
Journal of Logic & Analysis 17:2 (2025) 1–24
ISSN 1759-9008

1

On the complexity of spectra of bounded analytic functions
TIMOTHY H MCNICHOLL

BRIAN R ZILLI

Abstract: The spectrum of a bounded analytic function on the unit disk D is the
set of the accumulation points of its zeros. We investigate the computability-
theoretic complexity of spectra of computable bounded analytic functions. While
the spectrum of a bounded analytic function on D is Σ0

3 –closed, we show the
converse fails. At the same time, we construct a bounded analytic function on D
whose spectrum is Σ0

3 –complete. We also show that there exists a Σ0
2 –closed set

of unimodular points which is not the spectrum of any bounded analytic function
on D , while every Π0

2 –closed set of unimodular points is. We then turn to uniform
Frostman functions. We prove an effective version of a theorem of Matheson.
Namely, every computably closed and nowhere dense set of unimodular points is
the spectrum of a computable uniform Frostman function.
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1 Introduction

Let D denote the unit disk; that is D = {z ∈ C : |z| < 1}. Fix a nonconstant analytic
function f : D→ C. Let Z(f ) denote the multiset consisting of the zeros of f (each
zero repeated according to its multiplicity), and let Σf =

∑
z∈Z(f ) 1−|z|. By the Identity

Theorem, Z(f ) does not have an accumulation point in D. That is, all accumulation
points of Z(f ) belong to T = {z ∈ C : |z| = 1}. The set of all accumulation points of
Z(f ) is known as the spectrum of f and we denote it spec(f ).

H∞(D) denotes the set of bounded analytic functions on D. By a well-known theorem
(see eg Rudin [13, 15.22]), when f ∈ H∞(D), Σf <∞. Furthermore, if A ⊆ D is a
multiset so that

∑
a∈A 1− |a| <∞, then there exists f ∈ H∞(D) so that Z(f ) = A.

Matheson and McNicholl [9] and McNicholl [10] proved computability-theoretic
analogs of these results. Namely, if f ∈ H∞(D) is computable, then Z(f ) and Σf are
computable. Conversely, f ∈ H∞(D) is computable if Z(f ) and Σf are computable.
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2 T H McNicholl and B R Zilli

Matheson and McNicholl did not consider the complexity of the spectra of bounded
analytic functions. It is well-known that each closed subset of T is the spectrum of
a bounded analytic function. Here, we consider the effective content of this simple
result; namely, we consider the complexity of spec(f ). Our first result (Proposition 4.1)
is that when f ∈ H∞(D) is computable, spec(f ) is a Σ0

3 –closed set. That is, there is
a Σ0

3 formula that defines the set of rational open arcs that intersect spec(f ). On the
one hand, we prove this result is optimal by constructing a computable f ∈ H∞(D) for
which this set of rational open arcs is Σ0

3 –complete. However, we also show there is a
Σ0

2 –closed subset of T that is not the spectrum of any computable function in H∞(D).
We then show that every Π0

2 –closed subset of T is the spectrum of such a function.

For readers who find our construction of these complex analytically well-behaved objects
which are nonetheless incomputable as intriguing as we do, we also recommend the work
of Braverman and Yampolsky [3] wherein they construct locally connected Julia sets
which are not computable. Similarly, for those interested in constructions of complex
analytical objects with arbitrarily high time complexity, Dudko and Yampolsky [6]
provide an example in their construction of Cremer Julia sets, as do Rojas and Yampolsky
[12] in their construction of real quadratic Julia sets. For an accessible exposition of
these results and others, Rojas and Yampolsky [11] provide a comprehensive survey of
computable geometric complex analysis and dynamics.

Following these constructions, we turn our attention to the investigation of the uniform
Frostman condition and its effect on the spectrum of a computable function in H∞(D).
This condition is defined as follows. When f ∈ H∞(D), let

σf = sup
|ζ|=1

∑
z∈Z(f )

1− |z|
|ζ − z|

.

The inequality σf <∞ is called the uniform Frostman condition. Matheson [8] showed
that if f ∈ H∞(D) satisfies the uniform Frostman condition (ie is uniform Frostman),
then spec(f ) is nowhere dense. Furthermore, he showed that every closed nowhere
dense subset of T is the spectrum of a uniform Frostman function.

We prove two theorems on the spectra of computable uniform Frostman functions. We
say that a unimodular point ζ is accessible if there is a computable monotone sequence
(θn)n∈N of rational numbers so that ζ = limn eiθn . Our first result on computable
uniform Frostman functions is the following.

Theorem 1.1 If ζ is an accessible unimodular point, then for every k ∈ N there is a
computable f ∈ H∞(D) so that spec(f ) = {ζ} and so that σf < 1 + 2−k .
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On the complexity of spectra of bounded analytic functions 3

By taking ζ = eiΩ , where Ω is Chaitin’s Ω, we see that there is a computable uniform
Frostman f ∈ H∞(D) whose spectrum consists of a single Martin–Löf random point.

Our second theorem on computable uniform Frostman functions is an effective version
of Matheson’s second result.

Theorem 1.2 If S ⊆ T is computably closed and nowhere dense, then for every k ∈ N
there is a computable f ∈ H∞(D) so that spec(f ) = S and so that σf < 1 + 2−k .

The paper is organized as follows. Relevant background from complex and computable
analysis is summarized in Section 2. In Section 3, we prove a number of results on
identifying connected components of c.e. open subsets of T which will be used in
the proof of Theorem 1.2. Our theorems on the complexity of spectra of computable
functions in H∞(D) are proven in Section 4. Theorem 1.1 is proven in Section 5.
Finally, we prove Theorem 1.2 in Section 6.

2 Background

2.1 Background from complex analysis

Let Dr(z) denote the open disk with center z and radius r .

Let Λ denote Lebesgue measure on T. When p, q ∈ T are distinct, let

dΛ(p, q) =
1
π

min{Λ(C1),Λ(C2)}

where C1 and C2 are the connected components of T− {p, q}. Let dΛ(p, p) = 0. It
follows that dΛ is a metric on T. The balls of this metric space are arcs. Accordingly,
we let A(z; r) = {w ∈ T : dΛ(z,w) < r}.

When Θ = (θn)n∈N is a sequence of unimodular points, we define the limit set of Θ to
be

Lim Θ := {z ∈ T : ∀r > 0 ∃∞n θn ∈ A(z; r)}.

Equivalently, ζ ∈ Lim Θ if and only if there is a subsequence of Θ that converges to ζ .

A chain is a sequence (C0, . . . ,Cm) of sets so that Cj ∩ Cj+1 6= ∅ when j < m. If
p ∈ C0 and q ∈ Cm , a chain (C0, . . . ,Cm) is said to be a chain from p to q.

The following is a consequence of Hocking and Young [7, Theorem 3–4].
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4 T H McNicholl and B R Zilli

Lemma 2.1 Suppose U ⊆ T is open and connected, and let J be a set of open arcs
so that U =

⋃
J . Then, whenever p, q ∈ U are distinct, there is a chain (C0, . . . ,Cm)

from p to q so that Cj ∈ J for all j ≤ m.

The following may be found in Cima, Matheson, and Ross [4, Lemma 1.12.1].

Lemma 2.2 If |ζ| = 1, and if 1/2 < |z| < 1, then |ζ − z| ≥ π
3 dΛ(ζ, z

|z| ).

In the introduction, we discussed the well-known theorem which states that if A ⊆ D
is a multiset so that

∑
a∈A 1 − |a| < ∞, then there is a function f ∈ H∞(D) so that

Z(f ) = A. In fact, for every such set A, there exists a canonical function with this
property which we define now.

For a ∈ D, let

ba(z) =

{ |a|
a

a−z
1−az if a 6= 0,

z if a = 0.

The function ba is known as a Blaschke factor. When A ⊆ D is a multiset, let:

ΣA =
∑
a∈A

1− |a|

BA =
∏
a∈A

ba

BA is called a Blaschke product, and ΣA is called the Blaschke sum of A. The following
theorem states the fundamental facts about Blaschke products. A proof can be found in
Rudin [13].

Theorem 2.3 Let A ⊆ D be a multiset.

(1) BA ∈ H∞(D).
(2) If ΣA =∞, then BA is identically zero.
(3) If ΣA <∞, then A = Z(BA).

2.2 Background from computability theory and computable analysis

2.2.1 Definitions from computability theory, computable analysis, and com-
putable metric spaces

We assume the reader is modestly familiar with the essentials of computability theory
and computable analysis as expounded in Cooper [5], Brattka and Hertling [2], and
Weihrauch [14], however we provide a brief introduction to the relevant concepts here.
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Definition 2.4 A function f whose domain is a subset of N and whose codomain is N
(denoted f : ⊆ N→ N) is a computable partial function if there exists an algorithm
which, on input n ∈ dom(f ), halts and outputs f (n) and which, on input n /∈ dom(f ),
does not halt.

If dom(f ) = N, then f is a computable function.

We note that this definition is immediately extendable to functions whose domains and
codomains are subsets of Nn . We may further extend this definition to any countable
domain and codomain (eg Q) by fixing an effective enumeration thereof.

Definition 2.5 A set A ⊆ N is computably enumerable (c.e.) if there exists a
computable function f : ⊆ N→ N so that A = ran(f ).

Equivalently, A is c.e. if it is the domain of a computable partial function. In both
formulations of the definition, the most useful property of a c.e. set is that there exists
an algorithm which, given n ∈ N, halts if and only if n ∈ A. In parallel, we may ask
such an algorithm “is n an element of A?” for n = 0, 1, 2, . . . and return the n for
which the answer is “yes,” hence the term “computably enumerable.”

We fix an effective enumeration (We)e∈N of the c.e. subsets of N. We,s denotes the set
of natural numbers enumerated into We in at most s steps.

Definition 2.6 A is computable if both A and its complement are c.e.

In this case, we may ask both the algorithm which enumerates A and the one which
enumerates N− A whether an input n ∈ N is an element of A or N− A. One of these
computations will halt, which allows us to determine whether n ∈ A. For this reason,
an alternative term for computable sets is the more computer scientific decidable, in that
the decision problem of determining whether a given n is an element of A is solvable
algorithmically.

The classes of c.e. sets, sets whose complements are c.e., and computable sets form the
first three levels of the arithmetical hierarchy, which we define somewhat informally as
follows.

For n ∈ N, we say that a set A ⊆ N is Σ0
n (formally, A ∈ Σ0

n ) if there exists a
computable set B ⊆ Nn+1 so that

m ∈ A ⇐⇒ (∃k1)(∀k2) · · · (�kn) (m, k1, . . . , kn) ∈ B

Journal of Logic & Analysis 17:2 (2025)



6 T H McNicholl and B R Zilli

where the quantifiers alternate between existential and universal, and the � denotes
the quantifier which differs from the previous one. Similarly, A is Π0

n if there exists a
computable set B ⊆ Nn+1 so that

m ∈ A ⇐⇒ (∀k1)(∃k2) · · · (�kn) (m, k1, . . . , kn) ∈ B.

Equivalently, Π0
n = {N− A : A ∈ Σ0

n}. We finally define ∆0
n = Σ0

n ∩Π0
n . For a more

formal definition, see eg Cooper [5].

We observe crucially that, for all e ∈ N, the set {(n, s) : n ∈ We,s} is computable, and
so

n ∈ We ⇐⇒ (∃s) (n, s) ∈ {(n, s) : n ∈ We,s}.

Hence, the class of c.e. sets is Σ0
1 , the class of sets whose complements are c.e. is Π0

1 ,
and the class of computable sets is ∆0

1 . By allowing for the addition of quantifiers, the
arithmetical hierarchy provides the promised generalization of these classes.

We now turn our attention to the computability of objects in classical analysis. Consider,
for example, the real number π . We may famously approximate π to any desired
precision using a variety of algorithms, and so we would like to say that π is, in
some sense, computable. This leads to the natural definition of computability for real
numbers.

Definition 2.7 A real number x is computable if there exists a computable function
f : N→ Q so that, for all n ∈ N, |f (n)− x| < 2−n .

This definition extends naturally to complex numbers through the equivalent definitions
of a complex number as a pair of real numbers both of which are computable, or by
taking f in the above definition to have codomain Q[i].

The extension of this definition to sequences of real (or complex) numbers is nearly as
straightforward, bar a few technicalities. We may wish to define a computable sequence
of reals as one whose terms are computable. However, this permissiveness leads to
some undesirable consequences. For example, if A ⊆ N is incomputable, then we had
ought not to regard (χA(n))n∈N as a computable sequence even though each term is
practically as computable as can be. To avoid this, we define a computable sequence as
follows.

Definition 2.8 A sequence (xn)n∈N of real numbers is computable if there exists a
computable function f : N2 → Q so that, for all n, r ∈ N, |f (n, r)− xn| < 2−r .
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On the complexity of spectra of bounded analytic functions 7

As with computable reals, this definition extends naturally to sequences of complex
numbers.

More tricky is the definition of computability for functions from R to R (or from C
to C). As with real numbers, we wish to say, in a colloquial sense, that a function
f : R → R is computable if it is arbitrarily approximable by an algorithm. The
seemingly most immediate way to do this is to say that f is computable if there
exists an algorithm which, given an algorithm approximating a real number x and a
precision parameter r ∈ N, outputs f (x) to within 2−r . While this property will hold
for computable real-valued functions as we will soon define them, it is not restrictive
enough for a definition. The reason why lies in the fact that each computable real
number has infinitely many algorithms to approximate it (consider again the example of
π , for which there is famously great interest in finding new algorithms to approximate
it efficiently). Consider, for example, the task of evaluating f (0) where

f (x) =

{
0 if x < 0,

1 if x ≥ 0.

Both g0(n) = −2−n and g1(n) = 2−n are both algorithmically specifiable functions
from N to Q which approximate 0, but any algorithm which alleges to compute f would
return 0 given the g0 approximating algorithm for 0 and 1 given the g1 approximating
algorithm for 0. Thus, our definition of computability for a real-valued function must,
in some way, incorporate an effective notion of continuity. For this reason (amongst
others), we define computable real-valued functions as follows.

Definition 2.9 (cf [1, page 107]) Let B denote the set of all rational open balls in
R. Suppose A ⊆ R and f : A → R. We say that f is computable if there exists an
algorithm P with the following properties.

(1) On input B ∈ B , if P halts, it returns B′ ∈ B so that f [B] ⊆ B′ .
(2) For all neighborhoods V of f (x), there exists B ∈ B such that x ∈ B and, on

input B, P halts with output B′ ∈ B such that B′ ⊆ V .

The first condition is referred to as the approximation property, and the second as the
convergence property.

As with the previous definitions, this one is readily extensible to C by replacing open
rational intervals with balls with rational centers and radii.

The careful reader with an eye toward generalization will note that all of our comments
about ready extensions to C could apply to any separable metric space having an
“algorithmically-graspable” dense subset.
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Definition 2.10 (see eg [11, Definition 5.2.1]) A separable metric space (X, d) is
computable if there exists a dense sequence of points {si : i ∈ N} for which there exists
a computable function f : N3 → Q for which

|d(si, sj)− f (i, j, r)| < 2−r.

With this definition in hand, we may extend our notions of computability for objects in
real and complex analysis to any separable metric space. In the next section, we will
see how this extension allows us to define computability for closed subsets of T.

2.2.2 Applications to bounded analytic functions on D

We say ζ ∈ T is rational if there is a rational number q so that ζ = eiπq . Let TQ
denote the set of rational points of T. Fix an effective enumeration (ρn)n∈N of the
rational points of T. Then, (T, (ρn)n∈N) is a computable presentation of the metric space
(T, dΛ). That is, (m, n) 7→ dΛ(ρm, ρn) is computable. We identify this presentation with
T. We refer to the rational balls of T as rational arcs. Fix an effective enumeration
(An)n∈N of the open rational arcs.

When S ⊆ T is closed, let I(S) = {n ∈ N : An∩S 6= ∅}. S is completely characterized
by I(S). As in Andreev and McNicholl [1], we define the complexity of S to be the
complexity of I(S). For example, S is Σ0

n –closed if I(S) is Σ0
n . A Σ0

1 –closed set is
also known as a c.e. closed set.

When U ⊆ T is open, let I(U) = {n : An ⊆ U}. U is said to be c.e. open if I(U) is
c.e. This is equivalent to the existence of a c.e. set of open arcs whose union is U . A
closed set S ⊆ T is said to be computably closed if it is c.e. closed and if T− S is c.e.
open.

For the reader familiar with the theory and terminology of computable metric spaces
(eg as expounded by Rojas and Yampolsky in [11, Subsection 5.2.1]), our definition of
c.e. closed sets coincides precisely with that of lower-computable closed sets. We claim
that our definition of c.e. open sets is also equivalent to that of lower-computable open
sets, reproduced below.

Definition 2.11 ([11, Definition 5.2.4]) An open set U is lower-computable if there
is a computable function f : N→ N so that

U =
⋃
n∈N

Af (n).
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On the complexity of spectra of bounded analytic functions 9

The fact that, if U ⊆ T is c.e. open, then it is lower-computable, is immediate by taking
the f in Definition 2.11 to be a computable enumeration of I(U). Conversely, if U
is a lower-computable open set with function f as in the definition, then the fact that
the Am are closed implies that, for any m ∈ I(U), there exists a witness N ∈ N so that
Am ⊆

⋃N
n=0 Af (n) ; this in turn implies that I(U) is c.e. and so U is c.e. open. Just as we

define a computably closed set as one which is c.e. closed and whose complement is
c.e. open, [11, Definitions 5.2.8 and 5.2.5] defines it as one which is lower-computable
closed and whose complement is lower-computable open. Our choice of terminology
and definitions is motivated by our desire to allow for ready extension to other classes
within the arithmetical hierarchy.

These definitions naturally extend to the product topology on T× T. For example, we
say that an open set U ⊆ T× T is c.e. open if {(m, n) : Am × An ⊆ U} is c.e. Again,
this is equivalent to the existence of a c.e. set F ⊆ N2 so that U =

⋃
(m,n)∈F Am × An .

Given the one-to-one correspondence between a Blaschke B product and the multiset
of its zeros Z(B), it is natural to ask which computability conditions (if any) on Z(B)
guarantee the computability of B, and vice versa. To begin to answer this question,
we must first define a notion of computability which may be applied to such zero
sets. If A ⊆ C is a multiset, and if (an)n∈N is a sequence of complex numbers, then
(an)n∈N represents A if the elements of A are precisely the terms of (an)n∈N and if the
multiplicity of each z ∈ A is the number of n so that an = z. We then say that A is
computable if it is finite or if it has a computable representative. We can now state a
theorem that characterizes the computable Blaschke products.

Theorem 2.12 (Matheson and McNicholl [9] and McNicholl [10]) A non-constant
Blaschke product B is computable if and only if Z(B) and ΣB are computable.

We note that Theorem 2.12 is uniform in both directions. That is, from an index of a
computable Blaschke product B, it is possible to compute an index of a representative
of Z(B) and an index of ΣB . Furthermore, from an index of ΣB and a representative of
Z(B), it is possible to compute an index of B.

The following is a corollary of Matheson and McNicholl [9, Lemma 3.3 and Theorem
3.4].

Theorem 2.13 If f is a computable analytic function which is not identically zero,
then Z(f ) is computable.
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10 T H McNicholl and B R Zilli

3 Preliminaries

Matheson’s [8] proof that any closed, nowhere dense subset S of T is the spectrum
of some uniform Frostman Blaschke product relies on the construction of a uniform
Frostman Blaschke product for each connected component of T − S . Effectivizing
this construction thus requires a notion of computable enumerability of connected
components of subsets of T. In this section, we define such a notion and show where it
sits in the computability hierarchy discussed in Section 2. We start by considering the
problem of deciding whether two points of T belong to the same connected component
of a given subset.

When C ⊆ T and ζ, ζ ′ ∈ C , we write ζ ≡C ζ
′ if ζ and ζ ′ belong to the same connected

component of C ; write ζ|Cζ ′ if ζ 6≡C ζ
′ .

Definition 3.1 Suppose C ⊆ T. C is computably decomposable if ≡C and |C are c.e.
open subsets of T× T.

Thus, if C ⊆ T is computably decomposable, then C is c.e. open.

Our first result is that computable decomposability of c.e. open subsets of T can be
reduced to consideration of the rational points.

Proposition 3.2 Suppose C ⊆ T is c.e. open. Then, C is computably decomposable
if and only if {(ζ0, ζ1) ∈ TQ × TQ : ζ0, ζ1 ∈ C ∧ ζ0|Cζ1} is c.e.

Proof sketch Let m, n ∈ N, and suppose Am ∪ An ⊆ C . Since Am and An are
connected, it follows that Am × An ⊆ |C if and only if there exist ζ0 ∈ Am and ζ1 ∈ An

so that ζ0 6≡C ζ1 . It then suffices to consider the density of the rational points.

We construct a c.e. open C ⊆ T that is not computably decomposable as follows. Fix a
c.e. incomputable set A ⊆ N. Let rn = 2−(n+3) . Define cn and wn by simultaneous
recursion by setting:

c0 = ei(3π/8)

wn = cne−iπrn

cn+1 = wne−iπrn+1

Let Xn be the open arc with center cn and radius rn (with respect to the metric dΛ ).
Thus, wn = ∂Xn ∩ ∂Xn+1 . Let

C =
⋃
n∈N

Xn ∪ {wn : n ∈ A}.

Journal of Logic & Analysis 17:2 (2025)
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It follows that C is c.e. open. However, cn 6≡C cn+1 if and only if n 6∈ A.

We now consider the following definition, which will provide a means for enumerating
the connected components of a given subset of T.

Definition 3.3 Suppose C ⊆ T and φ : ⊆ N2 → N is computable. φ is a computable
decomposition of C if it satisfies the following.

(1) If (m, n + 1) ∈ dom(φ), then (m, n) ∈ dom(φ) and Aφ(m,n) ⊆ Aφ(m,n+1) .
(2) C =

⋃
{Aφ(m,n) : (m, n) ∈ dom(φ)}.

(3) If (m0, n0), (m1, n1) ∈ dom(φ), and if m0 6= m1 then Aφ(m0,n0) ∩ Aφ(m1,n1) = ∅.

If φ is a computable decomposition of C , then let

Cφ,m =
⋃
{Aφ(m,n) : (m, n) ∈ dom(φ)}.

The following makes sense of the claim that a computable decomposition of C
enumerates the computable components of C .

Proposition 3.4 Suppose φ is a computable decomposition of C ⊆ T. Then,

{Cφ,m : (m, 0) ∈ dom(φ)}

consists precisely of the connected components of C .

Proof Suppose (m, 0) ∈ dom(φ). By definition, Cφ,m ⊆ C is connected. Suppose U
is a connected component of C so that U ⊇ Cφ,m . We claim U −Cφ,m is open. For, let
p ∈ U − Cφ,m . Then, there exists m′, n so that p ∈ Aφ(m′,n) . Since U is a connected
component, Aφ(m′,n) ⊆ U . Since p 6∈ Cφ,m , m′ 6= m. Hence, Aφ(m′,n) ∩ Cφ,m = ∅.
Thus, U − Cφ,m is open. Since U is connected, it follows that U = Cφ,m .

Conversely, suppose U is a connected component of C . Let p ∈ U . Then, there exists
m so that p ∈ Cφ,m . Hence, (m, 0) ∈ dom(φ). Since Cφ,m is a connected component of
C , Cφ,m = U .

Given that the definitions of computable decomposition and computably decomposable
both seem to decide a similar problem (namely, the problem of separating the connected
components of a given set), it is natural to ask if they have the same computational
strength. The following theorem answers this in the affirmative.

Theorem 3.5 Suppose ∅ 6= C ⊆ T is open. Then, C is computably decomposable if
and only if C has a computable decomposition.

Journal of Logic & Analysis 17:2 (2025)



12 T H McNicholl and B R Zilli

Proof Suppose C is computably decomposable. Thus, C is c.e. open, and so there is a
computable f : N→ N so that C = {Af (n) : n ∈ N}. Let

S = {(ζ0, ζ1) ∈ TQ × TQ : ζ0, ζ1 ∈ C ∧ ζ0|Cζ1}.

By Proposition 3.2, A is c.e.; let (St)t∈N be a computable enumeration of S .

Suppose Am ∪ An ⊆ C . We say Am , An are witnessed to be included in different
components of C at stage t if ((Am × An) ∪ (An × Am)) ∩ St 6= ∅. It follows that Am

and An are included in different connected components of C if and only if there exists t
at which they are witnessed to be included in different components of C .

Now, we say that Am and An are witnessed at stage t to be included in the same
component of C if there exist n0, . . . , nk ≤ t so that (Af (n0), . . . ,Af (nk)) is a chain and⋃

s≤k Af (ns) ∩ Aj 6= ∅ for each j ∈ {m, n}. Again, if Am and An are witnessed to be
included in the same component of C at stage t , then Am and An are in fact included
in the same component of C . Conversely, suppose X is a connected component of
C and Am ∪ An ⊆ X . Let p ∈ Am , and let q ∈ An . Then, by Lemma 2.1, there exist
n0, . . . , nk so that (Af (n0), . . . ,Af (nk)) is a chain, p ∈ Af (n0) , and q ∈ Af (nk) . Thus, Am

and An are witnessed at t to be included in the same connected component of C when
t ≥ max{n0, . . . , nk}.

We define a function ψ by recursion as follows. Set ψ(0) = 0. If ψ(n) is defined, then
let ψ(n + 1) be the least integer k so that for some t ∈ N and each j ≤ n, Af (k) and
Af (ψ(j)) are witnessed not to be included in the same component of C at t . If there is no
such k , then ψ(n + 1) ↑.

We are now ready to define our computable decomposition of C . For each m ∈ dom(ψ),
set φ(m, 0) = ψ(f (m)). Define φ(m, n + 1) so that

Aφ(m,n+1) = Aφ(m,n) ∪ {Af (j) : j ≤ n ∧ Af (j) ∩ Aφ(m,n) 6= ∅}.

By construction φ satisfies conditions (1) and (3) of Definition 3.3. Let ζ ∈ C , and
let X denote the connected component of ζ in C . We claim there is an m ∈ dom(ψ)
so that Af (ψ(m)) ⊆ X . By way of contradiction, suppose otherwise. Let k be the least
number so that Af (k) ⊆ X . Thus, k > 0. By definition, ψ is increasing. Let m be the
largest number in dom(ψ) so that ψ(m) < k . It follows there exists j ≤ m so that Af (k)

is included in the same component of C as Af (ψ(j)) , a contradiction.

We now claim ζ ∈
⋃

n Aφ(m,n) . Let q ∈ Aφ(m,0) . Thus, by what has just been shown,
q ∈ X . Then, there exists n0, . . . , nk so that (Af (n0), . . . ,Af (nk)) is a chain from q to
ζ . By construction, for each j ≤ k , Af (nj) ⊆ Aφ(m,max{n0,...,nj}) . Hence, ζ ∈

⋃
n Aφ(m,n) ,

and so φ is a computable decomposition of C .
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Now, for the sake of the converse, suppose φ : ⊆ N2 → N is a computable decomposi-
tion of C . Let

S = {(φ(m1, n1), φ(m2, n2)) : (m1, n1), (m2, n2) ∈ dom(φ) ∧ m1 6= m2}.

It follows
⋃

(k1,k2)∈S(Ak1 ,Ak2) ⊆ |C . Suppose p1|C p2 . Let Xj denote the connected
component of pj in C . Then, there exists mj so that Xj = Cφ,mj . Since p1|C p2 ,
m1 6= m2 . Thus, (p1, p2) ∈

⋃
{(Am,An) : (m, n) ∈ S}.

Given the effective nature of the decomposition in the previous theorem, it is desirable
to determine the complexity of such computably decomposable sets. Since Matheson’s
construction of a uniform Frostman Blaschke product with a desired spectrum relied
heavily on the decomposition of the complement of the spectrum into connected
components, we are particularly interested in classifying closed sets S ⊆ T whose
complements are computably decomposable.

Theorem 3.6 If S ⊆ T is computably closed, then T−S is computably decomposable.

Proof Let C = T− S , and let G = C ∩ TQ . Since C is c.e. open, G is c.e. Set

V = {(ζ0, ζ1) ∈ G× G : ∃n0, n1 ∈ N An0 ∩ S 6= ∅ ∧ An1 ∩ S 6= ∅ ∧

An0 , An1 are included in different components of T− {ζ0, ζ1}}.

Thus, since S is c.e. closed, V is computably enumerable. However,

V = {(ζ0, ζ1) ∈ G× G : ζ0 6≡C ζ1}.

Thus, by Proposition 3.2, C is computably decomposable.

One of Matheson’s main results is that, if S ⊆ T is closed, then it is the spectrum of a
uniform Frostman Blaschke product if and only if it is nowhere dense. Thus, it is natural
to analyze the complexity of such S whose complement is computably decomposable.

Theorem 3.7 If S ⊆ T is closed and nowhere dense, and if T − S is computably
decomposable, then S is computably closed.

Proof Suppose S ⊆ T is closed and nowhere dense, and suppose T− S is computably
decomposable. Let C = T− S . It follows that C is c.e. open. Thus, we may assume S
is infinite since otherwise every point of S is computable.

We make use of the following principle: if p, q ∈ C are distinct, then p|C q if and only
if each connected component of T− {p, q} contains a point of S .
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14 T H McNicholl and B R Zilli

Since |C is c.e. open, it follows that the set of all pairs of rational points of T that
belong to distinct components of C is computably enumerable. Let k ∈ V if and only
if there exist rational points in Ak that belong to distinct components of C . Thus, V is
computably enumerable. If k ∈ V , then Ak ∩ S 6= ∅. Conversely, suppose p ∈ Ak ∩ S .
There exists η ∈ (0, 1/2) so that B := {ζ ∈ T : dΛ(p, ζ) < η} ⊆ Ak . Since η < 1/2,
B− {p} has 2 connected components; label these components B1 and B2 . Since S is
nowhere dense, Bj ∩ C 6= ∅. Since Bj ∩ C is open, and since the rational points of
T are dense in T, it follows that there is a rational point ζj ∈ Bj ∩ C . Because S is
infinite, we may choose η small enough so that (T− B) ∩ S 6= ∅ (otherwise S = {p}).
Thus, both components of T−{ζ1, ζ2} contain a point of S . Therefore, ζ1|Cζ2 . Hence,
k ∈ V .

Finally, in order to effectivize Matheson’s construction, we need a means to compute
the endpoints of the connected components of T− S , since these (along with their limit
points) will comprise the spectrum S .

Proposition 3.8 Suppose S ⊆ T is closed and nowhere dense, and suppose φ is a
computable decomposition of T− S . Then, from m ∈ N so that (m, 0) ∈ dom(φ), it is
possible to compute the length and the endpoints of Cφ,m .

Proof Suppose (m, 0) ∈ dom(φ). Clearly, if the length of Cφ,m can be computed, then
so can its endpoints.

Let φs be the stage s approximation of φ. For each s ∈ N, set:

Us =
⋃
{Aφ(m′,n) : (m′, n) ∈ dom(φs)}

Cm,s =
⋃
{Aφ(m,n) : (m, n) ∈ dom(φs)}

Given k ∈ N, wait for s so that for each endpoint p of Cm,s , the normalized length of the
connected component of p in ∂D−Us is smaller than 2−k+1 . The existence of s follows
from the meagerness of S . It follows that Λ(Cφ,m) ∈ [Λ(Cm,s),Λ(Cm,s) + 2−k].

4 Complexity of spectra

We begin with an upper bound on the complexity of spectra of computable functions in
H∞(D).

Journal of Logic & Analysis 17:2 (2025)
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Proposition 4.1 If f ∈ H∞(D) is computable, then spec(f ) is Σ0
3 – closed.

Proof We note that An ∩ spec(f ) 6= ∅ if and only if An has a closed rational subarc
whose subtended wedge contains infinitely many zeros of f (and thus a point of spec(f )).
It follows from Theorem 2.13 that Z(f )−{0} is computable. Without loss of generality,
we assume Z(f ) is infinite. Let (an)n∈N be a computable representative of Z(f )− {0}.
Thus,

n ∈ I(spec(f )) ⇐⇒ (∃m ∈ N)(∃∞j ∈ N) Am ⊂ An ∧
aj

|aj|
∈ Am.

The latter is clearly a Σ0
3 statement.

We note that so long as Σf <∞, spec(f ) depends only on the arguments of the points
in Z(f ). That is, since Σf <∞ implies that the zeros accumulate to the boundary, the
spectrum is determined only by the arguments of the zeros. Thus, when considering the
spectra of computable bounded analytic functions, we may restrict our attention to the
sequence of arguments of the zeros.

Lemma 4.2 Let S ⊆ T. The following are equivalent.

(1) S is the spectrum of a computable f ∈ H∞(D).
(2) S = ∅ or there is a computable sequence Θ of unimodular points so that

S = Lim Θ.

Moreover, given a computable sequence Θ of unimodular points and any computable
ε > 0, there exists a computable f ∈ H∞(D) with Lim Θ = spec(f ) and Σf = ε.

Proof On the one hand, suppose S is the spectrum of a computable f ∈ H∞(D).
Without loss of generality, suppose S 6= ∅. Thus, Z(f ) is infinite. By Theorem 2.13,
Z(f ) has a computable representative. Since Z(f ) is infinite, it then follows that
Z(f ) − {0} has a computable representative (zn)n∈N . Set θn = zn/|zn|, and let
Θ = (θn)n∈N . It follows that Lim Θ = S .

Conversely, suppose (2) holds. If S = ∅, we may take f to be the constant function 1.
Suppose S 6= ∅, and let θ = (θn)n∈N be a computable sequence of unimodular points so
that S = Lim θ .

Suppose ε > 0 is computable. Set an = (1 − 2−(n+1)ε)θn . Hence,
∑

n(1 − an) = ε.
Set f =

∏
n ban . Hence, by Theorem 2.3, f ∈ H∞(D), and by Theorem 2.12, f is

computable. By construction, spec(f ) = S .
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In light of Proposition 4.1, it is natural to ask whether this upper bound on the complexity
of spec(f ) is optimal. On the one hand, the following theorem indicates that it is.

Theorem 4.3 For every computable ε > 0, there is a computable f ∈ H∞(D) so that
I(spec(f )) is Σ0

3 –complete and so that Σf = ε.

Proof By Lemma 4.2, it suffices to show there is a computable sequence Γ = (γj)j∈N
of unimodular points so that Cof ≤m I(Lim Γ). Fix a computable sequence (Fm)m∈N
of rational open arcs that omit 1 and so that (Fm)m∈N is pairwise disjoint. For each
m ∈ N, let

Pm : Fm ∩ Lim Γ 6= ∅ ⇐⇒ m ∈ Cof .

It suffices to construct Γ so that Pm holds for each m ∈ N.

For each m ∈ N, select a sequence (θ(m)
n )n∈N of distinct rational points in Fm so that

limn θ
(m)
n ∈ ∂Fm . We choose these points so that θ(m)

n is computable from m and n. Let
S = {θ(m)

n : m, n ∈ N}. We also choose these points so as to ensure S is discrete.

For each m, n ∈ N, we ensure the following requirements:

Pm,n : θ(m)
n ∈ Lim Γ ⇐⇒ N−Wm ⊆ {0, . . . , n}

Nm : Lim Γ ∩ Fm ⊆ {θ(m)
n : n ∈ N}

For each m, n, s ∈ N, let

`(m, n, s) = max{x ≤ s : ∀n ≤ y < x y ∈ Wm,s}.

Thus, `(m, n, s) ≤ `(m, n, s + 1). Furthermore, lims `(m, n, s) = ∞ if and only if
N−Wm ⊆ {0, . . . , n}. We say Pm,n needs attention at stage s if s ∈ N[〈m,n〉] and if

`(m, n, s) > max({−∞} ∪ {`(m, n, r) : r < s ∧ r ∈ N〈m,n〉}).

Thus, at each stage s, at most one requirement needs attention.

If no requirement needs attention at stage s, then set γs = 1. If Pm,n needs attention at
s, then set γs = θ(m)

n .

We now show Pm,n is satisfied. On the one hand, suppose θ(m)
n ∈ Lim Γ. Then, there

is an increasing sequence (sk)k∈N of natural numbers so that θ(m)
n = limk γsk . Since

θ(m)
n 6= 1, γsk 6= 1 for all sufficiently large k . Hence, by construction, γsk ∈ S for

all sufficiently large k . Thus, since S is discrete, γsk = θ(m)
n for all sufficiently large

k . By construction, Pm,n needs attention at sk for all sufficiently large k , and so
N−Wm ⊆ {0, . . . , n}.

Journal of Logic & Analysis 17:2 (2025)



On the complexity of spectra of bounded analytic functions 17

Conversely, suppose N − Wm ⊆ {0, . . . , n}. Then, lims `(m, n, s) = ∞. Since
(`(m, n, s))s∈N is non-decreasing, it follows that Pm,n requires attention at infinitely
many s. By construction, θ(m)

n = γs for infinitely many s. Hence, θ(m)
n ∈ Lim Γ.

We now show Nm is satisfied for each m. Suppose ζ ∈ Fm ∩ Lim Γ. There is an
increasing sequence (sk)k∈N of natural numbers so that limk γsk = ζ . Since (Fr)r∈N
is pairwise disjoint, γsk ∈ Fm for all sufficiently large k . Hence, by construction,
γsk ∈ Fm ∩ S for all sufficiently large k . Since limn θ

(m)
n ∈ ∂Fm , and since S is discrete,

there exists n so that γsk = θ(m)
n for all sufficiently large k . Therefore, ζ = θ(m)

n .

Finally, we show Rm is satisfied. Suppose m ∈ Cof . Then, there exists n so that
N − Wm ⊆ {0, . . . , n}. Hence, by Pm,n , θ(m)

n ∈ Fm ∩ Lim Γ. Conversely, suppose
Fm ∩ Lim Γ 6= ∅. By Nm , θ(m)

n ∈ Fm ∩ Lim Γ for some n. Therefore, by Pm,n ,
N−Wm ⊆ {0, . . . , n}.

In contrast with Theorem 4.3, the following theorem suggests that Proposition 4.1 is far
from optimal.

Theorem 4.4 There exists a Σ0
2 –closed set S ⊆ T which is not the spectrum of any

computable function in H∞(D).

To prove Theorem 4.4, we need the following lemma.

Lemma 4.5 Let A be an open rational arc. Suppose ρn is a Cauchy name of θn for
each n ∈ N. If A ∩ Lim(θn)n∈N 6= ∅, then A(ρn,n; 2−n) ⊆ A for infinitely many n.

Proof Set Θ = (θn)n∈N . Suppose z ∈ A∩Lim Θ. Choose k ∈ N so that A(z; 2−k) ⊆ A.
Let N ∈ N, and set N′ = max{N, k + 1}. There exists n ∈ N so that θn ∈ A(z; 2−(k+1))
and so that n > N′ . Suppose ζ ∈ A(ρn,n; 2−n). Then, dΛ(ρn,n, θn) ≤ 2−n < 2−(k+1) .
Hence, dΛ(ζ, z) < 2−k .

Proof of Theorem 4.4 By Lemma 4.2, it suffices to construct a Σ0
2 –closed set S ⊆ T

that is not the limit set of any computable sequence of unimodular points.

Let (θ(e))e∈N be an effective enumeration of the computable partial sequences of points
in T. That is:

(1) θ(e) is a computable partial function from N2 into TQ .
(2) If (m, n + 1) ∈ dom(θ(e)), then (m, n) ∈ dom(θ(e)) and dΛ(θ(e)

m,n, θ
(e)
m,n+1) <

2−(n+1) .
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18 T H McNicholl and B R Zilli

If θ(e)
m,n ↓ for all n ∈ N, then we let θ

(e)
m = limn θ

(e)
m,n . Thus, if Θ = (θn)n∈N is a sequence

of unimodular points, then Θ is computable if and only if Θ = θ
(e)

for some e ∈ N.

Let (T (e))e∈N be an effective enumeration of rational open arcs in T such that, if e1 6= e2 ,
then dΛ(T (e1),T (e2)) ≥ 2−e1−3 . For each e ∈ N, let (F(e)

k )k∈N be a sequence of pairwise
disjoint rational open sub-arcs of T (e) which accumulate to an endpoint of T (e) and are
uniformly computable from e and k . Let ce,k denote the center of F(e)

k .

For each k, e ∈ N, let

J(e)
k,t = {n > t : θ(e)

n (n) ↓ ∧A(θ(e)
n,n; 2−n) ⊆ F(e)

k }.

Further, let S0 = {ce,k : ∃t J(e)
k,t = ∅}, and let S = S0 .

Suppose e ∈ N is such that θ(e) is total. As a first case, further suppose there exist
k, t ∈ N such that J(e)

k,t = ∅. Then ce,k ∈ S0 , so F(e)
k ∩ S 6= ∅. Furthermore, by

Lemma 4.5, A ∩ Lim θ(e) 6= ∅.

On the other hand, suppose J(e)
k,t 6= ∅ for all k, t . Define (nk)k∈N by setting:

n0 = min J(e)
0,0

nk+1 = min J(e)
k+1,nk

We note that, for all k , nk < nk+1 and θ
(e)
nk
⊆ F(e)

k . Thus, (θ(e)
nk )k∈N is a subsequence

of θ(e) which converges to some ζ ∈ ∂T (e) . Furthermore, ζ ∈ ∂T (e) ∩ Lim θ(e) . Let
s ∈ S0 . Then, s = ce′,k for some e′, k . We note that for all k ∈ N, ce,k 6∈ S0 , and so
e′ 6= e. Hence, dΛ(∂T (e), s) ≥ 2−(e+3) . Hence, ∂T (e) ∩ S = ∅.

Fix n ∈ N. Since An is open, we have that

An ∩ S 6= ∅ ⇐⇒ An ∩ S0 6= ∅
⇐⇒ ∃e, k ce,k ∈ An ∩ S0

⇐⇒ ∃e, k, t ce,k ∈ An ∧ J(e)
k,t = ∅

⇐⇒ ∃e, k, t ∀n > t ce,k ∈ An ∧ ¬(θ(e)
n,n ↓ ∧A(θ(e)

n,n; 2−n) ⊆ F(e)
k ).

The statement θ(e)
n,n ↓ ∧A(θ(e)

n,n; 2−n is Σ0
1 . Thus, S is Σ0

2 –closed.

Unlike with Σ0
2 sets, the situation for Π0

2 sets is more positive. Namely, we show the
following.

Theorem 4.6 If S ⊆ T is Π0
2 –closed, and if ε > 0 is computable, then there is a

computable f ∈ H∞(D) so that spec(f ) = S and so that Σf = ε.
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Proof In light of Lemma 4.2, it suffices to show there is a computable sequence θ of
unimodular points whose limit set is S . We construct such a sequence as follows.

Let (Cm,n)m∈N,n<Km be a computable array of open rational arcs with the following
properties:

(1) Km < ω , and m 7→ Km is computable.
(2) T ⊆

⋃
n<Km

Cm,n .
(3) If n < Km , then diam Cm,n < 2−m .
(4) The covering {Cm+1,n : n < Km+1} refines {Cm,n : n < Km}.

Since S is Π0
2 –closed, there exists a uniformly computable sequence (Ds)s∈N of finite

subsets of N2 such that

Cm,n ∩ S 6= ∅ ⇐⇒ (m, n) ∈
∞⋂

t=0

∞⋃
s=t

Ds

(see eg Cooper [5, Exercise 16.2.15]).

For all m, n ∈ N with n < Km , let

f (m, n) = {(j, k) : j ≤ m ∧ k < Kj ∧ Cm,n ⊆ Cj,k}.

Then, let

T =

{
(m, n) : (∃s) f (m, n) ⊆

m⋂
t=0

s⋃
r=t

Dr

}
.

It follows that (m, n) ∈ T whenever Cm,n ∩ S 6= ∅. Thus, T is infinite, and by definition
T is c.e. Accordingly, let (Jn)n∈N be an effective one-to-one enumeration of T . Denote
the center of each Cm,n by cm,n , and let θ = (cJn)n∈N .

We claim that Lim θ = S . On the one hand, let z ∈ S , and let δ > 0. Let m ∈ N
so that 2−m < δ . Then there exists n < Km so that z ∈ Cm,n . Furthermore, for all
(j, k) ∈ f (m, n), we have that z ∈ Cm,n ⊆ Cj,k . In other words, (m, n) ∈ T and so cm,n is
a term of θ . We note that, since z, cm,n ∈ Cm,n , we have that dΛ(z, cm,n) < 2−m . Hence,
there are infinitely many k so that dΛ(z, θk)) < δ . That is, z ∈ Lim θ .

Conversely, suppose z ∈ Lim θ . Let δ > 0, and choose a, b ∈ N so that 2−a < δ and
z ∈ Ca,b . Since z ∈ Lim θ , there is an increasing (kj)j∈N so that z = limj θkj . Since
Ca,b is open, for almost all j ∈ N, CJkj

⊆ Ca,b . Let Jkj = (mj, nj), and for each j ∈ N
choose sj ∈ N so that

f (mj, nj) ⊆
mj⋂

t=0

sj⋃
r=t

Dr.

When j is sufficiently large, a ≤ mj , and so (a, b) ∈ f (mj, nj). It follows that
Ca,b ∩ S 6= ∅. Since S is closed and δ is arbitrary, we conclude z ∈ S .
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5 Proof of Theorem 1.1

Theorem 1.1 is a corollary of the following.

Theorem 5.1 Suppose p is an endpoint of a c.e. open arc I ⊆ T so that Λ(I) < 1/2.
Let q ∈ I be computable. Then, for every t ∈ N, there is a computable Blaschke
product B so that spec(B) = {p} and so that for all ζ ∈ T,

σB(ζ) <
{

1 + 2−t ζ ∈ I ∩ (T− {p, q})
2−t otherwise.

The remainder of this section consists of the proof of Theorem 5.1. We begin with the
construction of B. Let J = I ∩ (∂D−{p, q}), and let p′ ∈ ∂I−{p}. Choose a rational
point ζ0 ∈ I ∩ (T− {p, q}). Let α = 2

3πdΛ(q, ζ0).

Fix a computable branch arg of the argument so that I ⊆ dom(arg). Since I is c.e.
open, arg(p) is either left-c.e. or right-c.e.; without loss of generality, suppose arg(p) is
right-c.e. Then, there is a computable sequence (pn)n∈N of rational points in I so that
p0 = ζ0 , arg(pn+1) < arg(pn), and limn pn = p. Set:

k =
2t

48

rn = 1− k2−tα

4n

θn = α2−n + arg(pn)

an = rneiθn

ξn = eiθn

A = (an)n∈N

Thus, ΣA is computable, and so BA is computable. Let B = BA . Thus, spec(B) = {p}.

We divide the remainder of the proof into a sequence of lemmas.

Lemma 5.2 If ζ ∈ J , then σB(ζ) < 1 + 2−t .

Proof Suppose ζ ∈ J . Let n0 ∈ N so that

πdΛ(ζ, ξn0) = min{πdΛ(ζ, ξj) : j ∈ N}.

Let τn be the midpoint of (T− {ξn, ξn+1}) ∩ I .
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Let n ∈ N−{n0}. We claim πdΛ(ζ, ξn) ≥ α2−(n+2) . We first consider the case n < n0 .
Thus,

(T− {ζ, ξn}) ∩ J ⊇ (T− {τn0−1, ξn}) ⊇ (T− {τn, ξn+1}) ∩ J.

Hence,

πdΛ(ζ, ξn) ≥ 1
2

(πdΛ(ξn, ξn+1))

≥ α2−(n+2).

Now, suppose n0 < n. Then,

(T− {ζ, ξn}) ⊇ (T− {τn−1, ξn}).

Hence,

πdΛ(ζ, ξn) ≥ 1
2
πdΛ(ξn−1, ξn)

≥ 1
2
α2−(n−1)

> α2−(n+2).

Thus, by Lemma 2.2,

σB(ζ) =
1− rn0

|ζ − an0 |
+
∑
n6=n0

1− rn

|ζ − an|

≤ 1 +

∞∑
n=0

k2−tα

4n
1

3−1α2−(n+2)

= 1 + 3k2−t
∞∑

n=0

2n+2

4n

= 1 + 24k2−t

< 1 + 2−t.

Lemma 5.3 If ζ 6∈ J , then σB(ζ) < 2−t .

Proof We first claim πdΛ(ζ, ξn) ≥ α2−(n+2) for all n ∈ N. Let n ∈ N. Let T ⊆ T be
the shortest arc from ζ to ξn .

We first consider the case where ζ and q belong to the same component of T−{ξn,−ξn}.
It follows that T ⊇ (T− {q, ξ0}) ∩ J . Hence,

πdΛ(ζ, ξn) ≥ πdΛ(q, ξ0) =
1
2
α ≥ α2−(n+2).
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Now, suppose ζ does not belong to the connected component of q in T− {ξn,−ξn}.
Then, T ⊇ (T− {ξn, ξn+1}) ∩ J . Hence,

πdΛ(ζ, ξn) ≥ πdΛ(ξn, ξn+1)

≥ α2−(n+1) > α2−(n+2).

As in the proof of Lemma 5.2, it follows that

σB(ζ) =

∞∑
n=0

1− rn

|ζ − an|
< 2−t.

6 Proof of Theorem 1.2

Suppose S ⊆ T is computably closed and nowhere dense. Let C = T − S . By
Theorem 3.5, C is computably decomposable. Let φ be a computable decomposition
of C , and let

U = {m ∈ N : (m, 0) ∈ dom(φ)}.

For each m ∈ U , let Jm =
⋃

(m,n)∈dom(φ) Aφ(m,n) . By Proposition 3.8, the endpoints
of Jm are computable uniformly in m. Let pm , qm denote the endpoints of Jm in
counterclockwise order. We note that the qm ’s are dense in S . For each m ∈ U , we
compute a rational arc Im ⊆ Jm so that Λ(Im) < 1/2 and so that qm ∈ ∂Im . We then
compute, for each m ∈ N, a rational rm ∈ Im .

Fix t0 ∈ N so that
∑

j∈N 2−t0j < 2−k . Let (Us)s∈N be a computable enumeration of U
so that #(Us+1 − Us) ≤ 1 for all s ∈ N. For all m ∈ U , let s(m) be the least number s
so that m ∈ Us .

By Theorem 5.1, uniformly in m ∈ U , we can compute a Blaschke product B̂m so that
spec(B̂m) = {qm} and so that

σB̂m
(ζ) <

{
1 + 2−t0s(m) ζ ∈ Jm ∩ (T− {qm, rm})

2−t0s(m) otherwise.

For each m ∈ U , we compute a representative (âm,n)n∈N of Z(B̂m) uniformly in m. We
then compute, for each m ∈ U , an Nm ∈ N so that

∑
n≥Nm

(1 − âm,n) < 2−s(m) . Let
am,n = âm,n+Nm , and set Bm =

∏
n bam,n . Thus, spec(Bm) = {qm} and σBm ≤ σB̂m

. Set
B =

∏
m∈U Bm .

It now follows from Theorem 2.12 that B is computable. By construction, spec(B) = S .
Let ζ ∈ T. If ζ ∈ Im for some m, then σB(ζ) < 1 + 2−k . Otherwise, σB(ζ) < 2−k .
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7 Conclusion

The Blaschke product provides a convenient, constructible means to analyze the spectrum
of any bounded analytic function on the unit disc solely by considering its zero sequence.
Results of Matheson and McNicholl [9] and McNicholl [10] regarding computable
Blaschke products were used to consider the set of limit points of the zero sequence of
bounded analytic functions.

The problem of characterizing these spectra proved more interesting than originally
anticipated and led to interesting results: namely, that all such spectra are Σ0

3 –closed,
that there exists a Σ0

3 –complete spectrum, and that not all Σ0
2 –closed sets are spectra

but all Π0
2 –closed sets are.

Of particular note is that many of the results in this paper extend well beyond zero
sequences of bounded analytic functions. That is, the dependence of the spectrum on
only a sequence of unimodular points may be generalized to sets of limit points of
computable sequences of points in one-dimensional spaces other than just T.

With regard to uniform Frostman Blaschke products, the definition of a computable
decomposition of a subset of T and its equivalence to computable closure of the
complement of a nowhere dense set allowed for a straightforward effectivization of
Matheson’s [8] construction of a uniform Frostman Blaschke product with a desired
nowhere dense spectrum.
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