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A Predicative Approach to the Constructive Integration
Theory of Locally Compact Metric Spaces
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Abstract: Based on the inherently impredicative approach of Bishop to constructive
integration theory, we present a predicative version of the integration theory of
locally compact metric spaces. For that, we first introduce locally compact metric
spaces with a modulus of local compactness. This notion of local compactness
is incompatible to Mandelkern’s but equivalent to both Bishop’s and Chan’s
corresponding notions. Using our definition, we reconstruct the integration theory
of continuous functions with compact support using set-indexed families of subsets,
avoiding the impredicativity of the original constructive theory of Bishop and Cheng.
We work within Bishop Set Theory, which provides an expressive framework for
Bishop-style constructive mathematics and constitutes a minimal extension of
Bishop’s original theory of sets.
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1 Introduction

In general, the most popular approach to classical measure theory is to define integration
through the concept of measure, see eg Halmos [13]. In contrast, the Daniell approach
[10] proceeds the opposite direction and thus uses integration in order to define measure.
The basic structure of the Daniell approach is a Daniell space (X,L,

∫
), where L

is a Riesz space of real-valued functions on X and
∫

: L → R is a positive, linear
functional that satisfies a certain continuity condition. A subset A of X is integrable,
if its characteristic function χA is in L1 , an extension of L, that is defined through
the non-constructive Bolzano–Weierstrass Theorem and the non-constructive axiom of
completeness for R. The measure µ(A) of A is then defined as the integral

∫
χA . The

Daniell approach has been incorporated in Bourbaki [5].
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2 F L Grubmüller and I Petrakis

Later, Bishop developed a constructive version of the Daniell approach, which we call
Bishop Measure Theory (BMT) [2], and the approach was also adopted into Bishop–
Cheng Measure Theory (BCMT), which was introduced in Bishop and Cheng [4] and
substantially extended in Bishop and Bridges [3]. The basic structure of BCMT is an
integration space (X, L,

∫
), where (X,=X, ̸=X) is a Bishop set (X,=X) equipped with

an inequality x ̸=X x′ , a strong form of the classical (weak) negation ¬(x =X x′). The
category of sets for both constructive measure theories BMT and BCMT is SetIneq,
the subcategory of Set of Bishop sets with an inequality. The arrows in SetIneq are
strongly extensional functions f : (X,=X, ̸=X) → (Y,=Y , ̸=Y ), ie functions f : X → Y ,
such that f (x) ̸=Y f (x′) ⇒ x ̸=X x′ , for every x, x′ ∈ X . Moreover, L is a set of strongly
extensional, real-valued partial functions on X that has a structure similar to that of
a Riesz space, and lastly

∫
: L → R is a positive, linear functional that satisfies a

constructive version of Daniell’s continuity condition. The use of partial functions in L
is crucial to the constructive realisation of the Daniell approach.

In order to avoid the use of the principle of the excluded middle (PEM) in the
definition of the characteristic function χA of a subset A of X , Bishop employed
complemented subsets A := (A1,A0) of X , where A1,A0 are disjoint subsets of X in
a strong sense: a1 ̸= a0 for every a1 ∈ A1 and a0 ∈ A0 . The characteristic function
χA : A1 ∪ A0 → {0, 1} of a complemented subset A, defined by χA(a) := 1 if a ∈ A1 ,
and χA(a) := 0 if a ∈ A0 , is a partial, Boolean-valued function1 on X , as it is defined
on the subset A1 ∪ A0 of X , without though the use of PEM! Similarly to the Daniell
approach, Bishop and Cheng extended L to L1 using the scheme of separation and
the extensional property of integrable functions, ie L1 := { f ∈ F(X) : f is integrable},
where F(X) is the totality of strongly extensional, real valued, partial functions on X .
As the membership condition in the definition of F(X) involves quantification over
the universe V0 of predicative sets,2 F(X) is a proper class. Consequently, the use of
the separation scheme over the proper class F(X) in the definition of L1 determines a
proper class, and not a set.

This impredicativity involved in the definition of L1 by Bishop and Cheng pervades
BCMT and hinders the extraction of its computational content. It was noticed by

1The totality of complemented subsets of a set with an inequality X is a swap algebra, a
generalisation of a Boolean algebra, while the totality of Boolean-valued, partial functions
on X is a swap ring, a generalisation of a Boolean ring (see Petrakis and Zeuner [24] and
Misselbeck-Wessel and Petrakis [15]).

2To define an element of F(X), we need to define a partial function on X ie we need to
construct a set A and an embedding of A into X . Clearly, this categorical notion of a subset of
X involves quantification over V0 .
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A Predicative Approach to the Constructive Integration Theory of LCMS 3

Spitters in [28], and it is behind the subsequent abstract approach to the constructive
treatment of measure and integration by Coquand, Palmgren and Spitters [8, 9, 28]. In
[19, 30, 25] Petrakis and Zeuner provided a predicative treatment of Bishop–Cheng’s L1

by considering only the canonically integrable functions of a given pre-integration space.
Using the indexisation-method, which is introduced by Bishop in [2] and elaborated
much later in [19], the set-indexed family of canonically integrable functions is shown
in [25, Theorem 10.9], to be an appropriate completion of the original pre-integration
space. The predicative definition of L1 in [25] ensures that all concepts defined through
quantification over L1 in BCMT, such as the notion of a full set, are also predicative.
Here we continue the predicative reformulation of BCMT focusing on the integration
theory of locally compact metric spaces.

Definition 1.1 (Bishop local compactness [2]) An inhabited metric space X is Bishop
locally compact, if for every bounded A ⊆ X there is a compact K ⊆ X with A ⊆ K .

Clearly, Bishop local compactness (Bishop–LC) has an impredicative formulation, as it
requires quantification over the proper class P(X) twice. First, we replace Bishop’s
impredicative definition of a locally compact metric space, given in [2, page 102], by a
predicative and constructively equivalent notion of local compactness (see Definition 3.3
and Proposition 3.8). Notice that Bishop–LC is not equivalent to the classical definition
of local compactness (classical-LC) according to which every point has a compact
neighborhood. However, it holds that, if X is Bishop–LC, then it is also classical–LC:
if X is inhabited by some x0 , then for every x ∈ X we have that x is contained in the
open ball [dx0 < n] := {x ∈ X; d(x0, x) < n} and by hypothesis there is some compact
subset K of X with [dx0 < n] ⊆ K , hence K is a compact neighborhood of x . In [14,
page 1111], Mandelkern, remarks the following:

In the constructive theory of metric spaces as developed by Errett Bishop,
the concept of locally compact space is unique. Virtually all other metric
space concepts were successfully constructivized by a judicious choice
of definition from among a variety of classically equivalent conditions.
In this case, however, the definition differed from the classical definition.
Bishop’s locally compact spaces are those in which every bounded subset is
contained in a compact subset. This allows the construction of a one-point
compactification, and includes many traditional locally compact spaces,
such as the Euclidean spaces. However, other spaces, such as open spheres
in Euclidean space, are included only if given a new metric.

Classical–LC does not work constructively, as the one-point compactification of such a
locally compact metric space need not be metrisable. In [14], Mandelkern provides a
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4 F L Grubmüller and I Petrakis

predicative definition of a locally compact metric space. A metric space is Mandelkern
locally compact (Mandelkern–LC) if there is an ascending sequence (Hn)n∈N of compact
subsets of X , such that X is the countable union of Hn ’s and, for every n ∈ N, Hn+1 is
a uniform neighborhood of Hn , ie there is some rn > 0 such that:⋃

x∈Hn

[dx< rn] ⊆ Hn+1

Mandelkern showed that his notion is more general than Bishop–LC, ie if X is Bishop–
LC, then X is Mandelkern–LC. Clearly, if X is Mandelkern–LC, then X is also
classical–LC, ie we have the following implications:

Bishop–LC

Mandelkern–LC classical–LC

Note that Mandelkern does not require a locally compact space to be inhabited. A
predicative formulation of local compactness seems not to be Mandelkern’s concern.
Mandelkern wanted to generalise Bishop’s notion, in order to include more examples.
In [14], Mandelkern showed that his notion is strictly more general than Bishop–LC,
as open spheres in Rn and the inhabited, metric complement of a located set in a
Mandelkern–LC space are Mandelkern–LC spaces, while the latter is not in general a
Bishop–LC space (see Bishop and Bridges [3, page 112]). Mandelkern’s main result
in [14] is the proof of the existence of the one-point compactification for his notion of
locally compact metric space within BISH. However, an advantage of working with
Bishop–LC is that BMT and BCMT generalise the integration theory of Bishop–LC
spaces. A ‘replacement’ of Bishop–LC by Mandelkern–LC would be justified, from
the integration theory point of view, if an integration theory of Mandelkern–LC metric
spaces could be developed. This is still an open question.

Here we give a predicative reformulation of Bishop’s notion of local compactness, which
is close to Mandelkern’s notion, however, avoiding his strong monotonicity condition
for the sequence of compact sets (Hn)n∈N . The relation between our introduced notion
of local compactness to Mandelkern–LC is discussed in the end of Section 3. In
Definition 3.3 we equip an inhabited metric space with a modulus of local compactness,
a ‘witness’ for Bishop–LC. Moduli of boundedness (Proposition 3.1), uniform continuity,
continuity (Definition 3.5) as well as total boundedness (Definition 3.2) are concepts
that witness the corresponding constructive properties of subsets, functions, and spaces,
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and allow the avoidance of (countable, or dependent) choice in constructive proofs. In
type-theoretic words, the various moduli that are introduced in the constructive theory of
metric spaces are instances of a proof-relevance that can be added to it (see also Petrakis
[21]). As in the completely proof-relevant type theory of Martin-Löf the (type-theoretic)
axiom of choice, ie the distributivity of the Π–type over the Σ–type, is provable (see
eg The Univalent Foundations Program [29, Section 1.6]), the addition of moduli in
the constructive theory of metric spaces makes the initial use of choice in some proofs
unnecessary.

The paper is structured as follows:

• In Section 2 we give a brief account of Bishop Set Theory, in order to be
self-contained. Especially, we define families and sets of subsets as well as
families and sets of partial functions indexed by some given set. These concepts
are crucial to the predicative reformulation of BCMT.

• In Section 3 we introduce locally compact metric spaces with a modulus of local
compactness, a proof-relevant reformulation of Bishop–LC spaces. This notion
of local compactness is shown to be equivalent to Bishop–LC and Chan–LC
(Proposition 3.8). Its relation to Mandelkern–LC is also discussed.

• In Section 4 we define metric integration spaces with a modulus of continuity
and unity (Definition 4.5). Our main result is Theorem 4.10, a predicative and
proof-relevant version of [3, Theorem 1.10, page 220], the most fundamental
result in the integration theory of locally compact metric spaces. According to
it, if X is a locally compact metric space with modulus of local compactness
and µ a positive measure on X with modulus of unity u, then there is a function
c : I × F(N,Csupp(X)) → X , such that (X,Csupp(X),Supp(X), µ) is a metric
integration space with modulus of continuity and unity (c, u).

We work within the framework of Bishop Set Theory, a minimal extension of Bishop’s
theory of sets3 that behaves like a high-level programming language. The type-theoretic
interpretation of Bishop sets as setoids is developed mainly by Palmgren (see eg ,
[17, 18]). Other formal systems for Bishop-style constructive mathematics (BISH) are
Myhill’s system CST [16] and Aczel’s system CZF [1]. For all notions and results of
BST that we use without explanation or proof we refer to Petrakis [19, 20, 21, 22]. For
all notions and facts from constructive analysis that we use without explanation or proof,
we refer to Bishop [2], Bishop and Bridges [3] as well as Bishop and Richman [6].

3The relation of BST to Bishop’s original theory of sets is discussed in Petrakis [19, Section
1.2]

Journal of Logic & Analysis 17:FDS4 (2025)



6 F L Grubmüller and I Petrakis

2 Some prerequisites from Bishop Set Theory

Bishop Set Theory (BST) is an informal, constructive theory of totalities and assignment
routines between totalities that accommodates BISH and serves as an intermediate step
between Bishop’s original theory of sets and an adequate and faithful formalisation
of BISH in Feferman’s sense [11]. Totalities, apart from the basic, undefined set of
natural numbers N, are defined through a membership-condition. The universe V0 of
predicative sets is an open-ended totality, which is not considered a set itself, and every
totality the membership-condition of which involves quantification over the universe is
not considered a set, but a proper class. Sets are totalities the membership-condition of
which does not involve quantification over V0 , and are equipped with an equality relation
ie an equivalence relation. Assignment routines are of two kinds: non-dependent ones
and dependent ones. A function is a non-dependent assignment routine between sets
that respects equality. Two sets are equal in V0 if there is a bijection between them.4 A
function f : X → Y is an embedding if for all x, x′ in X we have that f (x) =Y f (x′)
implies x =X x′ , and we write f : X ↪→ Y .

For a set I and a non-dependent assignment routine λ0 : I ⇝ V0 , a dependent operation
Φ over λ0 assigns for every i ∈ I some Φi := Φ(i) ∈ λ0(i). In this case, we also write:

Φ :
k

i∈I

λ0(i)

If Φ,Ψ :
c

i∈I λ0(i), then they are equal if Φ(i) =λ0(i) Ψ(i), for every i ∈ I .

Let (X,=X) and (A,=A) be sets. If ιX
A : A ↪→ X is an embedding, the pair (A, ιX

A) is
called a subset. If (B, ιX

B) is another subset of X , then we say that (A, ιX
A) is a subset

of (B, ιX
B), in symbols (A, ιX

A) ⊆ (B, ιX
B), if there is a modulus of the subset property, ie

there exists a function f : A → B such that the following triangle commutes:

X

A B
f

ιX
A ιX

A

In this case we write f : A ⊆ B. We denote by P(X) the totality of all subsets of X .
Its equality is given by the condition (A, ιX

A) =P(X) (B, ιX
B) : ⇐⇒ A ⊆ B ∧ B ⊆ A. If

f : A ⊆ B and g : B ⊆ A, then we write ( f , g) : A =P(X) B. The powerset P(X) is not
considered to be a set, as its membership-condition involves quantification over V0 .

4With this equality the universe in BISH can be called univalent in the sense of Homotopy
Type Theory [29], as, by definition, an equivalence between sets is an equality. Similarly, the
type-theoretic function-extensionality axiom is incorporated in BST as the canonical equality of
the function space.
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If (X,=X) is a set, a formula P(x) is an extensional property on X if for every x, y ∈ X
it holds that (x =X y ∧ P(x)) ⇒ P(y). By the separation scheme, P(x) induces then the
so-called extensional subset XP of X . We also write {x ∈ X; P(x)} instead of XP .

Eg the diagonal of a set X is the following extensional subset of X × X :

D(X) := { (x, y) ∈ X × X; x =X y}

Let X, Y be sets, (A, ιX
A) a subset of X and f Y

A : A → Y . Then we call (A, ιX
A, f Y

A ) a partial
function from X to Y and write f Y

A : X ⇀ Y . The totality F(X,Y) of partial functions
from X to Y is not a set as its membership-condition requires the quantification over the
universe V0 . Moreover, (A, ιX

A, f Y
A ) =F(X,Y) (B, ιX

B, f Y
B ), if there are moduli eAB : A → B

and eBA : B → A such that the following upper and lower triangles commute:

X

A B

Y

eAB

eBA
ιX

A ιX
A

f Y
A f Y

B

Let (X,=X) and (I,=I) be sets, λ0 : I ⇝ V0 a non-dependent assignment routine,
and E X :

c
i∈I F(λ0(i),X) a dependent operation, where for every i ∈ I we have that

E X(i) is an embedding and λ1 :
c

(i,j)∈D(I) F (λ0(i), λ0(j)) a dependent operation where
λ1(i, i) := idλ0(i) for every i ∈ I . We call (λ0,E X, λ1) an I–family of subsets of X if
for every (i, j) ∈ D(I) the following triangle commutes:

X

λ0(i) λ0(j)
λ1(i, j)

E X(i) E X(j)

As (j, i) ∈ D(I), if (i, j) ∈ D(I), a similar commutativity holds for λ1(j, i), which
together with λ1(i, j) witness the equality of λ0(i) and λ0(j) in V0 . If (Y,=Y ) is
also a set, let further (λ0,E X, λ1) ∈ Fam(I,X) and PY :

c
i∈I F(λ0(i),Y). We call

(λ0,E X, λ1,PY ) an I -family of partial functions from X to Y , if the following triangles
commute:

X

λ0(i) λ0(j)

Y

λ1(i, j)

E X(i) E X(j)

PY (i) PY (j)
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8 F L Grubmüller and I Petrakis

Let Fam(I,X) and Fam(I,X,Y) be the totality of all families of subsets of X and the
totality of all families of partial functions from X to Y , respectively. If (λ0,E X, λ1) ∈
Fam(I,X), such that for all i, j ∈ I we have that λ0(i) =P(X) λ0(j) ⇒ i =I j, we call
(λ0,E X, λ1) an I -set of subsets of X . Additionally, we define Set(I,X) to be the totality
of I–sets of subsets of X .

Similarly, if (λ0,E X, λ1,PY) ∈ Fam(I,X,Y), we call (λ0,E X, λ1,PY ) an I–set of
partial functions from X to Y , if the equality

(λ0(i),E X(i),PY (i)) =F(X,Y) (λ0(j),E X(j),PY (j))

implies that i =I j. Let Set(I,X, Y) be the totality of I –sets of partial functions from X
to Y .

Proposition 2.1 Let (X,=X) and (Y,=Y ) be sets and (F, ιF) ⊆ F(X,Y). We define:

• λ0 : F ⇝ V0 is the constant non-dependent assignment routine λ0( f ) := X , for
all f ∈ F .

• E X :
c

f∈F F(X,X) is the constant dependent operation E X( f ) := idX , for all
f ∈ F .

• λ1 :
c

( f ,g)∈D(F) F(X,X) is the constant dependent operation λ1( f , g) := idX ,
for all f , g ∈ F such that f =F g.

• PY :
c

f∈F F(X,Y) is the dependent operation PY ( f ) := ιF( f ), for every
f ∈ F .

Then F̄ := (λ0,E X, λ1,PY ) is a well-defined F–set of partial functions.

Proof Clearly, our definitions are well-defined and match the signatures. The signatures
in turn fit the requirements for F̄ to be an F–family of partial functions from X to Y ,
and we show that F̄ respects the equality of F .

Let f , g ∈ F be such that f =F g. Then due to the extensionality of ιF , ie
ιF( f ) =F (X,Y) ιF(g), the following diagrams commute.

X

X Y

Y

idX

idX idX

ιF( f ) ιF(g)

Together we have that F̄ ∈ Fam(F,X,Y). To show that F̄ is in fact a set of partial
functions, let f , g ∈ F and e1, e2 : X → X such that (e1, e2) : (X, idX, ιF( f )) =F(X,Y)
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A Predicative Approach to the Constructive Integration Theory of LCMS 9

(X, idX, ιF(g)). By definition this implies that idX =F (X,X) idX ◦e1 and idX =F (X,X)

idX ◦e2 , ie e1 =F (X,X) e2 =F (X,X) idX . With the other part of the definition we see that
ιF( f ) =F (X,Y) ιF(g) ◦ idX =F (X,Y) ιF(g). As ιF is an embedding, we see that f =F g,
ie F̄ ∈ Set(F,X,Y).

If (X,=X) and (I,=I) are sets and (λ0,E X, λ1) ∈ Fam(I,X) is an I–family of subsets
of X , then the intersection and union of (λ0,E X, λ1) are denoted by

⋂
i∈I λ0(i) and⋃

i∈I λ0(i), respectively, and are defined in Petrakis [19, pages 91, 97].

3 Locally Compact Metric Spaces with a Modulus of Local
Compactness

A metric space is a triplet (X,=X, dX), where (X,=X) is a set and d is a metric on X .
If (X,=X, dX) and (Y,=Y , dY) are metric spaces, a function f : X → Y is uniformly
continuous with modulus of uniform continuity ω : R+ → R+ , if

dX (x, y) ≤ ω(ε) ⇒ dY (f (x), f (y)) ≤ ε

for all x, y ∈ X and ε ∈ R+ .

A bounded subset of a metric space has the special property, that the distance between
two elements is bounded by some real number. We model this by requiring the subset
to be inhabited by some element, and by giving a bound on the distance an arbitrary
element is allowed to have from this element.

Specifically, if (X,=X, d) is a metric space inhabited by x0 and M ∈ R+ , X is bounded
with modulus of boundedness M , if for all x ∈ X we have that d (x0, x) ≤ M . If
(A, ι, ) ⊆ X is inhabited by a0 , then A is a bounded subset of X , if there is some
MA ∈ R+ such that (A,=A, dA), where dA is the relative metric on A, is bounded with
modulus of boundedness MA . The next fact is straightforward to show.

Proposition 3.1 Let (X,=X, d) be a metric space and (A, ι) a bounded subset of X with
modulus of boundedness M ∈ R+ and inhabited by a0 . Then A is included in a closed
ball around ι(a0), ie there exists n ∈ N+ such that (A, ι) ⊆ [dι(a0)≤ n]. If (Y, dY ) is a
metric space, then for any uniformly continuous function f : [dι(a0) ≤ n] → Y with
modulus of uniform continuity ω , the restriction function f ↾ A : A → Y defined by
f ↾ A(x) := f (ι(x)) is also uniformly continuous with modulus of uniform continuity ω .
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10 F L Grubmüller and I Petrakis

In order to define total boundedness, we explain our notions of finiteness an subfiniteness.
If (X,=X) is a set, let its set of subfinite subsets and set of finite subsets be defined by

Psubfin(X) :=
⋃
n∈N

F(N<n,X)

Pfin(X) :=
⋃
n∈N

Emb(N<n,X)

respectively, where Emb(Y,X) denotes the embeddings from Y to X , and N<n is
defined as the set {m ∈ N; m < n}. Notice, that subfinite and finite subsets are not
actually sets, but functions. Intuitively, we identify each (sub-)finite set with its image.
Then the subfiniteness property is equivalent to the more intuitive statement that a
subfinite set is a subset of a finite set. In classical set theory there is no difference
between finite and subfinite sets, but constructively a subset of a finite set need not be
finite itself.

In a totally bounded metric space X there is a subfinite set that ε–approximates the
whole metric space, for every for every ε ∈ R+ , ie every element of X has a distance
less than ε from some element of the subfinite set. Clearly, total boundedness is stronger
than boundedness. The basic theory of totally bounded (and compact) metric spaces in
Bishop and Bridges [3] can be reconstructed in a computationally more informative
way using the notion of modulus of total boundedness (see Grubmüller [12, Sections
2.4, 2.5]), which is defined next.

Definition 3.2 (Totally bounded metric spaces with a modulus of total boundedness)
Let (X,=X, d) be a metric space and let n ∈ N such that A : N<n → X is a subfinite
subset of X . Let further ε > 0 and let f : X → N<n . Then we call (A, h) a subfinite
ε–approximation of X , if for all x ∈ X we have that d (x,A(h(x))) < ε.

If α : R+ → Psubfin(X) ×
⋃

n∈NF(X,N<n) is a function such that for all ε ∈ R+ we
have that αε := (Aε, hε) is a subfinite ε–approximation for X , then we call (X,=X, d)
a totally bounded metric space with the modulus of total boundedness α .

Definition 3.3 (Locally compact metric spaces with a modulus of local compactness)
Let (X,=X, x0, d) be a metric space inhabited by x0 . Let further (Kn, ι

X
Kn

)n∈N be
a sequence of compact subsets of X and κ : N → N a function. We say that
(X,=X, x0, d) is locally compact with modulus of local compactness

(
(Kn, ι

X
Kn

)n∈N, κ
)

for (X,=X, x0, d), if for every n ∈ N we have that [dx0 ≤ n] ⊆ Kκ(n) .

If (R,=R) is equipped with the standard Euclidean metric dε , then (R,=R, 0, dε) is
locally compact with modulus of local compactness

(
([d0≤ n])n∈N, idN

)
.
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A Predicative Approach to the Constructive Integration Theory of LCMS 11

Proposition 3.4 Let (X,=X, x0, d) be a locally compact metric space with modulus of
local compactness

(
(Kn, ιn)n∈N, κ

)
. If x1 ∈ X , then there is some κ′ : N → N such

that
(
(Kn, ιn)n∈N, κ

′) is a modulus of local compactness for (X,=X, x1, d).

Proof Let the function κ′ : N → N be defined by κ′(n) := κ(Kn+d(x0,x1)), where
Kn+d(x0,x1) denotes the canonical bound5 of n + d (x0, x1). Now let n ∈ N. The basic
idea is that the ball [dx1 ≤ n] is included in the ball [dx0 ≤ n + d (x0, x1)] which itself is
included in the compact set Kκ(Kn+d(x0,x1)) . To prove this, let x ∈ [dx1 ≤ n], and note
that d (x, x0) ≤ d (x, x1)+ d (x1, x0) ≤ n+ d (x0, x1) < Kn+d(x0,x1) ie [dx1 ≤ n] ⊆ Kκ′(n) .
Hence,

(
(Kn, ιn)n∈N, κ

′) is a modulus of local compactness for (X,=X, x1, d).

Definition 3.5 Let (X,=X, x0, d) be a locally compact metric space with modulus
of local compactness

(
(Kn, ι

X
Kn

)n∈N, k
)

and (Y,=Y , dY ) a metric space. A function
f : X → Y is continuous with modulus of continuity (ωn)n∈N , where ωn : R+ → R+ ,
for every n ∈ N, if, for every n ∈ N, the restriction function fn := f ↾ Kn is uniformly
continuous with modulus of uniform continuity ωn . Let C(X,Y) be the set of all
continuous functions from X to Y , and let C(X) := C(X,R).

The basic theory of locally compact metric spaces in [3, Section 4.6] can be reformulated
in a computationally more informative way through the use of moduli of local com-
pactness (see [12, Section 2.6]). Eg if (X,=X, x0, d) is a locally compact metric space
with modulus of local compactness ((Kn, ιn)n∈N, κ̃) and (A, ιX

A) is a closed and located
subset of X (hence it is inhabited by some element a0 ), then A is locally compact with
a modulus of local compactness ((K′

n, ι
′
n)n∈N, κ

′), which can explicitly be defined from
the constructions within the proof and the original modulus of local compactness for X .

Next we compare our definition of local compactness to Bishop and Chan local
compactness. In the end, we discuss the relation of our definition to Mandelkern local
compactness. The prima facie impredicativity of Bishop local compactness is easy to
amend. Definition 3.3 as well as the definition of local compactness by Chan [7] are
both equivalent predicative reformulations. While Chan first defines local compactness
according to [3], later he introduces an equivalent definition using countable dense
subsets. The specific countably dense subsets that are used are binary approximations.

Definition 3.6 (Binary approximation, Chan [7]) Let (X,=X, x0, d) be an inhabited
metric space. If A0 := {x0} and (An)n∈N is an ascending sequence of metrically

5For a real number x := (xn)n∈N its canonical bound Kx is the least positive natural number,
such that |x1| + 2 < Kx . In this case, for all y := (yn)n∈N ∈ R with y =R x , we have that
|yn| < Kx , for every n ∈ N+ .
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12 F L Grubmüller and I Petrakis

discrete and finite subsets of X , then (An)n∈N is called a binary approximation of X
relative to x0 , if for all n ∈ N, n ≥ 1 the following hold:

[dx0 ≤ 2n] ⊆
⋃

x∈An

[dx≤ 2−n](1) ⋃
x∈An

[dx≤ 2−n+1] ⊆ [dx0 ≤ 2n+1](2)

The existence of binary approximations defines Chan local compactness.

Definition 3.7 (Chan local compactness [7]) Let (X,=X, x0, d) be an inhabited,
complete metric space. X is Chan locally compact, if there exists a binary approximation
(An)n∈N . The sequence (∥An∥)n∈N , where ∥·∥ is the finite cardinality operator, is
called a modulus of Chan local compactness for X .

Next we show in detail that a locally compact space with a modulus of local compactness
is Bishop locally compact. The converse requires the axiom of countable choice6 (CC),
which is generally accepted in BISH (see Bishop and Richman [6, page 12]), but not
in Richman’s subsystem RICH [26, 27] of BISH, which is exactly BISH without CC.
As explained in the subsequent proof some form of finite choice is also required in
the proof of the equivalence between our notion of local compactness and Chan local
compactness.

Proposition 3.8 Let (X,=X, x0, d) be an inhabited metric space. The following are
equivalent over BISH.

(i) X is locally compact with some modulus of local compactness
(
(Kn, ι

X
Kn

)n∈N, κ
)

.
(ii) X is Bishop locally compact.

(iii) X is Chan locally compact.

Definition 3.3

Bishop–LC Chan–LC

6The use of CC in order to get our notion of local compactness from Bishop–LC rests also on
the treatment of the powerset as a set, as one needs to use the separation scheme over it to define
the ‘set’ of compact subsets of a metric space. This is avoided in the proof that a Bishop–LC
space is a Chan–LC space, as this proof uses CC in the N−N form.
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A Predicative Approach to the Constructive Integration Theory of LCMS 13

Proof (i) ⇒ (ii): Let (A, x1, ι
X
A) be an inhabited set with a modulus of boundedness

M ∈ N. If n := Kd(x0,ι
X
A(x1))+M , the canonical bound of d

(
x0, ι

X
A(x1)

)
+ M , then

(A, ιX
A) ⊆ [dx0 ≤ n], as for all x ∈ A we have that d

(
x0, ι

X
A(x)

)
≤ d

(
x0, ι

X
A(x1)

)
+

d
(
ιX
A(x1), ιX

A(x)
)
≤ d

(
x0, ι

X
A(x1)

)
+ M ≤ n. By definition of a modulus of local

compactness we get (A, ιX
A) ⊆ [dx0 ≤ n] ⊆ (Kκ(n), ικ(n)).

(ii) ⇒ (iii): In Chan [7, Proposition 3.2.3] it is shown (with the use of countable choice)
that every Bishop locally compact space has a binary approximation.

(iii) ⇒ (i): Let (An)n∈N be a binary approximation of X and (∥An∥)n∈N a modulus
of Chan local compactness. For every n,m ∈ N with n ≤ m we have that Am is
a 2−m –approximation of [dx0 ≤ 2n], therefore [dx0 ≤ 2n] is compact. If we define
Kn := [dx0 ≤ 2n], for every n ∈ N, we can show7 that

(
(Kn, ιn)n∈N, idN

)
is a modulus

of local compactness for X .

Next we recall Mandelkern’s definition of local compactness for metric spaces.

Definition 3.9 (Mandelkern local compactness [14]) A metric space X is Mandelkern
locally compact, if there is an sequence (Hk)k∈N of compact subsets of X , such that
X =

⋃
k∈N Hk and for every k ∈ N we have that Hk+1 is a uniform neighbourhood of

Hk , ie there is some rn > 0, such that
⋃

x∈Hn
[dx< rn] ⊆ Hn+1 .

While Definition 3.3 employs a similar notion of a chain of compact sets that tend
towards the whole space, it does not enforce that the chain is in fact (strictly) ascending
element-wise. It is therefore not clear how to force the modulus of local compactness to
be strictly ascending, each being a uniform neighbourhood of the previous subspace.
Conversely, it is not clear how fast the chain of uniform neighbourhhoods is tending
towards the whole space. By introducing a modulus of convergence, or similarly
requiring Hn+1 to include a

( 1
n

)
–neighbourhood of Hn , it is possible to pick an

appropriate m, such that [dx0 ≤ n] ⊆ Hm .

4 Integration Theory of Locally Compact Metric Spaces

In this section we reconstruct predicatively the basic integration theory of locally
compact metric spaces relying on the notion of an integration space in BCMT. We use

7Getting the 2−m approximation requires (finite) choice in order to get a point of the
approximation that is at most 2−m away, since there might be multiple points of the approximation
in that range.
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14 F L Grubmüller and I Petrakis

our previous definitions as well as an amendment to the definition of an integration
space as presented in Petrakis [19], in order to remove the impredicativity of BCMT
that was discussed in the Introduction.

Continuous functions with compact support play an important role in the integration
theory of locally compact metric spaces. First we present their set Csupp(X) and the
corresponding set of partial functions Supp(X) over Csupp(X), in the sense of Section 2.

Definition 4.1 Let (X,=X, d) be a metric space, (S, ιX
S ) a located subset of X and

f : X → R. S is called a support of f , if for all x ∈ X such that d (x, S) > 0 we have
that f (x) = 0. Let (X,=X, x0, d) be a locally compact metric space with modulus of
local compactness

(
(Kn, ι

X
Kn

)n∈N, k
)

, f ∈ C(X), and n ∈ N. If there is n ∈ N, such
that Kn is a support of f , then f is called a function with compact support in X with
modulus of compact support n. Let Csupp(X) be the set of continuous functions with
compact support in X . The elements of Csupp(X) are also called test functions.

Next proposition is the adaptation of [3, Proposition 6.15, page 119] in our framework,
and its proof is omitted (the details can be found in Grubmüller [12, page 36]).

Proposition 4.2 Let (X,=X, x0, d) be a locally compact metric space with modulus of
local compactness

(
(Kn, ι

X
Kn

)n∈N, k
)

. If (K, ι) is a compact subset of X and ε ∈ R+ ,
there is N ∈ N and for every j ∈ N<N there is a non-negative test function fj ∈ Csupp(X)
and a compact subset (Kj, ιj) with diam(Kj) < ε that is a support for fj , such that∑N

k=0 fk ≤ 1 and
∑N

k=0 fk(ιk(x)) = 1, for all x ∈ K .

Definition 4.3 Let (X,=X, x0, d) be a locally compact metric space with modulus
of local compactness

(
(Kn, ι

X
Kn

)n∈N, k
)

. Following Proposition 2.1, let Supp(X) :=
(λ0,E Csupp(X), λ1,PR) be the following Csupp(X)–set of partial functions:

• λ0 : Csupp(X)⇝ V0 is the constant non-dependent assignment routine λ0( f ) :=
X , for all f ∈ Csupp(X).

• E Csupp(X) :
c

i∈I F (X,X) is the constant dependent operation E Csupp(X)( f ) := idX ,
for all f ∈ Csupp(X).

• λ1 :
c

( f ,g)∈D(Csupp(X)) F(X,X) is the constant dependent operation λ1( f , g) :=
idX , for all f , g ∈ Csupp(X) with f =Csupp(X) g.

• PR :
c

f∈Csupp(X) is the dependent operation PR( f ) := f , for every f ∈
Csupp(X).

Next we define the notion of an integration space using the definition from [19] with
minor changes regarding the use of moduli. Our main example of integration space will
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A Predicative Approach to the Constructive Integration Theory of LCMS 15

be a locally compact metric space with a modulus of local compactness, an indexed set
of partial functions, and an integral.

Due to the nature of sets of partial functions, it is more convenient to define the integral
on the index set rather than the actual set of partial functions. For this reason, in [19, 25]
the resulting structure is called a ‘pre-integration space’ rather than an ‘integration
space’. Note however, that this definition can easily be pushed back onto the set of partial
functions itself, albeit requiring rather cumbersome notation. To simplify notation
further, we also define some of the most important arithmetic operations directly on
the index set in the obvious way. After the definitions of what is called here a metric
integration space and a positive measure on it, we prove some intermediate statements
and our main result, Theorem 4.10.

Definition 4.4 Let (X,=X) be a set. We define some arithmetic operations on F(X). If
f̃ := (Af , ιf , f ) and g̃ := (Ag, ιg, f ) are partial functions from X to R, let

f̃ □ g̃ := (Af ∩ Ag, ι
X
Af ∩Ag

, f □ g)

where □ is one of +,−, · and ∧. We also define the absolute value
∣∣ f̃ ∣∣ := (Af , ιf , | f |),

as well as the scalar multiplication with some α ∈ R by α · f̃ := (Af , ιf , α · f ).

If (I,=I) is a set, let (λ0,E , λ1,P ) be an I–set of partial functions from X to R. We
define the same arithmetic operations on the index set I . For i, j, k ∈ I such that

(λ0(i),Ei,Pi)□ (λ0(j),Ej,Pj) =F(X) (λ0(k),Ek,Pk)

let i □ j := k , where □ is one of +,−, · and ∧. Additionally, if k is such that
| (λ0(i),Ei,Pi) | =F(X) (λ0(k),Ek,Pk), then we define | i | := k . If α ∈ R and k is such
that α · (λ0(i),Ei,Pi) =F(X) (λ0(k),Ek,Pk), we define α · i := k .

Definition 4.5 (Metric integration space with a modulus of continuity and unity) Let
(X,=X, x0, d) be a locally compact metric space with a modulus of local compactness,
(I,=I) a set, L := (λ0,E , λ1,P ) an I–set of partial functions from X to R, and∫

: I → R a function. Consider additionally a function c : I ×F (N, I) → X and some
p ∈ I . We call the structure (X, I,L,

∫
) a metric integration space with a modulus of

continuity and unity (c, p), if the following properties are satisfied:

(a) For all i, j ∈ I and α, β ∈ R, there exists k ∈ I such that α · i + β · j =I k and∫
k = α

∫
i + β

∫
j. Also, there exists l ∈ I , such that | i | =I l , as well as m ∈ I ,

such that f ∧ 1 =I m, where 1 denotes also the constant function 1.
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16 F L Grubmüller and I Petrakis

(b) If i ∈ I and (in)n∈N ⊆ I , then we have the following: if for all n ∈ N and all
x ∈ λ0(in), where Pin(x) is non-negative and

∑
n∈N

∫
in converges, as well as∑

n∈N
∫

in <
∫

i, then
∑

n∈N Pin

(
c(i, (in)n∈N)

)
converges and∑

n∈N
Pin

(
c(i, (in)n∈N)

)
< Pi

(
c(i, (in)n∈N)

)
.

(c)
∫

p = 1.
(d) For every i ∈ I and m ∈ N there are j, k ∈ I , such that i ∧ m =I j, as well

as | i | ∧ m−1 =I k , where m and m−1 denote the respective constant functions.
Moreover, we have that limn→∞

∫
(i ∧ n) =

∫
i, and limn→∞

∫
(| i | ∧ n−1) = 0.

Remark For the relation of Definition 4.5 to the notion of an integration space in [3,
page 217], and its use in [3, Theorem 1.10, page 220], we notice the following. First,
we explicitly use the partial functions that correspond to the total functions used in [3],
in order to be compatible to the definition of an integration space. Second, we explicitly
use a modulus, both for the point of X in the original continuity condition8 (1.1.2) in [3,
page 217], as well as for the function with integral 1 in the corresponding condition
(1.1.3).

Definition 4.6 Let (X,=X, x0, d) be a locally compact metric space with a modulus
of local compactness, µ : Csupp(X) → R a linear map and u ∈ Csupp(X). We call µ
a positive measure with modulus of unity u, if µ(u) = 1, and for all non-negative
functions f ∈ Csupp(X) we have that µ( f ) ≥ 0. We also write

∫
fdµ := µ( f ).

The above definition is equivalent to the definition of [3], where instead the existence
of some f ∈ Csupp(X), such that µ( f ) > 0 is required. To arrive at Definition 4.6, we
merely need to define u := f

µ( f ) .

Lemma 4.7 Let (X,=X, x0, d) be a locally compact metric space with modulus of local
compactness ((Kn, ιKn

)n∈N, κ), µ a positive measure on X , f ∈ Csupp(X) with modulus
of compact support n and ( fn)n∈N ⊆ Csupp(X), where fn ≥ 0, for every n ∈ N, such
that

∑
n∈N

∫
fn dµ converges and∑

n∈N

∫
fn dµ <

∫
f dµ.

If ε ∈ R+ , there is a non-negative g ∈ Csupp(X) and a compact K ⊆ X with diam(K) < ε

that is a support for g,
∑

n∈N
∫

fng dµ converges, and
∑

n∈N
∫

fng dµ <
∫

fg dµ.
8This condition is the constructive version of Daniell’s continuity condition in the definition

of a Daniell space. The passage from the classical theory of Daniell spaces to the constructive
theory of integration spaces is analysed in Petrakis [23].

Journal of Logic & Analysis 17:FDS4 (2025)



A Predicative Approach to the Constructive Integration Theory of LCMS 17

Proof The proof is based on Proposition 4.2, and it is omitted, as it is similar to the
proof of [3, Lemma 1.8, page 219].

Lemma 4.8 Let (X,=X, x0, d) be a locally compact metric space with modulus of local
compactness ((Kn, ιKn

)n∈N, κ), f ∈ Csupp(X) a test function with modulus of compact
support n ∈ N. If

∫
f dµ > 0, then there is x ∈ K such that f (x) > 0.

Proof Let M := sup {| f (x) | ; x ∈ X}. By the definition of supremum it suffices to
show that M > 0. For this, we first define the auxiliary function g for every x ∈ X by
g(x) := max(1 − d (x,Kn) , 0).

We show9 that h := M · g − f ≥ 0. First, we observe that h is uniformly continuous.
By [3, Proposition 6.12, page 117], a function that vanishes at infinity on X (see [3,
Definition 6.10, page 116]) is uniformly continuous, and every function with compact
support also vanishes at infinity. Moreover, g is uniformly continuous, as the maximum
of two uniformly continuous functions, because the mapping x 7→ d(x,Kn) is uniformly
continuous; actually, it suffices for Kn to be a located subset (see [3, page 96]). Let
D := Kn ∪−Kn , where −Kn := {x ∈ X; d(x,Kn) > 0} is the metric complement of Kn .
It is immediate to show that D is a dense subset of X (see also [3, page 88]). Next we
show that the restriction of h to D is non-negative.

If x ∈ Kn , then d(x,Kn) = 0 and h(x) = M − f (x) ≥ 0. If x ∈ −Kn , then d(x,Kn) > 0
and f (x) = 0, hence h(x) = Mg(x) ≥ 0. As the uniformly continuous h is non-negative
on the dense subset D of X , it is also non-negative on the whole space X . To show
this, we suppose that there is some x0 ∈ X , such that h(x0) < 0, and by the uniform
continuity of h it is immediate to get a contradiction. By [3, Lemma 2.18, page 26], we
get h(x0) ≥ 0, and since x0 is arbitrary, h ≥ 0.

Due to the monotonicity of the integral, 0 ≤
∫

h dµ = M
∫

g dµ −
∫

f dµ, which is
equivalent to

∫
f dµ ≤ M

∫
g dµ. Since

∫
f dµ > 0, by assumption, and

∫
g dµ ≥ 0,

it follows that M > 0.

Lemma 4.9 Let (X,=X, x0, d) be a locally compact metric space with modulus of
local compactness ((Kn, ιKn

)n∈N, κ), f ∈ Csupp(X) and ( fn)n∈N a sequence in Csupp(X),
such that fn ≥ 0, as well as

∑
n∈N

∫
fn dµ exists, and∑

n∈N

∫
fn dµ <

∫
f dµ.

Then there is x ∈ X , such that for all m ∈ N we have that
∑m

n=1 fn(x) ≤ f (x).
9The proof of this fact is omitted in the corresponding proof of [3, Lemma 1.9, page 219].

As this proof is not trivial, we include it here.
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18 F L Grubmüller and I Petrakis

Proof By iterated application of Lemma 4.7 we define (gn)n∈N ⊆ Csupp(X) recursively:

(a) g0 := f
(b) Let m ∈ N and assume gk ∈ Csupp(X) has already been defined for all k ∈

N, k < m. Then by Lemma 4.7 we can construct gm ∈ Csupp(X), such that gm

has a compact support Km , where diam(Km) < m−1 and:∑
n∈N

∫
fng1 · · · gm dµ <

∫
fg1 · · · gm dµ

Cutting off the outer series, for every m ∈ N we have that
m∑

n=1

∫
fng1 · · · gm <

∫
fg1 · · · gm dµ

and applying Lemma 4.8 on fg1 · · · gm −
∑m

n=1 fng1 · · · gm yields xm ∈ X with:[
0 ≤

] m∑
n=1

( fng1 · · · gm)(xm) < (fg1 · · · gm)(xm)

Because of (fg1 · · · gm)(xm) > 0 for every m ∈ N, it holds that for all k ∈ N, k ≤ m
we have gk(xm) > 0, and therefore by induction it follows that xm ∈ Kk . Since
diam(Kk) < k−1 for all k ∈ N this means that specifically d (xm, xk) < k−1 , ie (xm)m

is a Cauchy sequence in X . Due to the completeness of X , (xm)m converges to some
x ∈ X .

Due to the fact that for all m ∈ N we have that gm(xm) > 0, it follows that
∑m

n=1 fn(xm) <
f (xm), ie

∑m
n=1 fn(x) ≤ f (x).

The next theorem is the main result in the integration theory of locally compact metric
spaces that is reconstructed here within our predicative and proof-relevant framework.

Theorem 4.10 Let (X,=X, x0, d) be a locally compact metric space with modulus
of local compactness ((Kn, ιKn

)n∈N, κ), f ∈ Csupp(X), and µ a positive measure
on X with modulus of unity u. There is c : I × F(N,Csupp(X)) → X , such that
(X,Csupp(X),Supp(X), µ) is a metric integration space with modulus of continuity and
unity (c, u).

Proof First, we note that all objects fulfill the respective required signatures. We
therefore need to show points (a)–(d) of Definition 4.5.

(a) Let α, β ∈ R and f , g ∈ Csupp(X) with moduli of compact support nf , ng ∈ N
respectively. Then max(nf , ng) is a modulus of compact support for the function
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αf + βg ie αf + βg ∈ Csupp(X). By definition of a positive measure, µ is linear ie∫
αf + βg dµ = α

∫
f dµ+ β

∫
g dµ. Additionally, nf is also the modulus of compact

support for the functions | f | as well as f ∧ 1 ie | f |, f ∧ 1 ∈ Csupp(X).

(c) By definition we have that
∫

u dµ = 1.

(d) Let f ∈ Csupp(X) with modulus of compact support n. For every r ∈ R+ we
have that n is also a modulus of compact support for f ∧ r . Restricting f to the
compact set Kn allows us to use [3, Corollary 4.3, page 94], according to which
sup f ↾ Kn := sup { f (ιn(x)); x ∈ Kn} exists. Since, if f (x) > 0 for some x ∈ X , then
k ∈ Kn such that x = ιKn

, we have that sup { f (x); x ∈ X} = sup f ↾ Kn . Now consider
k := Ksup{ f (x); x∈X } ie the canonical bound of sup { f (x); x ∈ X}. Then we have for all
m ∈ N with m ≥ k that f ∧ m =F (X) f ie the sequence (

∫
f ∧ m dµ)m∈N becomes

constant and therefore limm→∞
∫

f ∧ m dµ =
∫

f dµ.

For the other part, let m ∈ N and define a function g : X → R by setting g(x) := max(1−
d (x,Kn) , 0) for x ∈ X . Assume that there is x ∈ X such that | f (x) | ∧ m−1 > m−1g(x).
By observing that in any case we have that | f (x) | ∧ m−1 ≤ m−1 , we arrive at the
following inequality chain: m−1 ≥ | f (x) | ∧ m−1 > m−1(1 − d (x,Kn)). By elementary
transformations it is equivalent to 0 ≤ m(| f (x) |∧m−1)−1 < d (x,Kn) , and specifically
d (x,Kn) > 0. Due to the definition of n, it follows that f (x) = 0 and therefore
| f (x) | ∧m−1 = 0, which contradicts our assumption. It follows that | f | ∧m−1 ≤ m−1g.
Due to µ being a positive measure, it follows that 0 ≤

∫
| f | ∧ m−1 dµ ≤ m−1

∫
g dµ,

and particularly 0 ≤ limm→∞
∫
| f |∧m−1 dµ ≤ limm→∞ m−1

∫
g dµ = 0 ie the second

part of (d).

(b) Let f ∈ Csupp(X) and ( fn)n∈N a sequence in Csupp(X) such that fn ≥ 0 as well as∑
n∈N

∫
fn dµ exists and

∑
n∈N

∫
fn dµ <

∫
f dµ. Additionally, consider the previously

defined function g given by g(x) := max(1 − d (x,Kn) , 0) and define

α :=
1
2

∫
f dµ−

∑
n∈N

∫
fn dµ

2 +
∫

g dµ∑
n∈N

∫
fn dµ+ α ·

(
2 +

∫
g dµ

)
<

∫
f dµ.such that

Then let (N(n))n∈N be a strictly increasing sequence of natural numbers, such that∑N(n+1)
k=N(n)

∫
fn dµ < 2−2nα, which we can find, as the series converges. Finally, let the

sequence ( f ′n)n∈N , defined by:

f ′n :=


αg n = 0

fn′ n = 2n′ for some n′ ∈ N+

2n′ ∑N(n′+1)
k=N(n′) fk n = 2n′ + 1 for some n′ ∈ N+
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ie ( f ′n)n∈N = (αg, f0, 20 ∑N(1)
k=N(0) fk, f1, 21 ∑N(2)

k=N(1) fk, . . . ).

Then we have that:∑
n∈N

∫
f ′n dµ =

∫
αg dµ+

∑
n∈N

∫
fn dµ+

∑
n∈N

∫
2n

N(n+1)∑
k=N(n)

fk dµ

≤ α

∫
g dµ+

∑
n∈N

∫
fn dµ+

∑
n∈N

2n
∞∑

k=N(n)

∫
fk dµ

< α

∫
g dµ+

∑
n∈N

fn dµ+
∑
n∈N

2n · 2−2nα

= α

∫
g dµ+

∑
n∈N

∫
fn dµ+ α

∑
n∈N

2−n

= α

∫
g dµ+

∑
n∈N

∫
fn dµ+ 2α

=
∑
n∈N

∫
fn dµ+ α ·

(
2 +

∫
g dµ

)
<

∫
f dµ

Now we can apply Lemma 4.9 and construct a point x ∈ K , such that for every m ∈ N

αg(x) +
m∑

n=0

fn(x) +
m∑

n=0

2n
N(n+1)∑
k=N(n)

fk(x) ≤ f (x)

ie in particular:

αg(x) +
m∑

n=0

fn(x) + 2m
N(m+1)∑
k=N(m)

fk(x) ≤ f (x)

It follows that
N(m+1)∑
k=N(m)

fk(x) ≤ 2−mf (x)

ie
∑

n∈N fn(x) converges and that αg(x) +
∑

n∈N fn(x) ≤ f (x). Since x ∈ K , αg(x) =
α > 0, hence

∑
n∈N fn(x) < f (x), as required. Thus, we define c( f , ( fn)n) := x .
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5 Concluding comments

Here we presented a predicative and proof-relevant formulation of the constructive
integration theory of locally compact metric spaces within BCMT. Our work is a chapter
in predicative BCMT (PBCMT), which is initiated in Petrakis [19], Zeuner [30] as
well as Petrakis and Zeuner [25]. First, we introduced locally compact metric spaces
with a modulus of local compactness and discussed their relation to Bishop–LC spaces,
Chan–LC spaces and Mandelkern–LC spaces. The addition of moduli that witness
certain properties of spaces or functions to the constructive theory of metric spaces
facilitates the formalisation of this theory eg in type theory, and the extraction of its
computational content. Moreover, it provides a choice-free formulation of concepts
and results that makes possible the development of the corresponding theory within the
stronger subsystem RICH of BISH.

As predicativity should be, in our view, a property of a constructive mathematical
theory, it is necessary to have a predicative reconstruction of BCMT, the most developed
constructive theory of measure and integration. The avoidance of quantification over
proper classes was achieved through the use of the theory of set-indexed families of
sets, subsets and partial functions. These concepts, which were only mentioned by
Bishop at a very basic, intuitive level, are defined explicitly and elaborated in Petrakis
[19, 20, 21], providing a fruitful mathematical extension of Bishop’s original theory
of sets. Although most of the results in Section 4 have their analogue in Chapter 6 of
Bishop and Bridges [3], their development here is motivated by the need of a predicative
formulation of BCMT and a uniform, proof-relevant presentation of the constructive
theory of metric spaces based on the use of moduli.

It is expected that the further study of the (integration) theory of locally compact metric
spaces with a modulus of local compactness will provide examples of avoidance of
countable choice, as in the cases of the theory of Lp –spaces in Petrakis and Zeuner [25].
We hope to present such examples in a subsequent work. As already mentioned, the
question whether an integration theory of Mandelkern–LC spaces is possible is still open.
As Mandelkern–LC is more general than Bishop–LC, and, because of Proposition 3.8,
it is also more general than local compactness of Definition 3.3, the development of an
integration theory of Mandelkern–LC spaces is an important future task. Consequently,
the question whether BCMT, or a variation of it, could serve as a generalisation of the
integration theory of Mandelkern–LC spaces is also open.

Journal of Logic & Analysis 17:FDS4 (2025)



22 F L Grubmüller and I Petrakis

References

[1] P Aczel, M Rathjen, Notes On Constructive Set Theory (2001) Institut Mittag-Leffler
Preprint Series, Report 40, 2000/2001

[2] E Bishop, Foundations of Constructive Analysis, McGraw-Hill, New York, NY, USA
(1967)

[3] E Bishop, D S Bridges, Constructive Analysis, Grundlehren der mathematischen
Wissenschaften 279, Springer-Verlag (1985); http://doi.org/10.1007/978-3-642-61667-9

[4] E Bishop, H Cheng, Constructive measure theory, volume 116, American Mathematical
Soc. (1972)

[5] N Bourbaki, Elements of Mathematics, Integration I, Springer Berlin Heidelberg (2004);
http://doi.org/10.1007/978-3-642-59312-3

[6] D Bridges, F Richman, Varieties of Constructive Mathematics, Lecture note series -
London Mathematical Society, Cambridge University Press, Cambridge (1987)

[7] Y-K Chan, Foundations of constructive probability theory, Encyclopedia of mathematics
and its applications, Cambridge University Press, Cambridge, UK; New York, NY
(2021); http://doi.org/10.1017/9781108884013

[8] T Coquand, E Palmgren, Metric Boolean algebras and constructive measure the-
ory, Archive for Mathematical Logic 41 (2002) 687–704; http://doi.org/10.1007/
s001530100123

[9] T Coquand, B Spitters, Integrals and valuations, Journal of Logic and Analysis 1
(2009); http://doi.org/10.4115/jla.2009.1.3

[10] P J Daniell, A General Form of Integral, Annals of Mathematics 19 (1918) 279–294;
http://doi.org/10.2307/1967495

[11] S Feferman, Constructive Theories of Functions and Classes, from: “Logic Colloquium
’78”, Studies in Logic and the Foundations of Mathematics 97, Elsevier (1979) 159–224;
http://doi.org/10.1016/S0049-237X(08)71625-2

[12] F L Grubmüller, Towards a constructive and predicative integration theory of locally
compact metric spaces, Bachelor’s thesis, Ludwig-Maximilians-Universität München
(2022)

[13] P R Halmos, Measure Theory, volume 18 of Graduate Texts in Mathematics, Springer
New York (1950); http://doi.org/10.1007/978-1-4684-9440-2

[14] M Mandelkern, Metrization of the One-Point Compactification, Proceedings of the
American Mathematical Society 107 (1989) 1111–1115; http://doi.org/10.1090/S0002-
9939-1989-0991703-4

[15] D Misselbeck-Wessel, I Petrakis, Complemented subsets and Boolean-valued, partial
functions, Computability (2024) 1–33; http://doi.org/10.3233/COM-230462

Journal of Logic & Analysis 17:FDS4 (2025)

http://doi.org/10.1007/978-3-642-61667-9
http://doi.org/10.1007/978-3-642-59312-3
http://doi.org/10.1017/9781108884013
http://doi.org/10.1007/s001530100123
http://doi.org/10.1007/s001530100123
http://doi.org/10.4115/jla.2009.1.3
http://doi.org/10.2307/1967495
http://doi.org/10.1016/S0049-237X(08)71625-2
http://doi.org/10.1007/978-1-4684-9440-2
http://doi.org/10.1090/S0002-9939-1989-0991703-4
http://doi.org/10.1090/S0002-9939-1989-0991703-4
http://doi.org/10.3233/COM-230462


A Predicative Approach to the Constructive Integration Theory of LCMS 23

[16] J Myhill, Constructive set theory, The Journal of Symbolic Logic 40 (1975) 347–382;
http://doi.org/10.2307/2272159

[17] E Palmgren, Bishop’s set theory, Slides of the TYPES Summer School (2005)

[18] E Palmgren, Bishop-style constructive mathematics in type theory – a tutorial (2013)

[19] I Petrakis, Families of Sets in Bishop Set Theory, Habilitation thesis, LMU München
(2020); arXiv:2109.04183

[20] I Petrakis, Direct spectra of Bishop spaces and their limits, Logical Methods in Computer
Science Volume 17, Issue 2 (2021); http://doi.org/10.23638/LMCS-17(2:4)2021

[21] I Petrakis, Proof-relevance in Bishop-style constructive mathematics, Mathe-
matical Structures in Computer Science 32 (2022) 1–43; http://doi.org/10.1017/
S0960129522000159

[22] I Petrakis, Sets Completely Separated by Functions in Bishop Set Theory, Notre Dame
Journal of Formal Logic 65 (2024) 151 – 180; http://doi.org/10.1215/00294527-2024-
0010

[23] I Petrakis, From Daniell spaces to the integration spaces of Bishop and Cheng (2024,
in preparation)

[24] I Petrakis, D Wessel, Algebras of Complemented Subsets, from: “Revolutions and
Revelations in Computability”, (U Berger, J N Y Franklin, F Manea, A Pauly, editors),
Springer International Publishing, ham (2022) 246–258; http://doi.org/10.1007/978-3-
031-08740-0 21

[25] I Petrakis, M Zeuner, Pre-measure spaces and pre-integration spaces in predicative
Bishop-Cheng measure theory, Logical Methods in Computer Science (2024, in
publication); http://doi.org/10.48550/arXiv.2207.08684

[26] F Richman, Constructive Mathematics without Choice, from: “Reuniting the Antipodes
– Constructive and Nonstandard Views of the Continuum”, Springer Netherlands,
Dordrecht (2001) 199–205; http://doi.org/10.1007/978-94-015-9757-9 17

[27] P M Schuster, Countable Choice as a Questionable Uniformity Principle, Philosophia
Mathematica 12 (2004) 106–134; http://doi.org/10.1093/philmat/12.2.106

[28] B Spitters, Constructive algebraic integration theory, Annals of Pure and Applied
Logic 137 (2006) 380–390; http://doi.org/10.1016/j.apal.2005.05.031

[29] The Univalent Foundations Program, Homotopy Type Theory: Univalent Foundations
of Mathematics, Institute for Advanced Study (2013)

[30] M Zeuner, Families of Sets in Constructive Measure Theory, Master’s thesis, Ludwig-
Maximilians-Universität München (2019); arXiv:2207.04000

Stockholms universitet, Department of Mathematics, Albanovägen 28, 106 91 Stockholm,
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