent groups of finite Morley rank are linear [1]. We will conclude
this paper by counterexamples to some natural questions on linearity. In particular, we
build a centerless connected solvable group G of finite Morley rank with no definable
representation over a direct sum of fields (Proposition 5.3).

2 A counterexample to a Conjecture of Nesin

If G is a connected solvable algebraic group, then G = U oT where U is the unipotent
radical and T any maximal torus. In view of this theorem, Nesin conjectured that any
connected solvable group of finite Morley rank has a similar decomposition, namely
there is a nilpotent definable subgroup with an abelian complement (see [8, Conjecture
p.687] and [3, Section 9.3]). In this section, we provide a counterexample to this
conjecture.

We recall that the Fitting subgroup F(G) of any group G is the subgroup generated
by all its normal nilpotent subgroups. Note that, in any group G of finite Morley rank
F(G) is definable and nilpotent [3, Theorem 7.3].

Proposition 2.1 There exists a connected solvable group G of finite Morley rank with
finite center and such that no normal nilpotent subgroup has a nilpotent complement.

Journal of Logic & Analysis 2:4 (2010)



4 Olivier Frécon

Proof Let K and L be two algebraically closed fields of characteristic p and q
respectively, where p is a prime and q 6= p is either a prime or zero. We consider

A0 =


 1 a b

0 r c
0 0 1

 | r ∈ K∗, (a, b, c) ∈ K × K × K

.
Then the center of A0 is Z(A0) =


 1 0 b

0 1 0
0 0 1

 | b ∈ K

, and it has an element

x of order p. The quotient of A0 by 〈x〉 is an algebraic group over K , and it acts
faithfully by multiplication on Kn for a positive integer n. From now on, we consider
the group A = Kn o (A0×K∗) where, for each (a, k) ∈ A0×K∗ and each u ∈ Kn , the
action of (a, k) over u is defined by the one of the image a of a in A0/〈x〉 over u and
by the scalar multiplication of k over u. In particular, the center of A is 〈x〉.

Now let B be a Borel subgroup of SL(p, L), and UB its unipotent radical. Then the
center ZB of SL(p, L) is cyclic of order p, it is contained in each maximal torus of
B, and F(B) = UBZB . Let y be a nontrivial element of ZB , let G0 = A × B, and let
H = 〈xy−1〉. Then H is a central subgroup of G0 , and it is cyclic of order p. We
consider the pure group G0 . Since K and L are algebraically closed, G0 has finite
Morley rank, and G = G0/H is a solvable connected definable quotient. Moreover,
since the center of G0 is 〈x, y〉, which is a finite subgroup, the center of G is 〈x, y〉/H ,
and it is finite too.

We assume toward a contradiction that G has a normal nilpotent subgroup U = U0/H
and a nilpotent subgroup T = T0/H such that G = U o T . First we show that
U0 = F(G0). Since H ≤ Z(G0), the subgroup U0 is nilpotent and contained in
F(G0) = F(A)× F(B). On the other hand, since T is nilpotent, G/U0 is nilpotent too.
We notice that F(A) = Kn o F(A0), where

F(A0) =


 1 a b

0 1 c
0 0 1

 | (a, b, c) ∈ K × K × K

.
In particular, we have [A0,F(A0)] = F(A0), and F(A0) is the only normal nilpotent
subgroup of A0 such that A0/F(A0) is nilpotent. Then, if NA denotes a normal nilpotent
subgroup of A such that A/NA is nilpotent, the groups NA ∩ A0 and A0/(NA ∩ A0) are
nilpotent, so NA ∩A0 = F(A0). In the same way, the Fitting subgroup of Kn o K∗ ≤ A
is Kn and we have [Kn,K∗] = Kn since K∗ acts by multiplication on Kn , so Kn is the
only normal nilpotent subgroup of Kn o K∗ such that (Kn o K∗)/Kn is nilpotent. This
implies that NA ∩ (Kn o K∗) = Kn , therefore we obtain NA = Kn o F(A0) = F(A).

Journal of Logic & Analysis 2:4 (2010)



Splitting in solvable groups of finite Morley rank 5

Thus, since G/U0 is nilpotent, we obtain F(A) ≤ U0 and x ∈ U0 . Moreover, we have
[B,UB] = UB , so UB is the only normal nilpotent subgroup of B such that B/UB is
nilpotent. Therefore, since G/U0 is nilpotent, U0 contains UB . Now, since x ∈ U0

and since H = 〈xy−1〉 is contained in U0 , we have ZB = 〈y〉 ≤ U0 , and the subgroup
F(B) = UBZB is contained in U0 . This proves that U0 = F(G0).

We show that x belongs to T0 . Since U0 = F(G0) = F(A) × F(B), the group T is
isomorphic to G0/U0 ' A/F(A) × B/F(B). In particular, it is abelian and divisible.
Thus T has a unique maximal p-subgroup S = S0/H , and this subgroup is abelian and
divisible. Moreover, since H is a p-subgroup, S0 is a p-subgroup too. But H is central
in G0 hence, for each g ∈ S0 , the map adg : S0 → H , defined by adg(x) = [g, x], is
a homomorphism and adg(S0) ' S0/CS0(g) is divisible. Since H is finite, this proves
that CS0(g) = S0 for each g ∈ S0 , therefore S0 is abelian and, by divisibility of S0/H ,
the set R0 = {gp2 | g ∈ S0} is a subgroup of S0 such that S0 = R0H . Also R0 is
divisible, since it is the image of the homomorphism α : S0 → S0 defined for each
g ∈ S0 by α(g) = g2 , and H lies in the kernel of α . Since the characteristic of K is p,
all the p-elements of A are unipotent, so they are contained in F(A), and A/F(A) has
no nontrivial p-element. On the other hand, F(A) is a p-group of exponent at most
p2 , so R0 is contained in B. Since the characteristic of L is q 6= p, each divisible
abelian p-subgroup of B is contained in a maximal torus of B, and R0 is contained
in a maximal torus TB of B. Let RB be the maximal p-subgroup of TB . Then RB

contains R0 and, since RB is isomorphic to the maximal p-subgroup of (L∗)p−1 , that
is its Prüfer rank is finite, we have either RB = R0 , or RB is not isomorphic to R0 .
Since U0 = F(A) × F(B), the subgroup T is isomorphic to A/F(A) × B/F(B) and,
since A/F(A) has no nontrivial p-element, S is isomorphic to the unique maximal
p-subgroup of B/F(B) ' (L∗)p−1 . This proves that R0 is isomorphic to RB , and we
obtain RB = R0 . But y is a central semisimple element of B, so it is contained in
TB , and R0 = RB contains 〈y〉. In particular we obtain y ∈ T0 and, since xy−1 ∈ H
belongs to T0 , we have x ∈ T0 .

Therefore, we have x ∈ F(A) ≤ U0 and x ∈ T0 , so x ∈ U0 ∩ T0 = H contradicting
the choice of H . This finishes the proof.

3 In the case where Conjecture 1.2 holds

In this section, we prove the first part of Theorem 1.3 (Proposition 3.6). Our analysis
depends on the following four results.
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6 Olivier Frécon

On the other hand, we provide a counterexample to a natural question concerning the
conjugacy of some complements in connected solvable groups of finite Morley rank
(Proposition 3.7).

Fact 3.1 [3, Theorem 9.21] Let G be a connected and solvable group of finite Morley
rank. Then G/F(G)◦ (so also G/F(G)) is a divisible abelian group.

As in [3], in any group G of finite Morley rank and for any subset X of G, a definable
subgroup A is said to be X-minimal if it is infinite, normalized by X and minimal for
these conditions.

Fact 3.2 [3, Theorem 9.1] Let G = A o H be a group of finite Morley rank where A
and H are two infinite definable abelian subgroups, A is H -minimal and CH(A) = 1.
Then G interprets an algebraically closed field K such that A ' K+ definably, and
such that H is definably isomorphic to a subgroup of K∗ .

Fact 3.3 [7, Corollary 2.8] Any nilpotent group of finite Morley rank has a unique
maximal pseudo-torus.

Fact 3.4 [7, Corollary 2.13] Let G be a group of finite Morley rank, N a normal
definable subgroup of G and T a maximal pseudo-torus of G. Then TN/N is a
maximal pseudo-torus of G/N .

Fact 3.5 [5, Lemma 4.20] Let G be a solvable connected group of finite Morley rank
and let T be an abelian divisible p-subgroup for a prime p. Then T∩F(G) is contained
in Z(G).

Proposition 3.6 Suppose that Conjecture 1.2 holds, and let G be a connected solvable
group of finite Morley rank. Then G = F(G)◦T for T a divisible abelian subgroup of
G, such that F(G) ∩ T is finite and central in G.

In particular, if G is centerless, then F(G) is connected and G = F(G) o T .

Proof Let P be a maximal pseudo-torus of G. We show that G = F(G)◦P. Since
F(G) is nilpotent, it is the intersection of the centralizers of G-minimal sections
in G, and we find finitely many G-minimal sections A1, . . . ,An of G such that
F(G) = CG(A1, · · · ,An). On the other hand, for each G-minimal section A of G,
the quotient G/CG(A) is abelian by Fact 3.1, and Fact 3.2 says that each connected
definable subgroup of G/CG(A) is a pseudo-torus since Conjecture 1.2 holds. Then,
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Splitting in solvable groups of finite Morley rank 7

by considering C0 = G and Ci = CG(A1, · · · ,Ai) for each i ∈ {1, . . . , n}, since
Ci/Ci+1 = Ci/(Ci ∩ CG(Ai+1)) is definably isomorphic to CiCG(Ai+1)/CG(Ai+1) ≤
G/CG(Ai+1) for each i ∈ {0, . . . , n − 1}, the group C◦i Ci+1/Ci+1 is a pseudo-torus
for each i ∈ {0, . . . , n − 1}. Thus, since we have F(G) = Cn and since G/F(G) is
abelian (Fact 3.1), we obtain C◦i Ci+1/Ci+1 ≤ PCi+1/Ci+1 for each i ∈ {0, . . . , n− 1}
by Facts 3.3 and 3.4. Consequently PF(G)/F(G) has finite index in G/F(G) = C0/Cn

and, since G is connected, we find G = F(G)P = F(G)◦P.

Since P is divisible and abelian, (F(G)◦∩P)◦ is divisible and abelian too, so (F(G)◦∩
P)◦ has a complement T in P. Then T is a divisible abelian subgroup of G such that
G = F(G)◦T , and such that F(G) ∩ T is finite. Furthermore, for each prime p, the
p-elements of T are contained in an abelian divisible p-subgroup since T is abelian
and divisible, so Fact 3.5 says that F(G) ∩ T is central in G.

By the following remark, we cannot expect the conjugacy of all the subgroups T in
Proposition 3.6, even if the ambient group is centerless. Indeed, in some centerless
connected solvable groups of finite Morley rank, the Fitting subgroup has definable
complements and nondefinable complements. On the other hand, concerning the defin-
ability of complements, we will show in §5 that, in some centerless connected solvable
groups of finite Morley rank, the Fitting subgroup has no definable complement.

Proposition 3.7 There is a centerless connected solvable group G of finite Morley
rank such that any normal nilpotent subgroup U with nilpotent quotient G/U satisfies:

(1) U is torsion-free;

(2) U has a definable complement;

(3) U has a nondefinable complement.

In particular, the complements of U in G are not all conjugate.

Furthermore, we may choose G to be isomorphic as abstract group with a connected
algebraic group over an algebraically closed field.

Proof Let K be an algebraically closed field of characteristic zero and let

G =




x a1 a2 a3

0 1 a4 a5

0 0 y a6

0 0 0 1

 | (x, y) ∈ K∗ × K∗, ai ∈ K for i = 1, · · · , 6

.
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8 Olivier Frécon

We consider the group G in the pure field K . Then G is a centerless connected solvable
group of Morley rank 8, and F(G) is the unipotent radical, so F(G) is torsion-free.
Moreover, we notice that the definable subsets of G are the constructible ones.

Let U be a normal nilpotent subgroup with nilpotent quotient G/U . Then U is
contained in F(G) = G′ . On the other hand, we have [G,G′] = G′ . Then, since G/U
is nilpotent, we obtain U = G′ = F(G). In particular, U is the unipotent radical of G
and any maximal torus of G is a complement of U in G. Thus there exists definable
complements of U in G.

However, if T denotes a maximal torus of G, then V = CU(T) is nontrivial and abelian.
Since V ≤ U is a definable torsion-free group, it is divisible, and TV is an abelian
divisible group too. Then there exists a complement R of V in TV containing a fixed
element x in (TV) \ (T ∪ V). Now, since U ∩ TV = V and since G = U o T , the
subgroup R is a complement of U in G. Nevertheless, T is the unique maximal torus
of TV and it does not contain x , so R is not a torus. Consequently R is nondefinable,
otherwise R ' G/U ' T would be a torus.

4 The case where Conjecture 1.2 does not hold

In this section, we prove the second part of Theorem 1.3 (Theorem 4.2).

We will use Carter subgroups, which are defined as the connected definable nilpotent
subgroups of finite index in their normalizer. The following fact gives their two
properties useful for the proof of Theorem 4.2.

Fact 4.1 Let G be a connected solvable group of finite Morley rank. Then G satisfies
the following properties.

(1) [11] Any two Carter subgroups of G are conjugate.

(2) [4, Results 1.2 and 4.4] If H denotes a maximal proper connected definable
subgroup of G, then either H is normal in G, or H contains a Carter subgroup
of G.

By the following theorem, if Conjecture 1.2 does not hold, we can build a centerless
connected group of finite Morley rank with nonalgebraic properties. In particular, both
of the answers to Questions 1.1 (1-2) are negative in this case.

Theorem 4.2 If Conjecture 1.2 does not hold, then there exists a centerless connected
solvable group G of finite Morley rank such that:

Journal of Logic & Analysis 2:4 (2010)



Splitting in solvable groups of finite Morley rank 9

(1) G has no decomposition as a product of a normal nilpotent subgroup by an
abelian subgroup;

(2) G has no decomposition as a product of a normal nilpotent subgroup U by
another nilpotent subgroup C such that U ∩ C is finite.

Proof By hypothesis, there is a field K of finite Morley rank with a connected definable
subgroup R of K∗ which is not a pseudo-torus. Then R has a definable subgroup A
such that R/A is definably isomorphic to L+ for an interpretable field L . We may
assume L = R/A, and we denote by +L the addition in L and by ·L the multiplication.
Moreover, we denote by 1K ∈ R the identity element of K∗ , and by 1L ∈ L the one of
L∗ . We consider the following group, which can be seen as a slightly bent subgroup of
GL(5, L) :

V =




x 0 0 a1 a2

0 1 α a3 a4

0 0 1 0 β

0 0 0 y a5

0 0 0 0 1

 |
(x, y) ∈ L∗ × L∗,
(α, β) ∈ R× R,
ai ∈ L for i = 1, 2, 3, 4, 5


where, for every (v1, v2) ∈ V × V, the product v1v2 is

x1x2 0 0 x1a1,2 +L a1,1y2 x1a2,2 +L a1,1a5,2 +L a2,1

0 1 α1α2 a3,2 +L a3,1y2 a4,2 +L α1β2 +L a3,1a5,2 +L a4,1

0 0 1 0 β1β2

0 0 0 y1y2 y1a5,2 +L a5,1

0 0 0 0 1



where, for i = 1, 2, vi =


xi 0 0 a1,i a2,i

0 1 αi a3,i a4,i

0 0 1 0 βi

0 0 0 yi a5,i

0 0 0 0 1

 and αi (resp. βi ) is the image

of αi (resp. βi ) in L . Then V is a centerless connected interpretable solvable group
and we have

V ′ =




1L 0 0 a1 a2

0 1 1K a3 a4

0 0 1 0 1K

0 0 0 1L a5

0 0 0 0 1

 | ai ∈ L for i = 1, 2, 3, 4, 5


.

In particular, we obtain V ′ = [V, V ′].
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10 Olivier Frécon

We consider G = (K+ × K+) o V where V acts by conjugation on K+ × K+ such

that, for any (r, s) ∈ K+ × K+ and any v ∈ V , if v =


x 0 0 a1 a2

0 1 α a3 a4

0 0 1 0 β

0 0 0 y a5

0 0 0 0 1


for (x, y) ∈ L∗ × L∗ , (α, β) ∈ R × R, and ai ∈ L for i = 1, 2, 3, 4, 5, then
(r, s)v = (αr, βs). Thus we have G′ = (K+×K+)×V ′ , so G′ is the Fitting subgroup
of G. Moreover, since V is centerless, G is centerless too.

Let U and T be two nilpotent subgroups of G such that U is normal in G and G = UT .
We will show that T is nonabelian and that U∩T is infinite. First we show that U = G′ .
Since U is nilpotent, we have U ≤ F(G) = G′ . Moreover, since G/U ' T/(T ∩ U)
is nilpotent, V/(V ∩ U) is nilpotent too. Thus, since V ′ = [V, V ′], the subgroup U
contains V ′ . Also, the action of V on K+ × K+ is transitive, so V centralizes no
nontrivial section of K+ × K+ , and we have [V,K+ × K+] = K+ × K+ , so K+ × K+

is contained in U . This proves that U contains G′ = (K+×K+)×V ′ , hence U = G′ ,
and U is definable.

We show that we may assume T ≤ C for C a Carter subgroup of G. Since T is
nilpotent, there is a nilpotent definable subgroup Td of G containing T , and T0 =
T ∩ T◦d has finite index in T , so F(G)T0 has finite index in G. Since G/F(G) is
divisible (Fact 3.1), G/F(G) has no proper subgroup of finite index, and we obtain
G = F(G)T0 = UT0 . Therefore we may assume T = T0 , and T is contained
in a nilpotent connected definable subgroup. Now there exists a maximal nilpotent
connected definable subgroup C of G containing T . Then G = UC , so we have
NG(C) = NG′(C)C and, since G′ is nilpotent, NG(C) is nilpotent. This implies
NG(C)◦ = C , so C is a Carter subgroup of G.

We consider the following nilpotent connected definable subgroup

D =




x 0 0 0 0
0 1 α 0 a
0 0 1 0 β

0 0 0 y 0
0 0 0 0 1

 | (x, y) ∈ L∗ × L∗, (α, β) ∈ R× R, a ∈ L


.

Then D is self-normalizing in V , that is D is a Carter subgroup of V . We show that
C and D are conjugate. Let W1 = K+ × {0} and W2 = {0} × K+ . Then W1 is
a normal subgroup of G, and no nontrivial proper subgroup of W1 is normal in G.
Since W2V is a complement to W1 in G, this shows that W2V is a maximal proper
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Splitting in solvable groups of finite Morley rank 11

connected definable subgroup of G, and W2V contains a Carter subgroup of G (Fact
4.1 (2)). Then, by Fact 4.1 (1), each Carter subgroup of W2V is a Carter subgroup of
G. In the same way, V is a maximal proper connected definable subgroup of W2V ,
and each Carter subgroup of V is a Carter subgroup of G, so D is a Carter subgroup of
G. Consequently, by Fact 4.1 (1), C and D are conjugate, and we may assume D = C
and T ≤ D.

Now we consider the following central subgroup of D:

Z =




1L 0 0 0 0
0 1 1K 0 a
0 0 1 0 1K

0 0 0 1L 0
0 0 0 0 1

 | a ∈ L


.

In particular we have Z = D ∩ V ′ = D ∩ U and TZ = T(D ∩ U) = D. Then, if T is
abelian, TZ is abelian too since T ≤ D, which contradicts that D is nonabelian, so T
is nonabelian. Thus we may assume that U ∩ T is finite. But U ∩ T ≤ D ∩ U = Z
is central in D, and T/(U ∩ T) ' G/U is abelian. Hence, for each t ∈ T , the map
adt : T → U ∩ T , defined by adt(x) = [t, x] for each x ∈ T , is a homomorphism and
adt(T) is a finite subgroup isomorphic to T/CT (t). Since CT (t) contains U∩T ≤ Z(D)
and since T/(U ∩ T) ' G/F(G) is divisible (Fact 3.1), the subgroup adt(T) is finite
and divisible, so it is trivial. This proves that T is abelian, contradicting that T is
nonabelian. This finishes the proof.

5 Definability of complements

In Proposition 3.7, we provided a centerless connected solvable group G of finite
Morley rank such that F(G) has definable complements and nondefinable complements.
In this section we show that F(G) can have no definable complement (Proposition 5.1).

We will deduce from this result that some groups of finite Morley rank are not definably
linear. A group G of finite Morley rank is definably linear (over finitely many
interpretable fields K1, . . . , Kn ), if it has an interpretable faithful linear representation
over the ring K1 ⊕ · · · ⊕ Kn (Proposition 5.3 and Corollary 5.4).

Proposition 5.1 There exists a centerless connected solvable group G of finite Morley
rank such that, for each normal nilpotent subgroup U and each definable nilpotent
subgroup T , the equality G = UT implies that U ∩ T is infinite.
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Furthermore, we may choose G to be isomorphic as abstract group with a connected
algebraic group over an algebraically closed field.

Proof Let K be an algebraically closed field of characteristic zero. We assume that K
is not isomorphic to Q, namely K has a nonzero derivation δ . We consider the group

G =




t a b u
0 1 c v
0 0 t w
0 0 0 1

 | t ∈ K∗, (a, b, c, u, v,w) ∈ K6

 .

Then G is a centerless connected group of Morley rank exactly 7 as an algebraic group,
and of Morley rank at most 7 as a group. We consider a decomposition of G of the
form G = UT for a normal nilpotent subgroup U and a definable nilpotent subgroup
T , and we show that U ∩ T is infinite.

As usual, U = F(G), the group of strictly upper triangular matrices. In particular U
is torsion-free, so we may assume that G = U o T . But definable subgroups of G are
Zariski closed, so T is a closed subgroup of G. Hence, since U is the unipotent radical
of G and since G = U o T , the subgroup T is a maximal torus of G.

By conjugacy of maximal tori in G, we may assume that T is the diagonal subgroup
of G. Let α : G→ G be the map defined by

α


t a b u
0 1 c v
0 0 t w
0 0 0 1

 =


t a b + δ(t) u + δ(w)
0 1 c v
0 0 t w
0 0 0 1

 .

It is an automorphism of the pure group G, so it preserves its definable subsets. Thus
α(T) and T ∩ α(T) are definable in the pure group G. Since the pure group G is
interpretable in the pure field K , this implies that T ∩α(T) is definable in the pure field
K too, that is T ∩ α(T) is a closed subgroup. But we have

T ∩ α(T) =




t 0 0 0
0 1 0 0
0 0 t 0
0 0 0 1

 | t ∈ K∗, δ(t) = 0

 ,

and δ is a nonzero derivation. Hence T ∩ α(T) is a proper closed subgroup of T , and
since T is a torus of dimension one over K , the subgroup T ∩ α(T) is finite. This
yields the final contradiction since δ(t) = 0 for each element of the prime subfield of
K .
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It is noticeable that the group considered in the previous proof is not definably linear,
although it is centerless and connected (Proposition 5.3). The proof uses the fact below.

Fact 5.2 [9, Théorème 4.15] Let F be an algebraically closed field. Then, in the pure
field F , every infinite definable field K is definably isomorphic to F .

Proposition 5.3 There exists a centerless connected solvable group of finite Morley
rank which is not definably linear.

Furthermore, we may choose this group to be isomorphic as abstract group with a
connected algebraic group over an algebraically closed field.

Proof Let K , G, T and α be as in the proof of Proposition 5.1. We assume to-
ward a contradiction that G is definably linear over finitely many interpretable fields
K1, . . . , Kn . Then there exist i ∈ {1, . . . , n} and a definable representation γ of G
over Ki such that the kernel C of γ does not contain the subgroup

Z(F(G)) =




1 0 0 u
0 1 0 0
0 0 1 0
0 0 0 1

 | u ∈ K

 .

But Z(F(G)) is the only minimal nontrivial normal closed subgroup of G, so C = 1.
Hence γ is an interpretable embedding from G to an algebraic group H over Ki .

By Fact 5.2, there is a field isomorphism ϕ : Ki → K , definable in the pure field K .
So the corresponding map ϕ◦ : H → ϕH is definable in K , where ϕH denotes the
algebraic group over K obtained by transfer of base field. In particular, for each subset
X of H , the set X is Zariski closed in H if and only if ϕ◦(X) is Zariski closed in ϕH .
In other words, X is definable in Ki if and only if ϕ◦(X) is definable in K . Since γ
is interpretable in G, which is an algebraic group over K , it is interpretable in K , and
since T is a Zariski closed subgroup of G, the subgroup γ(T) of H is definable in
K . Thus ϕ◦(γ(T)) is definable in K too, and γ(T) is definable in Ki . Since Ki and
γ are interpretable in G, we obtain the definability of T in G. The latter contradicts
the proof of Proposition 5.1, which says that T is not definable in G. Thus G is not
definably linear, as desired.

In particular, Proposition 5.3 provides a counterexample to [6, Conjecture 1.3]. Indeed,
the notion of geometric group was introduced in [6] as follows:
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(1) [6, Definition 1.5 and Remark 1.6] if, for I an interpretable set, F = {Fi | i ∈ I}
is a uniformly definable family of connected definable subgroups of a group G of
finite Morley rank, then F is said to be geometric when {g ∈ G | ∃!i ∈ I, g ∈ Fi}
forms a generic subset of G;

(2) [6, Definition 1.10] a group G of finite Morley rank is said to be geometric when,
for each distinct elements x and y of G, there exists a geometric family F of
subgroups of G such that xy−1 6∈ ∪F .

Then [6, Conjecture 1.3] states that any geometric group of finite Morley rank is
definably linear. Moreover, if this last conjecture holds, then any centerless connected
group of finite Morley rank would be definably linear by [6, Théorème 4.18 and
Corollaire 2.9]. But this fails by Proposition 5.3, hence we obtain the following result.

Corollary 5.4 There exists a geometric group of finite Morley rank which is not
definably linear.
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(1988), 124–131; doi:10.2307/2274432.

[11] F O Wagner, Nilpotent complements and Carter subgroups in stable <-groups, Arch.
Math. Logic 33 (1994), 23–34: doi:10.1007/BF01275468.

[12] F O Wagner, Fields of finite Morley rank, J. Symbolic Logic 66 (2001), 703–706;
doi:10.2307/2695038.
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