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A density version of a theorem of Banach

DAVID A. ROSS

Abstract: The S–measure construction from nonstandard analysis is used to prove
an extension of a result on the intersection of sets in a finitely-additive measure
space. This is then used to give a density-limit version of a representation theorem
of Banach.
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1 Introduction

The starting point for this note is the following result of Banach (described in Diestel
and Swart [2] as “marvelous"):

Theorem 1.1 Let X be a set, B(X) be all bounded real functions on X , and { fn : n ∈ N}
be a uniformly bounded sequence. The following are equivalent: (i) { fn}n converges
weakly to 0; (ii) for any sequence {xk : k ∈ N} in X , lim

n→∞
lim inf

k→∞
fn(xk) = 0.

Weak convergence to zero here means that for any positive linear functional T on B(X),
Tfn → 0 as n→∞.

The contrapositive is interesting:

Corollary 1 Let X be a set, B(X) be all bounded real functions on X , and { fn : n ∈ N}
be a uniformly bounded sequence. The following are equivalent: (i) there is a positive
linear functional T on B(X), an infinite set I ⊆ N, and an r > 0 such that |T(fn)| > r
for every n ∈ I ; (ii) there exists a sequence {xk : k ∈ N} in X , an infinite set I ⊆ N,
and an r > 0 such that lim inf

k→∞
|fn(xk)| > r for every n ∈ I .
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It is natural to consider the question of whether set I can be required to have more
structure than just being infinite; such a requirement would give a variant of weak
convergence. In this paper we adapt the proof from Ross [10] to prove a version of the
Banach theorem in which I is required to have positive upper density.

For I ⊆ N let d̄(I) = lim supn ‖I ∩ {1, 2, . . . , n}‖/n (the upper asymptotic density of
I ). The main result of this paper is the following.

Theorem 1.2 Let X be a set, B(X) be all bounded real functions on X , and { fn : n ∈ N}
be a uniformly bounded sequence. The following are equivalent: (i) there is a positive
linear functional T on B(X), an infinite set I ⊆ N with d̄(I) > 0, and an r > 0 such
that |T(fn)| > r for every n ∈ I ; (ii) there exists a sequence {xk : k ∈ N} in X , a set
I ⊆ N with d̄(I) > 0, and an r > 0 such that lim inf

k→∞
|fn(xk)| > r for every n ∈ I .

With appropriate choice of notation, this result can be made to look more like the
original Banach result. Write d limn an = L provided it is not the case that there is
an r > 0 and set I ⊆ N with d̄(I) > 0 such that |f (n) − L| > r for all n ∈ I . (For
equivalent ways of writing such limits see Furstenberg [3, Chapter 9].)

Say that a sequence fn of functions in X weakly d–converges to zero provided that for
any positive linear functional T on B(X), d limn→∞ Tfn = 0.

Then result Theorem 1.2 becomes:

Corollary 2 Let X be a set, B(X) be all bounded real functions on X , and { fn : n ∈ N}
be a uniformly bounded sequence. The following are equivalent: (i) { fn}n weakly
d–converges to 0; (ii) for any sequence {xk : k ∈ N} in X , d lim

n→∞
lim inf

k→∞
fn(xk) = 0.

We note that there are many classical results for which replacing “limit" by “d–limit"
yields an immediate open question.

Our proof uses nonstandard analysis, notably Abraham Robinson’s notion of S–
measurability, and relies on a generalization (Corollary 4) to finitely-additive measures
of a lemma from Bergelson [1]. The main idea is to substitute Corollary 4 for the weaker
[10, Theorem 1] in the proof of Theorem 1.1 in Ross [10].1 Nonstandard analysis has
proved itself increasingly useful for the study of densities; see, for example, Jin [5].

1More precisely, we obtain Corollary 4 from Corollary 3, which is Bergelson’s original result
(and for which we provide a new, nonstandard proof). Theorem 1.2 then follows from that
corollary.
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2 Loeb measures and S–measures

The reader is assumed to be familiar with nonstandard analysis in general, and the Loeb
measure construction in particular, for example as in Ross [8]. Assume that we work in
a nonstandard model in the sense of Robinson, and that this model is as saturated as it
needs to be to carry out all constructions; in particular, it is an enlargement.

If (X,A, µ) is a finite measure space then both ∗A and A0 = { A∗ : A ∈ A} are algebras
on X∗ . Let AS be the smallest σ–algebra containing A0 and AL be the smallest
σ–algebra containing ∗A. ( X∗ , ∗A, ◦∗µ) is an external, standard, finitely-additive finite
measure space, with ◦∗µ( X∗ ) = µ(X) <∞. By either an appeal to the Carathéodory
Extension Theorem or an elementary direct construction, ◦∗µ can be extended to a
countably-additive measure (the Loeb measure) µL on ( X∗ ,AL), and by restriction on
( X∗ ,AS).

The algebra AS of S–measurable sets was introduced by Robinson [6], then studied
later by Henson and Wattenburg [4] (who used S–measurability to understand Egoroff’s
Theorem), and more recently by the author [8, 9, 7, 11].

The main result we need is the following:

Lemma 1 (Henson and Wattenburg, 1981) ∀A ∈ AS,

µL(A) = inf{µ(B) : A ⊆ ∗B,B ∈ A}
= sup{µ(B) : ∗B ⊆ A, B ∈ A}
= µ(A ∩ X).

In particular, if A ∈ AS and A contains all standard points of X , then µL(A) = µ(X)
and A contains sets of the form ∗B for B ∈ A of arbitrary large measure.

3 A fundamental lemma

This section gives a new proof of a modest generalization (Corollary 4) of a lemma
of Bergelson [1] . Bergelson’s result is usually proved using Fatou’s Lemma or the
Lebesgue Dominated Convergence Theorem; the proof here replaces these with an
appeal to Lemma 1. While this proof is not shorter than the standard ones, it is
more explicit, which could prove useful in extending results which use it, such as
Furstenburg’s Multiple Ergodic Theorem [3].

We begin with a weak form of the lemma.
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Lemma 2 Let (X,A, µ) be a probability measure, a > 0, and An ∈ A with µ(An) ≥ a
for all n ∈ N. For some I ⊆ N with d̄(I) ≥ a, {An}n∈I has the finite intersection
property.

Before proceeding with the proof, we note two immediate corollaries. The first is
Bergelson’s original result, the second is the extension we need.

Corollary 3 Let (X,A, µ) be a probability measure, a > 0, and An ∈ A with
µ(An) ≥ a for all n ∈ N. For some I ⊆ N with d̄(I) ≥ a and every finite J ⊆ I ,
µ(
⋂

n∈J An) > 0.

Proof Let A′n = An \ B, where

B =
⋃{⋂

i∈J

Ai : J ⊆ N, J finite, µ

(⋂
i∈J

Ai

)
= 0

}
.

B is a countable union of nullsets, so is itself a nullset. µ(A′n) = µ(An) ≥ a, and for
any finite J , µ(

⋂
n∈J An) > 0 if and only if

⋂
n∈J A′n 6= ∅. Apply Lemma 2 to the

sequence {A′n}n to get an index set I with density at least a such that {A′n}n∈I has the
finite intersection property, then every finite intersection from {An}n∈I has positive
measure.

Corollary 4 Let (X,A, µ) be a finitely additive probability measure, a > 0, and
An ∈ A with µ(An) ≥ a for all n ∈ N. For some I ⊆ N with d̄(I) ≥ a and every finite
J ⊆ I , µ(

⋂
n∈J An) > 0.

Proof Let ( X∗ ,AL, µL) be the Loeb measure constructed from (X,A, µ). Apply
Corollary 3 to the sequence { A∗ n}n∈N to get an index set I ⊆ N with d̄(I) ≥ a such
that for every finite J ⊆ I , µ(

⋂
n∈J A∗ n) > 0. The observation that µ(

⋂
n∈J An) =

µL(
⋂

n∈J A∗ n) for any finite J ⊆ I completes the proof.

3.1 Proof of Lemma 2

For x ∈ X and n ∈ N let Fn(x) = 1
n

∑n
k=1 χAn(x). There are two cases:

Case 1: lim supn Fn(x) ≥ a for some x . Then d(I) ≥ a, where I = {n : x ∈ An}, and
{An}n∈I has the finite intersection property.
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Case 2: lim supn Fn(x) < a for all x . Then for some r < a and C ∈ A with µ(C) > 0,
lim supn Fn(x) < r on C . Let φ = rχC + aχC{ , and note that

lim sup
n

Fn(x) < φ(x) for all x ∈ X.

Put:

E0 =
⋃
n∈N

[( ⋂
k≥n
k∈N

∗{x ∈ X : Fk(x) < φ(x)}
)
∩ ∗
( ⋂

k≥n
k∈N

{x ∈ X : Fk(x) < φ(x)}
)]

Observe that E0 ∈ AS . If x ∈ X is standard then by 3.1, x ∈ E0 . It follows that
µL(E0) = 1, and we may take B ∈ A with ∗B ⊆ E0 and µ(B) arbitrarily close to 1.

For x ∈ ∗B let n(x) be least so that Fk(x) < ∗φ(x) for all k ≥ n(x), k ∈ ∗N, and note
that by definition of E0 n is an internal function taking finite values on ∗B, so has a
bound N ∈ N on ∗B. It follows:

a ≤ 1
N

N∑
k=1

∫
χAn(x) =

∫
X

FNdµ

=

∫
B∩C

FNdµ+

∫
B\C

FNdµ+

∫
X\B

FNdµ

≤ rµ(B ∩ C) + aµ(B \ C) + 1µ(X \ B)

Letting µ(B) → 1, a ≤ rµ(C) + aµ(X \ C) = a− (a− r)µ(C) < a, a contradiction.
This completes the proof.

4 Proof of Theorem 1.2

We are now ready to prove the main result.

(ii ⇒ i) Let {xk : k ∈ N}, I ⊆ N, and an r > 0 as in (ii).

For all standard n ∈ I and any infinite k ∈ (∗N \ N), |∗f n(xk)| > r . Fix such a k , and
define T : B(X) → R by T(g) = ◦∗g(xk). It is easy to see that T is a positive linear
functional. However, for standard n ∈ N,

0 < r < |∗f n(xk)| ≈ |◦∗f n(xk)| = |T(fn)|

so this T and the same I and r from (ii) witness (i).

(i ⇒ ii) Suppose (i) holds. Given the T , I , and r > 0 given by (ii), define a finite,
finitely-additive measure on (X,P(X)) by µ(E) = T(χE). Let d̄(I) > α > 0.
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6 David A. Ross

Let s < r and δ ∈ R satisfy 0 < δ < s/T(1); equivalently, 0 < T(δ) < s. Note that
for any g ∈ B(X) with −δ ≤ g ≤ δ , positivity of T ensures that

−T(δ) = T(−δ) ≤ T(g) ≤ T(δ)

so |T(g)| ≤ T(δ) < s. Let M > 0 be a bound for all the functions fn .

For n ∈ I put An = {x ∈ X : |fn(x)| > δ}. Then

r < |T(fn)| = |T(fnχAn) + T(fnχA{
n
)| ≤ |T(fnχAn)|+ T(δ) ≤ MT(χAn) + s

so µ(An) = T(χAn) > r−s
M > 0 for all n ∈ I . Note that by taking s close to 0 we can

make this last term as close to r/M as we like, in particular so that r−s
M d(Ī) > α r

M .

By Corollary 4, there is a subset J = {nm}m ⊆ I such that d̄(J) > αr/M and such

that for every N ∈ N, µ
( N⋂

m=1
Anm

)
> 0. Let xN ∈

N⋂
m=1

Anm . For any m,N ∈ N with

N > m, xN ∈ Anm , therefore |fnm(xN)| > δ , so for every n ∈ J , lim inf
k→∞

|fn(xk)| ≥ δ . The

set J and constant δ > 0 witness the implication (ii). This completes the proof.
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