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Projective sets, intuitionistically

WIM VELDMAN

Abstract: We try to develop intuitionistic descriptive set theory and study ‘definable’
subsets of Baire space N' = w* . The logic of our arguments is intuitionistic and
we also use L.E.J. Brouwer’s Thesis on bars in w* and his continuity axioms. We
avoid the operation of taking the complement of a subset of w* as much as possible,
as the resulting sets, like negative statements, are not very useful in constructive
mathematics.

A subset of w* is (positively) projective if it results from a closed or an open subset
of w* X w¥(= w*) by a finite number of applications of the two operations of
projection and universal projection or co-projection. A subset of w* is X! or
analytic if it is the projection of a closed subset of w*. We give some examples of
E{ subsets of w* like the set of (the codes of) all closed subsets of w* that are
positively uncountable and also the set of (the codes of) all closed subsets of w®
containing an element coding a (positively) infinite subset of w.

A subset of w® is called strictly analytic if it is the projection of a spread, ie a
closed and /ocated subset of w®. Some analytic subsets of w® fail to be strictly
analytic. We will see that Brouwer’s Thesis on bars in w* proves separation and
boundedness theorems for strictly analytic subsets of w®.

A subset of w¥ is called II} or co-analytic if it is the co-projection of an open
subset of w* X w*(= w*). Most co-analytic sets are not the complement of an
analytic set. There is no symmetry between analytic and co-analytic sets as there is
in classical descriptive set theory. As an example of a IT} set we consider the set of
the codes of all closed subsets of w® all of whose members code an almost-finite
subset of w.

We also study the set of the codes of closed and located subsets of w* that are
almost-countable, or, equivalently, reducible in Cantor’s sense. This set is probably
not I1} .

Finally, we explain the important fact that the (positive) projective hierarchy
collapses: every (positively) projective set is X} ie the projection of a co-analytic
subset of w*.
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2 Wim Veldman

1 Introduction

This paper on descriptive set theory is one in a series. We explore the field of study laid
bare by pre-im‘m'tionists1 like R. Baire, E. Borel, H. Lebesgue, N. Lusin and M. Souslin,
and consider it from L.E.J. Brouwer’s intuitionistic point of view. In [35], we proved
an intuitionistic Borel hierarchy theorem. In [36], we discovered the fine structure
of the intuitionistic Borel hierarchy, and, in particular, the fine structure of the class
Eg, consisting of the countable unions of closed subsets of w®. In both [35] and [36],
the argument is far from classical and essential use is made of Brouwer’s Continuity
Principle.

We now are going to treat projective sets. Our earlier paper [33] already contains some
surprising results on apparently simple analytic and co-analytic subsets of w®.

This introductory section is divided into three parts. In the first part, we briefly present
the basic assumptions of intuitionistic analysis and we agree on a number of notations.
In the second part, we introduce intuitionistic descriptive set theory. The reader may
decide to skip these first two parts and use them only if further reading makes it necessary
to consult them. In the third part, we describe the further contents of the paper.

1.1 The language and axioms of intuitionistic analysis

The logical constants are used in their intuitionistic sense. A statement P V Q is
considered proven only if one either has a proof of P or a proof of Q. A statement
dx € V[P(x)] is considered proven only if one is able to produce an element x of V
with a proof of the fact that x has the property P.

Brouwer not only refined the language of mathematics but also introduced a number
of assumptions one should call axiomatic. He was of course the first to use them, see
[2, 3,5, 6, 10]. The question how to state and defend them has been further discussed
by others, see Heyting [12], Howard—Kreisel [13], Kleene—Vesley [16], Myhill [23],
Troelstra [28], Troelstra—van Dalen [29], and Veldman [30, 32, 35, 34, 40]. One
finds them below in Sections 1.1.3 (Axioms of Countable Choice), 1.1.6 (Brouwer’s
Continuity Principle and Axioms of Continuous Choice), 1.1.7 (the Fan Theorem), 1.1.8
(Stumps), 1.1.9 (Bar Induction) and 1.1.10 (the Creating Subject).

'Brouwer uses this term in [4, page 140] and [5, page 1].
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Projective sets, intuitionistically 3

1.1.1 Finite sequences of natural numbers

w is the set of the natural numbers. We use m,n,...,s,t... as variables over w.
S: w — w is the successor function: Vu[S(n) = n + 1].
p: w — w is the function enumerating the primes: p(0) =2,p(1) =3,p(2) =5, ....

We code finite sequences of natural numbers by natural numbers: ( ) := 0 is the
(code number of) the empty sequence, and, for all £ > 0, for all mg,my,...m;_1,

(mo,my,...,m_1) =[], p@)" - pk — 1) — 1.

length(0) := 0 and, for each s > 0, length(s) := 1 + the largest k such that p(k)
divides s + 1.

For each s, for each i, if i < length(s) — 1, then s(i) := the largest m such that p(i)"
divides s + 1;if i = length(s) — 1, then s(i) := the largest m such that p(iy"*! divides
s+ 1; and, if i > length(s), then s(i) := 0. Observe that for each s, k, if length(s) = k,
then s = (s(0), s(1),...,s(k — 1)).

For each n,
w" = {s | length(s) = n} and [w]" :={s € W" |Vi[i+ 1 <n — s(i) < s(i + D]}.
(W] == U, [w]".

For all s and ¢, s * ¢ is the number u satisfying: length(z) = length(s) + length(?),
Vi < length(s)[u(i) = s(i)] and Vj < length(#)[u(length(s) + j) = #(j)].

For all s,n such that n < length(s), 5(n) := sn := (5(0), s(1),...,s(n — 1)).

For all s,1:
sCt < Ju[t = s *ul SCt (Cr A s#1) st tCs
S <jex t <> dn[n < length(s) A sn "t A s(n) < t(n)]
sLltrs#Htr e (5 <t VIE<pexS) s<gpt>(Cs V §s<jxl

<kp is a linear ordering of w, the Kleene—Brouwer-ordering, also called the Lusin—
Sierpinski-ordering; see Kechris [14, Section 2.G, page 11].

For all s,i, s' is the number u satisfying: length(u) =the least k such that (i) x k >
length(s) and Vj < length(u)[u(j) = s({i) * j)]. Note that, for each i, { ) = (). Note
also that, for each p and i, (p)' = ().

For all n and m, J(n,m) := ({n) x m) — 1. For each n, K(n) and L(n) are the numbers
satisfying n = J(K(n), L(n)).
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4 Wim Veldman

For all s, t such that length(s) = length(¢) , s, ¢ is the number u satisfying length(u) =
length(s) and Vi < length(s) [u(i) = J(s(i), 1(i))] .

For each u, u; and uj; are the elements s, of w such that u = "s,¢", ie length(u;) =
length(uy) = length(u) and Vi < length(u)[u; (i) = K (u(i)) A uy(i) = L(u())].

For each u, uy; := (up)y, uygr := iy, upg = () and wyp 2= (u)y -

Bin := 2<% := {s | Vi < length(s)[s({) = 0 V s(i) = 1]} is the set of the codes of
finite binary sequences.

For each m, Bin,, := {s € Bin | length(s) = m}.

For all R C w, VmVn[mRn <> J(m,n) € R].

Forall A,BC w,A x B:={J(m,n) | m € A,n € B}.

Forall A C w, n = up[A(p)] if and only if A(n) and Vp < n[-A(p)].

1.1.2 Infinite sequences of natural numbers

Baire space w” is the set of all infinite sequences of natural numbers. We use
o, fB,...,p,%,...0,T,... as variables over w".

An element of w* is a function from w to w, and, given «, n we denote the result of
applying a to n by a(n).

[w]¥ := {C | Vn[{(n) < {(n+ DI}.
For every X C w, X¥ := {a | Vn[a(n) € X]}.
Forall o and 3, a0 3 is the element ~ of w* satisfying Vn [v(n) = a(B(n))].

For all a and ¢, « ot is the number u satisfying: length(z) = length(¢) and
Vn < length(r) [u(n) = a(1(n))]. In particular, for each 7, S ot is the number u
satisfying: length(x) = length(¢) and Vn < length(?) [u(n) = t(n) + 1].

Forall ¢ and 3, a # 8 < a L B+ dn[a(n) # B(n)] and a = S < Vnla(n) = B(n)].
It is a well-known fact that the relation #, called apartness, is co-transitive, ie for all
a, B,v,if a# 3, then either a # ~ or v # 5.

For each s, for each a, s*« is the element ~y of w* such that Vi < length(s)[y(i) = s(i)]
and Vil (length(s) + i) = a(i)].

For each s, foreach X C w*, sx X := {s*xa | a € X}.
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Projective sets, intuitionistically 5

For each «, for each n, @(n) := an := (a(0), (1),...,a(n — 1)). @) := a0 :=
(y=0.

Forall sand o, sC o <> dn[s =an] and s L. o <+ o L 5 <> —(s C «). Note that for
all a and b, for all ~, if a L b then either a L v or v L b.

Forall s, w* Ns:={a|sC a}.
For each m, m is the element v of w* such that Vn[y(n) = m].
For all « and i, o is the element y of w* such that Vn[y(n) = a((i) x n)].

For all a,m and n, ™" = (a™)".

o ((m,n> *p).

Note that for all m,n and p, &™"(p) =

For all «, for all s, *« is the element v of w* such that Vn[vy(n) = a(s * n)]. Note that
m o = am.

For every X C w¥, X“ := {a | Vn[a" € X1}.
Forall o, 3, "r, B7 is the element ~ of w* such that Vn[y(n) = J(a(n), B(m))].

For each v, ~<; and ~y are the elements «, 5 of w* such that v = T, 87, ie
Yaly(n) = K(y(n)) A yu(n) = L(y(m))].

For each o, oy := (ap)r, o = (@), oy = (o) and oy 7 := () -
Forall R C w¥, VaVB[aRSE < "a, 57 € R].
Forall R C w¥, VaVn[aRn < nRa <> (n) x a € R].
Foral ACw*,BCw, AxB:=BxA:={(n)xa|a€ A nécB}.
Forall A, BCw¥, AxB;={"a,87 | a€ A,S € B}.
Forall A C w®, foralln, A[n:={a| (n)*ac A}.
Forall X C w¥, forall n, X, :={a | (n) xa € X'}.
An infinite sequence X, X, ... of subsets of w® is the same as the set X = {(n) *x « |
new,aci,t.
For all A, B C w¥:

ACB & Valae A — o € B

ACB« (ACB A ~(BCA)

A=B<(ACB ANBCA)

A# B+ —(A=DB)
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6 Wim Veldman

For all Xy, X1 C w¥, Xp # &X) ¢ Va[Vi < 2[af € Xj] — o # al].
If Xy # Xy, then Xy N X} = (), but the converse may fail to be true.
For every infinite sequence Xj, X7,... of subsets of w*, we define: #,(X,) <

Vo [Vnlo! € X,] — JiJjla’ # ¢/]]. If #,(X,) then (), X, = 0, but the converse may
fail to be true.

Cantor space C := 2% := {« | Vn[a(n) < 2]}. (We use both notations.)

For each «,

D, := {n | a(n) # 0} is the subset of w decided by «, and
E, = {m | In[au(n) = m + 1]} is the subset of w enumerated by «.

For each s,

D; := {n < length(s) | s(n) # 0} and

E; := {m | 3n < length(s)[s(n) = m + 1]}.
Note that for each o, Do, = |J,, Dan and E,, = J,, Ean-
For each X C w,

X is inhabited if and only if dn[n € X],
X is decidable if and only if Ja[X = D, ], and
X is enumerable if and only if dJa[X = E,].

For each a, T, := {s | V¢ C s[a(r) = 0]}. T, is called the tree determined by «. Note
that Va[0 = () € T,].

For all « and 3, for all -, we define:
yia <" B (Vsls € To — (s) € Tg]l A VsVils Tt — y(s) T v(1)])
and yia<* B+ (Vs[s €Ty — ~(s) € Tgl N VsVi[s Tt — () C ()]
A D) # ()

For all o, 8, we define o <* B <> Iy[y:a <* Bl and o <* B > Fy[y: o <* [].

For each ¢, Ens := {" | n € w} is the subset of w“ enumerated by 6.

1.1.3 Axioms of Countable Choice

First Axiom of Countable Choice:

ACy: Forall R C w X w, if Vm3n[mRn], then JaVm[mRo(m)].
Second Axiom of Countable Choice:

ACy : Forall R C w” X w, if Vm3a [mRa], then JaVm [mRa™].

Journal of Logic & Analysis 14:5 (2022)



Projective sets, intuitionistically 7

1.1.4 Open and closed subsets of w*, and spreads

For each 3, G := {a | 3n[B(an) # 0]} and Fj3 := {a | Vn[B(an) = 0]}.
The pair of sets (Gg, Fp) is called a complementary pair of rank 1.

For each X C w¥:

X is open or XY if and only if IB[X = Ggs].

X 18 closed or H? if and only if 3[X = F3].

X is inhabited if and only if Iy[y € X].

X is located if and only if Iy[D, = {s | Jo € X[s C al}].

X is semi-located if and only if Iy[E, = {s | Jo € X[s T al}].

Forevery X C w¥, X := {a | VnIy € X[an C v]}. X is called the closure of X.
X is not necessarily I19.2

One easily proves that for every X C w*, X = X, and X is (semi-)located if and only
if X' is (semi-)located.

F C w* is a spread if and only if F = F and F is located.

For each (3, we define: [ is a spread-law, Spr(8), if and only if § € 2“ and
Vs [ﬁ(s) =0+ In[B(s* (n)) = O]] . One easily proves that 7 C w* is a spread if and
only if 33[Spr(8) N F = Fgzl.

Note that for all 3, if Spr(3), then F3 = () if and only if 5(0) = 1 if and only if 5 = 1,
and 3y[y € F3l (Fg is inhabited) if and only if 3(0) = 0. The empty set () thus is a
spread, and one may decide, for every spread F, either F = () or Iy[y € F].

Assume Spr(3) and f(c) = 0. We define: FgNc:= {y € F3|cC 7}. Note that
Fs N itself is a spread.

For each 3, we define (3 is a perfect-spread-law, Pfspr(53), if and only if:

Spr(8) A BO)=0 A Vs[B(s) =0 —
FulsCt AsCuAtLlun BE)=Pu) =0]]

F C w¥ is a perfect spread if and only if IB[Pfspr(8) N F = Fgl.

?One may see this as follows. For every a, define YV, := {7 |7 =0 A a# 0} and note that
Vo := Vo Assume that every Y, is II9. Then Ya3BvVy[y € Y, — v € Fzl, and therefore
VadpBla # 0 <+ Vn[B(0n) = 0]]. Using Axiom AC, ; (see Section 1.1.6) one may derive a
contradiction.
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8 Wim Veldman

1.1.5 Continuous functions

For all ¢, o, m, we define: ¢ maps o onto m, p: o — m, if and only if
Inlp(@n) =m~+1 A Vi< n[p@@i) = 0]
If dml[y: a — m], we let p(«) denote the unique m such that ¢ : « +— m.

For every X C w¥, for all o, we define: ¢ codes a function from X to w, p: X — w,
if and only if Voo € XIm[p: a +— m].

o(X):={m|Ja € X[p: ar— m]} ={p(a) | a € X}.

Forevery X C w*, w? :={p|¢: X — w}.

For all ¢, «, 8, we define: ¢ maps o onto 3, ¢: « — 3, if and only if ©(0) =
©(()) =0 and Vn[¢": a— B(n)].

If 3[p: o+ 5], we let p|a denote the unique /5 such that ¢: a — f.

For every X,Y C w", for all ¢, we define: ¢ maps X into YV, ¢: X — ), if and
only if Voo € X38 € Y[p: a+ B].
plX:={f|Jae Xlp:a— B} ={pla|ac X}.

Forall X, C w¥, for all ¢, we define: ¢ embeds X into Y, p: X ~— ), if and only
ifo: X > YandVa € XVP € X[a# 8 — pla# ¢|f]l. Emb(X,)) :={p | ¢:
: X — Y}. Forall X, C w¥, X embeds into ) if and only if Jp[p :: X — V].
Forall X,y C w", for all ¢, we define: ¢ is a surjective mapping from X onto ),
p: X — Y, ifandonlyif p: X — Y and Vg € Y3a € X[p|a = ). X maps onto
Y if and only if there exists a surjective mapping from X onto ).

Forall X C w¥, (w)* :={p|p: & = w¥}.

Note that (W)« = {¢ | p: W = W} = {p € W« | p(0) =0},

For all ¢,s we let @|s be the largest number 7 such that length(r) < length(s) and
Vj < length(t)Jp < length(s)[@/(Sp) = t() + 1 A Vi < p[£/(si) = 0]]. Note
that VVs[length(p|s) < length(s)]. Note that VpVaVh[p: a — B < VnIm[Bn C
plam]].

For all ¢, 1) in (w*)“"), we define o * 9 in (w*)®") such that, for all n, for all s, for
all p, ¢"(s) = p + 1 if and only if n < length(¢|(¥[s)) and (¢|(¥]s))(n) = p + 1.
Note that Va[(p x )|a = ¢|(1)]|a)].

Let / C w® be an inhabited spread. Find /3 such that Spr(8) and F = F3. Now
define p: w* — w* such that, for all & and m,
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Projective sets, intuitionistically 9

if B(plam * (a(m))) = 0, then (p|a)(m) = a(m), and
if Bplam * (a(m))) # 0, then (p|a)(m) = pk[B(p|om * (k)) = 0].
p is called the canonical retraction of w* onto F. Note that Va[pla € F],

Valp|a # a <> Im[B(am) # 0]], and Vo € Flp|la = a].

Assume that Spr(8) and B C w is a bar in Fg, ie Vv € Fgin[yn € B]. Define
B :=BU{s | B(s) # 0}. Then B’ is a bar in w*, ie Vy3n[yn € B']. In order to see
this, we use the canonical retraction p of w® onto Fg. Let 7y be given. Find n such that
plyn € B. Either p|yn = 7n and Fn € B; or, p|yn # Fn and Im < n[B(Fm) # 0]. In
both cases, yn € B'.

1.1.6 Brouwer’s Continuity Principle and the Axioms of Continuous Choice

Brouwer’s Continuity Principle:

BCP: For every spread F, forevery R C F X w, if Va € FIn[aRn],
then Vo € FIm3nVps € Flam C 8 — BRn].

First Axiom of Continuous Choice:

AC;o: Forevery spread F, forall R C F x w, if Vo € Fdn[aRn],
then dp[p: F - w A Va € FlaRe(a)]].

Second Axiom of Continuous Choice:

ACy: Forevery spread F, forall R C F x w®, if Va € F3B[aRP],
then Jp[p: F — w¥ A Va € FlaRp|a]].

1.1.7 The Fan Theorem

For all X C w¥, for all B C w, we define: Bary(B) <> Vv € Xdn[vn € B].

For each 3, we define: Fan(f3) < (Spr(ﬁ) A VsInVm > n[B(s* (m)) # 0]). If Fan(f3),
one says: [ is a fan-law. F C w® is a fan if and only if 3[Fan(3) A F = F3].
The Fan Theorem:

For every fan F C w® and every B C w, if Barz(B) then ds[D; C B A
Bar z(Dy)].

The restricted Fan Theorem:

FT: Foreach fan 7 C w® and every 4, if Bar#(Dj) then 3n [Bar#(Dj,)] .

Journal of Logic & Analysis 14:5 (2022)



10 Wim Veldman

1.1.8 Stumps

Axiom on the existence of the set of stumps:
STP: ST P is a subset of 2¢ such that:?
G 1*":=1e€S87TP;
(i) for all o in 2%, if
(a) o(0)=0,and
(b) forall n, o" € STP,
then o € STP; and
(i) forall Q C STP, if
(a) 1" € Q,and
(b) forall o in STP,if 0(0) =0 and, forall n, c" € Q, then o € Q;
then STP = Q.

The elements of STP are called stumps.

For each 8 in w*, we define 8* in 2% by: for all s, 8*(s) = 1 if 5(s) = 0 and
B*(s) = 0 if B(s) # 0.

1* is/codes the empty stump. For each ¢ in STP, o = 1* if and only if o(0) = 1.

For each o # 1* in ST P, for each n, ¢" is a stump, the n—th immediate substump of
o. (Also, for each n, (1*)* = 1* is a stump.)

We define relations <, < on ST P by simultaneous transfinite induction: for all o, 7 in
STP,
() o<1+ (0’ # 1" = Vn[o" < T]),and
(i) o<t (T#1* A 3nfo <7).
Using the axiom STP one proves the following.
Principle of Induction on ST P:

Forall Q C STP,ifVo € STPIVr € STP[r<oc—71€ Q] —0o¢€
Q] then STP = Q.

One may prove:* for all 0,7 in STP, o < 7 if and only if o <* 7.

For all «, we let S*(«) be the element 3 of w* such that 5(0) = 0 and Vn[5" = «].
S*(«v) is called the successor of «.

Note that Voo € STP[S*(«) € STP].

3There is a small difference between the set ST P as it is introduced here and the sets called
Stp in Veldman [35, 36], respectively.
“The relation <* has been defined at the end of Section 1.1.2.
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1.1.9 Bar Induction

Brouwer’s Thesis on bars in w®:
BT: For each B C w, if Bar«(B), then do € ST P[Bar,~ (BN T,)].
Recall, from Section 1.1.2, that T,, = {s | V¢ C s[o(¢) = 0]}.

B C w is monotone if and only if VsVn[s € B — s % (n) € B].
C C w is inductive if and only if Vs[Vn[s % (n) € C] — s € C].
BT proves the following.

Principle of Bar Induction:

BI: For all B,C C w, if Bar«(B), B C C, and C is monotone and
inductive, then 0 = () € C.

Assume Spr(/3). We define:
B C w is monotone within {s | 5(s) = 0} if and only if:
Vs[(,B(s) =0 Ase€e B) — Vn[B(s * (n)) =0 — s * (n) € B]]
C C w is inductive within {s | f(s) = 0} if and only if:
Vs[(B(s) =0 A Vn[B(s * (n)) =0 — s % (n) € C]) = s € C]
BI admits the following extension:

BI, extended to spreads: For all 3 such that Spr(3) and 5(0) = 0, for all
B,C Cuw,if Barr,(B), B C C, and C is monotone and inductive within
{s| B(s) =0},then 0 = () € C.

Using BI and calling to aid the canonical retraction p of w® onto Fg, one easily proves
this extended form of BI from BI itself.

1.1.10 The creating subject

The Brouwer—Kripke axiom, also called: Kripke’s scheme” is the following statement:

KS: Given any definite mathematical proposition P, one may build «
such that P <> dn[a(n) # 0].

>Kripke’s scheme plays a role in the proof of Theorem 2.11 and it is mentioned in Section 3.
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12 Wim Veldman

The idea underlying the axiom is that, once P is given, I may, identifying myself with
the creating subject, start thinking upon it, and the truth of P will consist in my finding
a proof of P, at some point of time. Time is supposed to be divided into stages that
are numbered by natural numbers. For each n, a(n) # 0 if and only if, at stage n, I
possess a proof of P.

This is a rather wild idea, actually too wild, if we allow P to be a statement about an
object that is itself unfinished, like an infinite sequence 3 = (5(0), 5(1), ... of natural
numbers [ am creating step by step, freely choosing each one of its values. At any stage,
only finitely many values will have been determined, and the statement: Vr[5(n) = 0],
provided it has not been violated already, is unprovable at any stage, although possibly
true ‘in the end’.

We therefore require P to be definite:® P should not be about unfinished objects. In a
formal context, one forbids that the formula corresponding to the proposition contain a
free variable over elements of Baire space.

If one do not take this precaution, KS leads to a contradiction with ACy 1, as was first
observed by J. Myhill, see Myhill [23]:

Assume VfS3a[B = 0 < dn[a(n) # O]]. Applying AC,, find ¢: w* — w?
such that VB[S = 0 « 3n[(p|B)(n) # 0]]. Then find n such that (©[0)(n) # 0.
Finally, find m such that V3[0m T 8 — (¢|8)(n) = (¢|0)(n)] and conclude that
VB[0m = B — B = 0], a contradiction.

Myhill wanted to give up AC;; because of this argument. Johan de Iongh proposed
the restriction of KS to definite propositions; see Gielen—de Swart—Veldman [11, § 3].

Theorem 1.1 (Consequences of KS)

(i) If X C w is definite, then 36[X = Es], ie X is enumerable.
(ii) If X C w* isdefinite, then 30[Es = {s | Iy € X[s T v]}], ie X is semi-located.

Proof (i) Let X C w be definite. By KS, Vnda[n € X < dm[a(m) # 0]]. Using
ACy 1, find « such that Va[n € X < Im[a"(m) # 0]]. Now define ¢ such that §(0) = 0
and, for all n, m, if o"(m) # 0 then d({n) *x m) = n + 1; if not, then 5((n) x m) = 0,
and note that X = Ej.

(i) Let X C w® be definite. The set {s | 3y € X[s C ]} also is definite, and one may
apply (1). O

The term ‘definite’ will also be applied to (other) mathematical objects. The infinite sequence
0, for instance, deserves to be called definite.

Journal of Logic & Analysis 14:5 (2022)
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1.1.11 Semi-classical principles

The Limited Principle of Omniscience:

LPO: Va[dn[a(n) # 0] V Vala(n) = 0]].

The Lesser Limited Principle of Omniscience:’

LLPO: Ya[Vm[2m # upla(p) # 0] V Vm[2m + 1 # upla(p) # 0]].
Note that LPO — LLPO: Let « be given. Define 8 such that Vr[8(n) # 0 <
2n 4+ 1 = upla(p) # 0]]. If In[B(x) # 0]], then Vm[2m # upla(p) # 0], and if
Vn[B(n) = 0], then Vm[2m + 1 # upla(p) # 0]].

LLPO and BCP together give a contradiction: assuming both, find p such that
ValOp T o — Vm[2m # upla(p) # 0]] or Va[Op C o — Ym[2m+1 # upla(p) # 0]].
The sequences 0(2p) * 1 and 0(2p + 1) * 1 show that both alternatives are false.
Markov’s Principle,

MP: Va[-—dn[a(n) # 0] — dn[a(n) # 0]]
has been defended by Markov for algorithmically computable « only.

1.2 Descriptive set theory

Information on classical descriptive set theory may be found in Lusin [17], Moschovakis
[22], Kechris [14] and Srivastava [27]. Some results on the borderline of classical and
intuitionistic descriptive set theory may be found in Moschovakis [19] and [21].

1.2.1 Some basic notions

Forall X,y C w¥, forall p: w* — w*, we define: ¢ reduces X to Y if and only
if YVala € X < pla € V]. We define: X reduces to Y, X =< Y, if and only if
there exists ¢: w¥ — w* reducing X to ). For all &y, X1, Vo, V1 C w¥, we define:
(Xo, X1) simultaneously reduces to (Yo, V1), (Xo, X1) = (Do, V1), if and only if there
exists : w* — w® reducing Xy to )y and also & to ).

Let £ be a class of subsets of w®.

"LPO and LLPO were introduced by E. Bishop, as special cases of the principle of the
excluded middle X vV —X. If one reads well-known theorems constructively, many of them
turn out to be equivalent to one of these ‘principles’. From a constructive point of view, these
‘principles’ are, of course, totally wrong.

Journal of Logic & Analysis 14:5 (2022)



14 Wim Veldman

Assume X C w®. We often say ‘X is K for ‘the set X belongs to the class &’ .

We define X C w® is K—complete if and only if K is the class of all } C w* reducing
to X', and we define X C w® is K—-universal if and only if 8 is the class of all sets of
the form X | «, for some o in w®.

Note that if X' is K—universal then X is K—complete.

1.2.2 Open sets and closed sets

20 :={Gs|Bew}and IV := {Fp | B € w*}.

& :=A{a| In[a(n) # 0]} = {a | a#0} and A, := {a | Vn[a(n) = 0]} = {0}. &
18 2?—complete and A; is H(l)—complete.

Z/lSl = {Oé ‘ oy € Qa,} = {Oé ‘ Hn[a[(@n) 7& 0]} and Z/[Pl = {a | o € ]:a]} =
{a | Vnloy(agn) = 01}. US is E?—universal and UP; is H?—universal.

1.2.3 Borel sets of finite rank

For each m > 0, for each 8, we define gg,fgl C w¥ by induction. gé := G and
.Fé := Fp; and, for each m > 0, gg}“ = U, P and fg’“ =M. 9%

For each m > 0, for each 3, the pair of sets (Qg, Fg) is called a complementary pair
of (positively) Borel sets of rank m.

For each m > 0, %), := {G} | # € w¥} and IL), := {F} | § € w*}.

For each m > 0, we define &, A,, C w* by induction. &, .A; were defined in Section
1.2.2. Foreachm > 0, &,41 := {a | In[a € Ayl} and Ay := {a | Vnla" € Eyl}.

For each m > 0:

En is 2 —complete and A,, is I, —complete.

(&Em, Am) is a complementary pair of rank m.

USy :={a|ag e Gl andUP, = {a| oy € FJ}.
US,, is B9 —universal and UP,, is TI% —universal.
US,UP,,) is a complementary pair of rank m.

Journal of Logic & Analysis 14:5 (2022)
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1.2.4 Borel sets in general

The set HRS of the hereditarily repetitive stumps is defined inductively: for each
stump 0, 0 € HRS + (0(0) =0—Vnlo" € HRS A Vmdn > m[o" = am]).

For each ¢ in HRS, for each 5, we define gg,fg C w* by induction: if ¢ = 1%,
then G§ = Gg and F§ = Fp; and, if o # 1%, then G§ := |J, Fg, and F3 := ), G5
Note that for each o in HRS, for each S, gg # ]—"g . The pair of sets (Qg,]—"g) is
called a complementary pair of (positively) Borel sets of rank o .

For each o in HRS, £ := {G§ | € w¥} and I := {Fg | B € w*}.

For each o in HRS, we define &,, A, C w® by induction: if ¢ = 1%, then
E =& and A, := A;; and, if 0 # 1%, then &, := {« | In[a” € Ay]} and
Ao, = {a | Vn[a" € Em]}. For each o in HRS, &, is X —complete and A, is
% —complete and (£,, .A,) is a complementary pair of rank o.

For each o in HRS, US, := {a | ayy € G} and UP, := {a | ay € F,}. For
each o in HRS, US, is X2 —universal, UP,, is IIY —universal and (US,,UP,) is a
complementary pair of rank o.

The function S* : w* — w“ has been defined in Section 1.1.8. Note that Vo €
HRS[S*(0) € HRS].

Define 1* := 1 and, for all m, (m + 1)* = $*(m*). Note that for all m > 0, £ = %0,
and &, = &, and TIY, =M. and A, = Ay, . ..

Bovel := {GF | 0 € HRS, B € w’}.

The following is proven in Veldman [35, Theorems 4.9, 7.9, 7.10].

Theorem 1.2 (Borel Hierarchy Theorem)

(i) Forall o,7 in HRS, if o < 7, then &, A, reduce to both £, and A, .
(i) (Notusing BCP): For all o in HRS:
Vo: w? = wJaf(a € & <> pla € &) N (€ Ay < pla € Ay)]
(iii) (Using BCP): For all o in HRS:
Vo: w? = w?[plés C Ay — Jafa € Ay A pla € Ay]] and
Vo: w = w’[p|lA, C & — Jala € & N pla € E]]; or, equivalently,
for all X in Hg, if &, C X then Ja € A [a € X1, and
forall X in X0, if A, C X, then Ja € E,[a € X]

Theorem 1.2(iii) implies that &, positively fails to be II? and A, positively fails to be
2?, . For the intuitionistic mathematician, Theorem 1.2(ii) does not establish the hierarchy,
as, for almost every o in HRS, he is unable to prove: —Jafa ¢ E, N a ¢ A,].
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16 Wim Veldman

1.2.5 On disjunction

For every infinite sequence Xp, X, A3, ... of subsets of w“, we define:
D, (X)) = {a | In[a" € A,]} and C, (X)) := {a | Vn[a" € X,]}

D,(X,), C,(X,) are the disjunction and the conjunction of the infinite sequence
Xo, X1, Xa, . .., respectively.

Note that, for each o in HRS, if o # 1*, then &, = D,,(Asn) and A, = C,(Eyn).
For all Ay, X} C w*, we define:

D(Xp, X)) := {a | Ji < 2[a’ € X;]} and D*(Ap) := D(Xp, Xp)
D(Xy, &) is called the disjunction of Xy and X .

Note that Z C w* reduces to D(Xp, A1) if and only if there exist Zy, Z; such that
Z=ZyUZ and Vi < 2[Z; =< X}].

The following result is not difficult but very important.

Theorem 1.3 —(D2(A;) C D*(A))).

Proof Assume D2(A;) C D?(A;) = {a|a® =0 Vv o' = 0}. Note that D2(A;) isa
spread containing 0. Applying BCP, find m such that either Yoo € D2(A)[0m C o —
a® = 0]; or Va € D2(A)[0m T o — a! = 0]. Both alternatives are false. O

Theorem 1.3 shows that the union of two H?—sets is not always H(l): D(A;, Ay) does
not reduce to A;. This result admits of a vast extension.

Assume that 0 € HRS. Define, as in Veldman [35, page 39]:
o is weakly comparative <> (U(O) =0 — VmVndplc™ <o’ A " < a”])
The following result is [35, Theorem 8.8].

Theorem 1.4 (The persisting difficulty of disjunction) For each o in HRS, if o is
weakly comparative, then D(A,, A,) does not reduce to Ag+(y).
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1.2.6 Projective sets

For each X C w, Ex(X) := {a | b[Ta,f" € X} = {ay | @« € X} and
Un(X) :={a | Vp[ o, B € X1}. Ex(X) is called the projection of X', and Un(X) is
called the co-projection of X.

For each 3, £F g := Ex(Fp) and UG := Un(Gp).

¥l :={EFs | B € w*} is the class of the analytic sets and I} := {UG4 | B € w*}
is the class of the co-analytic sets. ¥} thus consists of the projections of the closed
subsets of w* and H{ consists of the co-projections of the open subsets of w*.

For each 3, (Efg, ug@) is called a complementary (21, H}) —pair.

US! = {a|ay € EFy,} and UP] := {a | ayr € UGy, }. We shall prove that US]
is 2}—universal; see Theorem 2.1(i). We shall prove that L{P{ is H}—universal; see
Theorem 4.1(1).

&l = {a | IyVnla(n) = 01} and Al := {a | Vy3n[a(Fn) # 0]}. We shall prove
that &! is 31 -complete, see Theorem 2.1(ii). We shall prove that Al is II} —complete,
see Theorem 4.1(i1).

For certain purposes, the class 21 is too wide. We therefore introduce the class
Ei’* = {EF 3 | Spr(B)} of the strictly analytic sets. 2{’* consists of the projections of
the subsets of w* that are both closed and located.

For certain purposes, the class H} is too narrow. We therefore introduce the class:
" := {Un(X) | X € Borel}

H{Jr is the class of the broadly co-analytic sets.

For each 3, UEF g := Un(EFp) and EUG 5 := Ex(UGp).

I = {UEFs | B € w} and B} := {EUGs | B € w¥}.

For each 3, (EUGg, UEF g) is a complementary (Eé, Hé)—pair.

&= {a | 3VyVn[a(Ty, 6 'n) = 01} and A} := {a | VéFyIn[a(T, 0 'n) # 0]}. We
shall prove that 821 is 2%—complete, and that Aé is Hé—complete; see Theorem 7.1(ii).

USY = {a | ay € EUG,,} and UP} := {a | ayy € UEF,,}. We shall prove that
US) is X —universal, and that P} is TI}—universal; see Theorem 7.1(i).
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18 Wim Veldman

1.2.7 Perhaps

For every X C w®, Perhaps(X) := {a |30 € X[a# [ — a € X]}.
If X is inhabited, then X C Perhaps(X).
X C w¥ is perhapsive if and only if X = Perhaps(X).

In Waaldijk [41], perhapsive subsets of w“ are called weakly stable. [41] is the
birthplace of the notion of ‘perhapsity’. The notion has been studied further in Veldman
[31, 33, 36].

Theorem 1.5
(i) Forall X,y C w®,if X <Y and ) is perhapsive, then X is perhapsive.
(i) D?(A;) and & are not perhapsive.
(iii) Ay is perhapsive and —(D*(A;) < A).
(iv) A} is perhapsive and —(D?(A;) < A}).

Proof (i) Let X, ), ¢ be given such that ¢: w* — w* reduces X to ) and ) is
perhapsive. Let «, 8 be given such that § € X and a # § — o € X. Note that
o|B € YV;and, if p|la# p|f, then a # 3, o € X, and p|a € Y. As ) is perhapsive,
we conclude that | € Y and o € X.

We thus see Va[d8 € X[a# 5 — a € X] — a € X],ie X is perhapsive.

(i) Let o in D2(A;) be given. Define g such that (o)’ = 0 and Vj[—3n[j =
(0) x n] — ao(j) = a(j)]. Note that ag € D?*(A;) and, if a # oy, then a! = 0 and
a € D?(A;). We thus see that Yoo € D2(A))[a € Perhaps(}D)z(Al))]. Using Theorem
1.3, we conclude that D?(A;) # Perhaps (ID)Z(Al)) ,ie D?(A;) is not perhapsive.

As D?(A)) is 2(2) and reduces to &, also & is not perhapsive, by (i).

(iii) Let o, 8 be given such that § € Ay and a # § — o € A,. Let m be given.
Find n such that 3™(n) # 0. Either o™(n) = f™(n) # 0; or o # B, a € A;, and
dpla™(p) # 0]. We thus see that Vm3p[a™(p) # 0], ie a € A,. Conclude that
Va[38 € Lhla# 8 — a € A] = a € Ay], ie A, is perhapsive.

It follows that D?(.A;) does not reduce to A, by (ii) and (i).

(iv) Let «, 3 be given such that 8 € A} and o # 8 — « € A}. Let 7 be given.
Find n such that B(7n) # 0. Either a(yn) = B(Fn) # 0; or a # 3, o € Al, and
Jpla(yp) # 0]. We thus see that VyIp[a(yp) # 0], ie a € Al. Conclude that
Val[dB € A}[a #8—ac A}] — € A%], ie A} is perhapsive.

It follows that D?(A;) does not reduce to A!, by (ii) and (i).
Note that, as A, < Al (iii) in fact follows from (iv). m
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1.3 The main results of this paper

Apart from this introductory section, the paper contains sections numbered 2 to 7.
In Section 2, we first establish some properties of the class X1 .
We then prove that the set

IF = {a| 3B € (To)*VYnlB(n + 1) <xp B}

ie the set of all « such that the tree T, := {s | V¢ C s[a(t) = 0]} is (positively) ill-
founded with respect to the Kleene-Brouwer-ordering <gg, is 2% but not E{ —complete.
We also prove that the set

UNC = {p | VaTy € FgVn[y # "1}

of codes of the positively uncountable closed subsets of w* is E{—complete, and that
the same holds for the set

Share*(ZNF) := {B | Spr(8) N Ja € FgVm3n > m[a(n) # 0]}

of codes of the spreads that contain an element « such that D, = {n | a(n) # 0} is an
infinite subset of w.

The final subsection of Section 2 is devoted to the class 2{* of the strictly analytic
subsets of w. E}* is a proper subclass of E} and is lacking some of the useful closure
properties of 2} .

In Section 3, we give intuitionistic proofs of the Separation Theorems due to Lusin
and Novikov. Novikov’s Theorem is the stronger one and says that, given any infinite
sequence Xy, A7, ... of 2%* subsets of w* such that #,(X},), (that is, in a constructively
strong sense: (,(X,) = (), one may find an infinite sequence By, B, ... of Borel
subsets of w® such that Vn[X, C B,] and #,(B,). The proofs use Brouwer’s Thesis on
bars in w*.

We give an intuitionistic proof of Lusin’s result that the range of a strongly one-to-one
function from a spread into w* is (positively) Borel. It is shown that the positively
Borel set D*(A4;) := {a | a® =0 V o' = 0} positively fails to be the range of a
strongly one-to-one function from a spread into w®.

In Section 4, we establish some properties of the class H% of the co-analytic subsets of
w". We prove that the set

WF = {a | V3 € (To)*In[B(n) <gs B(n+ 1]}
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ie the set of all « such that the tree T, is well-founded with respect to <kg, coincides
with Al and thus is II} —complete. The proof uses Brouwer’s Thesis on bars in w®.
We also show that the set

Sink“(ALMOST*FIN) :={ | Spr(B) A Vo € FgV(¢ € [w]“In[a o ((n) = 0]}

consisting of the codes of all spreads all of whose elements a have the property that
D,, is an almost-finite subset of w, is H{—complete. We then prove that the set

511! = {a | Iy[Vnla(Fn) = 0] AVS[S # v — Tn[a(dn) # 011}

consisting of those « that admit exactly one path ~ is not H} although, in classical
descriptive set theory, £ 11 l'is H} —complete. It remains true that every H} set reduces to
el

In Section 5, we prove that there exist 21 sets that positively fail to be H} and H}
sets that positively fail to be 2{*. We use Kripke’s scheme KS in order to prove that
there are II] sets that are not 3. We also see that some X} sets positively fail to be
(positively) Borel and that some H} sets are not (positively) Borel. Using Brouwer’s
Thesis on bars in w*, we prove one half of Souslin’s Theorem: 2%* N H{ C Borel.
The converse statement fails intuitionistically.

In Section 6, we study the set
ALMOST*COUNT = {8 Spr(B) A I8V € FsVaTn[ya(n) = §"a(n)]}

of codes of almost-countable spreads. This set is Eé and probably not II!, although
we have no proof of the latter fact. We prove, again using Brouwer’s Thesis on bars in
w®, that the almost-countable spreads are just the spreads that are reducible in Cantor’s
sense and that they form a hierarchy in various senses, the so-called Cantor-Bendixson
hierarchy.

In Section 7, we study the class II} of the co-projections of analytic sets and the
class Eé of the projections of co-analytic sets. We prove that the Second Axiom of
Continuous Choice, ACj 1, implies: Hé - Z% and thus causes the collapse of the
(positive) projective hierarchy. We draw a parallel with arithmetic, where Church’s
Thesis causes the collapse of the (positive) arithmetical hierarchy.

2 Analytic sets

2.1 The class X!

Some relevant definitions may be found in Section 1.2.6.
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Definition 1 X C w“ is analytic or X! if and only if there exists 3 such that
X =EFp :=Ex(Fp) = {a | I a,v" € Fzl}.

X C w* thus is analytic if X’ is the projection of a closed subset of w*.

Definition 2 A Souslin system is a mapping s — P that associates to every s a
subset Py of w*. The Souslin operation applied to such a system produces the set

ASPS = Ua mn Pan .

The next theorem shows that the class 2} behaves nicely. The class is closed under the
operations of countable union and countable intersection, and contains all (positively)
Borel subsets of w“. Every set reducing to an analytic set is itself analytic. The class
2} is also closed under projection and under the Souslin operation.

Theorem 2.1
() US]:={a|ay € EF,,} is Tl -universal.
(i) & = {a | IWVnla@n) = 01} is B -complete.
(iii) For every infinite sequence Xy, X\, ... in 3}, J, X, € X! and N, X, € T1, ie
Vﬁ;l’yﬂé[un gfﬁn = gf"»y A ﬂn 5]:5:1 = EFs].
(iv) Borel C Xl ie Vo € HRSVBIYIONGE = EFy N Fg = EFs].
(v) Forall X Cw*,if X € X1, then Ex(X) € X1, ie VBIV[EX(EF5) = EF,].
(vi) Forall X,Y Cw®,if X XY € X!l then X € X!, ie VAYyp: w* — w*Iy[{c |
pla € EFg} =EF,].
(vii) Foreach 3, A;EFps € 2%.

Proof (i) For each a, a € Z/{S% & ag € EFy & Mo,y € Fyl <&
IyVnlay("ayp, v 'n) = 0]. Define 8 such that, for all n, forall a, ¢ in ", B("a,c™) # 0
if and only if, for some m < n, "aj,c'm < n and a;("ay, ¢ 'm) # 0. Then, for each
a, o € EFg if and only if 3y[ o,y € Fg] if and only if IWVn[B("a, v 'n) = 0] if
and only if 3yVn[a (" oy, v 'n) = 0] if and only if ayy € EF,, if and only if a € Z/IS{.
Conclude that Z/{S% =EFg € 2}.

Also, for each ¢, EF. = US! | €. Conclude that S} is ] -universal.

(ii) For each «, o € 511 < IyVn[a(Fn) = 0]. Define F := {« | Vnla;(agn) = 0]}
and note 51] = Ex(F). Define 8 such that Va[S5(a) = 0 <> Vn[ayn < length(a;) —
aj(agn) = 0]] and note that F = F5. We thus see that &/ € X}.

Let € be given. Note that Va[a € EF. +» IyWnle("a,~ 'n) = 0]]. Define p: w* —
w® such that YaViVe € wk[(pla)(c) = e("ak,c™)]. Note that ¢ reduces £F. to 511 .
Conclude that &/ is 31 —complete.
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(iii) Let Xp, X7, ... be an infinite sequence of analytic subsets of w*. Using ACy 1,
find 8 such that Vn[X,, = £Fg:]. Note that for all o, v € |J,, & > InIy["a, 7" €
Fpn] > [T, y0 ST € Fgyo]. Define 2 := {Ta,y7| VK[ BYO T, vy 0 STk) = 01},
and note that Zo € IIY and | J, X, = Ex(Z) € 3.

Note, using ACy 1, that for all a:

o€ ﬂXn < VnIy[Ta, 7 € Farl < IYWn[To, " € Fpnl

n

Define 2, := {"a,~v" | VoVm[B"("a, " 'm) = 0]}, and note that 2, € H(l) and
N, X = Ex(Z)) € 3.

(iv) follows from (iii) by induction on the class of positively Borel sets.
(v) Let 5 be given. Note that for every «:
a € ExX(EFp) < I[Ta,y' € EFgl < IyF[Ta, v, 07 € Fgl
< IV T, it € Fpl

Define Z := {Ta,y" | Vo[B(""a,v vy 'n) = 0]} and note that Z € H(l) and
Ex(EFp) = Ex(Z) € 3.

(vi) Let ¢: w* — w* and (3 be given. For every a, p|la € EFg « [ p|a,y" €
Fs]. Define Z := {"a,y" | Vn[B("¢p|a,7n) = 0]} and note that Z € I and
{a|pla € EFs} = Ex(Z) € 3].

(vii) Let B be given. Note, using ACy ;: for each a:

a € AEFpe <> IVnla € EF gm] <> FyVno[" a, 6 " F gl
© I30Vnl", 8" € Fgm] > IVnl"a, ()" € Fgn]

Define Z := {"a,y" | VaVm[B87"("ay, (yiy)* 'm) = 0]} and note that Z € H? and
AEFp = Ex(Z2) € B1. m

2.2 Theset ZF

Definition 3 For all s,t in w one defines: s <kp t if and only if either t C s or
di[i < length(s) Ai < length(z) si =i A s(i) < 1(i)].

<kg 1s a linear ordering on w. We define, for all s, t, maxgp(s, ) := s if t <gp s, and
maxgp(s, f) := t otherwise. <gp is called the Kleene-Brouwer ordering of w.

Definition 4 We define ZF := {« | 38 € (To)“Vn[B(n + 1) <gp B(n)]}.
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ZF is the set of all « such that the tree T, := {s | V¢ C s[a(r) = 0]} is (positively)
ill-founded with respect to the Kleene-Brouwer-ordering <gp.

In classical mathematics, ZF = &/, see also Theorem 4.2. In our intuitionistic context,
the two sets are different. The reason is that the class of all sets reducing to ZF is not
closed under the operation of finite union:

Theorem 2.2

(i) The set D*(A;) does not reduce to the set ZF : D*(A;) ﬁ IF.
(ii) The set £ is a proper subset of the set IF: £} S IF.
(iii) The set ZF is £1 but not X} -complete.

Proof Assume that ¢: w® — w® reduces D*(A;) = {a | a® =0 V a! =0} to
IF. Assume: o € D2(A;). Define ag, o1 such that Vi < 2[(c)) =0 A Vj[—3n[j =
(i) * n] = o;(j) = a()]]. Note that Vi < 2[c; € D*(A;) A @|oy € ZF]. Find by, 6
such that Vi < 2Vn[d;(n) € Tola; N 0i(n 4+ 1) <gp 0;(n)]. Define ¢ such that, for each
n,

(1) if Vi < 2Vj < n[6i(j) € T,|a]. then ((n) = maxgp(do(n), 61(n)), and

(2) forall i < 2,if Jj < n[d(j) ¢ Ty|ol, then ((n) = 1—i(n).
This is a good definition: if, for some i < 2, for some j, 0;(j) ¢ Tylq, then o # «;,
and, therefore, o = «j_;, and, for each j, §,_;(j) € Tyla- Note that Vr[((n) €
Tylo N C(n+1) <gp ((n)], and conclude pla € ZF, and a € D2(A)).

We thus see that Vo € D2(A;)[a € D?(A)]. According to Theorem 1.3, we have a
contradiction. Conclude that D*(A;) £ IF.

(ii) Assume that o € &. Find ~ such that Va[a(yn) = 0]. Note that Va[yn €
To N ¥(n+1) <gp yn] and o € ZF. We thus see that 511 CIF.

According to Theorem 2.1, D*(A;) < &/, but, as we saw in (i), D*(A4;) £ ZF.
Conclude that £ # ZF and & C TF.

(iii) Define Z := {"a,y" | Va[y(n) € T, N y(n+ 1) <kgp v(n)]} and note that
Z €Y and ZF = Ex(Z). Conclude that ZF is . As, according to (i), the analytic
set D?(A;) does not reduce to ZF, ZF is not 2%—complete. O

2.3 The sets UNC, UNC' and UNC"
Definition 5 X C w¥ is (positively) uncountable if and only if Va3p € XVn[( # o"].

X C w¥ is weakly (positively) uncountable if and only if Jafa € X] and Va €
Xvdg € XVn[p # o"].
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Clearly, every uncountable subset of w® is weakly uncountable. For spreads, the two
notions coincide:

Theorem 2.3 If F C w* is a spread and weakly (positively) uncountable, then F is
(positively) uncountable.

Proof Let /3 be given such that Spr(3) and F := Fj3 is weakly uncountable. Let p
be the canonical retraction of w® onto F. Note that Va[pla € F A (a # pla —
In[B(an) # 0])]. Let « be given. Find ¢ in F such that Vn[d # p|(a™)].

Let n be given. As the apartness relation # is co-transitive and 0 # p|(a”), either § # o
or o # p|(a). In the latter case, find m such that 3(a/'m) # 0. Note 3(6m) = 0 and
conclude that o/'m # dm, and § # o/*. Conclude that Va[d # o"].

We thus see that Va3d € FVn[d # "], ie F is uncountable. O

The following intuitionistic theorem is the same as Gielen—de Swart—Veldman [11,
Theorem 2.1], see also Veldman [39, Section 8], and was first proven by W. Gielen.
Cantor’s (classical) famous Perfect Set Theorem states that 2 embeds continuously in
every uncountable H? subset of w”. P.S. Alexandrov and F. Hausdorff, independently,
extended the result to Borel subsets of w* and M. Souslin showed that it also holds for
¥ subsets of w*. In our intuitionistic context the Theorem holds for every subset of
w®. This is due to the Second Axiom of Continuous Choice, AC; i, see Section 1.1.6.

Theorem 2.4 & C w* is (positively) uncountable if and only if 2* embeds into X .

Proof (i) First, assume: X C w* and 2¥ embeds into X'. Find ¢: 2¥ — X. We
now prove that X is positively uncountable.

Let a be given. Using induction, define § such that, for each n, é(n) € Bin and
d(n) C 6(n+1) and ¢| (6(n+1)) L o, asfollows. Define §(0) = 0 = ( ). Suppose n is
given such that d(n) has been defined. Find p such that ¢|(5(n) *0p) L ¢|(d(n)* 1p). If
o L ¢|(6(n)*0p), define 6(n+ 1) := d(n)*0p; and, if not, define 5(n+1) := 5(n)* Ip.
It will be clear that « satisfies the requirements. Now find ¢ in 2“ such that Vn[d(n) C €]
and define: 3 := p|e. Note that § € X and Vn[o" # ¢|e = (].

We thus see that Va3fg € X'Vn[o” # (], ie X is (positively) uncountable.

(i1) Next, assume X C w" is (positively) uncountable. We want to prove that 2%
embeds into X.
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Using the Second Axiom of Continuous Choice AC; ; (see Section 1.1.6) find ¢: w® —
w® such that Va[p|la € X A Vn[p|a # o"]].

We first prove: Vs3r3uls Tt A s C u A |t L ¢lu]. Let s be given. Define ¢
such that s C ¢ A &' = @|(s x 0). Note that |(s x 0) = &* # ¢|e. Find m such
that ¢|(s * Om) L ¢|gm and define ¢ := s * Om and u := gm. Clearly, t, u satisfy the
requirements.

Now define ¢ such that ¢(0) = O and, for each s in Bin, ((s * (0)) = ' and
C(s = (1)) = u”, where u is the least v such that {(s) =V A(s) TV A @V L op”.
Note that Vs € BinVr € Bin[s C t — ((s) C (()]. Find p: 2 — w" such that
Yy € 29Vn[{(Fn) T p|vy]. Find ¢: 2 — w* such that Vv € 2“Vn[y|y = ¢|(p|7)].
Note that ¢: 2% — X'. Also note that Vs € BinVr € Bin[s L t — ¢|({(s)) L ¢|({(D))].
Conclude that ¢: 2¥ — X and 2% embeds into X. O

Theorem 2.5
(i) The set w®") is B —complete.
(i) The set (w*)®) is Hg —complete.
(iii) The set Emb(2%¥, w®) is Hg —complete.

Proof (i) Using the Fan Theorem FT, see Section 1.1.7, note that for all ¢, ¢ €
W) & Wy € 29TIn[p(Fn) # 0] < ImVs € Bin,, In < m[p(sn) # 0]. Conclude that
w® s x9.

We now want to prove that the set £ reduces to the set w®*). Define ¢: w* — w®
such that YaVnVs € Bin,[(¢|a)(s) = a(n)]. Note that, for each «, for each n, if
n = ppla(p) # 0] then pla: 2¥ — w and Vo € 2¥[p(a) = a(n) — 1]. Clearly, ¢
reduces & = {a | In[a(n) # 0]} to w?). As & is 2?—complete, so is w®).

(ii) and (iii). We first prove that the two sets (W) and Emb(2“, w*) both belong to
.

First note that for all o, o € (w*)@") if and only if Vn[¢" € w®™)]. Using (i), conclude
that (w*)®") € IIY.

Then note, using the Fan Theorem FT: for all ¢, ¢ € Emb(2¥,w®) if and only if
¢ € (W) and Vs € BinVa € 29V € 2%3n[ip|s * (0) x an L p|s * (1) x Bn] if and
only if ¢ € (w*)?*) and Vs € Bin 3nVt € Bin, Yu € Bin,[p|s* (0) ¢ L @|s* (1) *u].
Conclude that Emb(2¥, w®) € Hg.

We now prove that the set A, reduces to both the set (w*)?*) and the set Emb(2¥, w®).
Define 1/ : w* — w® such that, for all m, forall a, forall s in 2<%, if m < length(s) and
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dn < length(s)[a™(n) # 0], then (¢ |a)™(s) = s(m)+ 1, and, if not, then (v|ca)™(s) = 0.
Note that for all «, for all m, (i) if & € &) then (¢|a)": 2¥ — w and, for all 3 in 2%,
(|ay™(B) = B(m), and (ii) if In[(x|a)™(Bn) # 0] then o™ € ;. Conclude that for
all a, for all m, o™ € & if and only if (¢|a)™: 2 — w. Therefore, for all o, € A,
if and only if ¥|a: 2¢ — w®.

We thus see that 1 reduces A, to (w*)?"). As Aj is IIS—complete, also (w*)*") is
Hg—complete.

Note that for all «, if a € Ay, then |a: 2¥ — w* and V5 € 2¢[(Y|a)|5 = B].
Conclude that for all o, & € A, if and only if |a € Emb(2¥,w®). We thus see
that ¢ reduces A; to Emb(2¥,w”). As Aj; is Hg—complete, also Emb(2¥, w%) is
Hg—complete. O

We will need the next Lemma, Lemma 2.6, in the proof of Theorem 2.7(iii).

Lemma 2.6

(i) For all finite A C w, for every P C A, for every proposition Q, if Vin € A[m €
P v Q], then Vm € Alm € P] V Q.

(ii) For all finite sets A,B C w, forall P C A, for all Q C B, if Vm € AVn € B[m €
P VvV neQ],thenVm e Alm € Pl V Vn € B[n € Q].

Proof (i) Use induction on the number of elements of A. If A = (), the statement is
true. Now assume the statement has been proven for A, and g € w \ A. We prove that
the statement is true for AU{g}. Assume P C AU{q} and Vm € AU{q}[m € P Vv Q].
Then, by the induction hypothesis, Vm € A[m € P] V Q. Butalso g € P V Q.
Conclude that Vm € AU {q}[m € P] vV Q.

(i) Assume that A, B are finite subsets of w, and Vm € AVn € Bjm € P V n € Q].
Using (i), conclude that Vrn € B[Vm € Alm € P] V n € Q]. Using (i) once more,
conclude that Vin € A[m € P] V Vn € B[n € Q]. O

Definition 6 For each 3, we define: [ is a perfect-spread-law, Pfspr(f3), if and only
if Spr(8) and 5(0) = 0 and, for all s, it 5(s) = 0, then:

dFulsCt ANsCuANtLluAN B()=Lwu)=0]

If Pfspr(B3), then F3 = {a | Vn[f(an) = 0]} is called a perfect spread.
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In intuitionistic real analysis it is not true that the image of the closed interval [0, 1]
under a continuous function is itself a closed subset of R. One may see this from
the failure of the Intermediate Value Theorem® and the failure of the theorem that a
continuous function from [0, 1] to R always attains its greatest value. The next theorem
brings to light related facts. The image of Cantor space 2“ under a continuous function
from 2% to w® is always a located subset of w® but not always a closed subset of w®.
The latter remains true, however, if the function is strongly injective. F C w® is a
spread if and only if F is both located and closed; see Section 1.2.2.

Theorem 2.7

(i) Cantor space 2% embeds into every perfect spread.

(ii) Foreach ¢: 2 — w*, |2¥ is a located subset of w* .
(ili) Foreach p: 2¥ — w*, ¢|2¥ is a perfect spread and a fan.
(iv) —Vp € W)2IIBISpr(B) A @[2% = Fl.

Proof (i) Let 7 C w* be a perfect spread. Find 3 such that Pfspr(3) and F = Fg.
Define ¢ such that ¢(0) = 0 and, for all s in Bin, {(s x (0)) := u’ and ((s * (1)) = u”
where u is the least v such that v/ 1L v/ and ((s) © V' and ((s) = V" and B(V) =
BG") = 0. Define ¢: 2 — w® such that Vo € 2*Vn[((an) C ¢|a]. Note that
Va € 2¥[p|a € Fgl. Also note that for all «, 8 in 2¥, if a # 3, then, for some n,
an L Bn and ((an) L ((Bn), and p|a # p|B. Conclude that p: 2% »— F.

(ii) Let ¢: 2¥ — w* be given. We define ¢ as follows. Let s be given. Note
that Voo € 2¥3Im[s C plam V s L plam]. Using FT, find m such that Vo €
2°[s C plam V s L plam], ie Vt € Bing[s C @[t V s L ¢|t]. Define d(s) := 0
if 3t € Biny[s T ¢|f] and 6(s) := 1 if V¢ € Biny[s L ¢|rf]. Conclude that
Vs[d(s) = 0 <> Ja € 2¥[s T ¢|a]] and |2¢ is a located subset of w*. Also note that
Fan(d) and ¢[2¥ C F;.

(iii) Let ¢: 2% — w* be given. Using (ii), find § such that Vs[é(s) = 0 <> Ja €
2¥[s  @|a]] and Fan(d) and [2¥ C F;.

We first prove Pfspr(d). Let s be given such that d(s) = 0. Find « in 2% such that
s C |a. Find m such that s © @|am. Find n such that p|(@m * 0n) L ¢|(am x 1n)
and define: t := p|(@m * On) and u := |(am x 1n). Note 6(f) = d(u) = 0 and s C ¢
and sCuand t | u.

Assume s € Bin. Note that Voo € 2¥[p|(s x (0) * ay) # ¢|(s * (1) x ayy)] and
Voo € 29Fmlg|(s « (0) x agm) L ¢|(s * (1) * aym)] and, using FT, ImVa €

8See [40].
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2¢[| (s (0) xaqm) L | (s*(1)*agm)],ie ImVa € Bin,, Vb € Biny[p|(s*(0)*a) L
©|(s * (1) % b)]. Define (¢ such that, for each s in Bin, ((s) is the least m such that
Va € Biny, Vb € Bing[p|(s x (0) x a) L ¢|(s * (1) x b)].

We now prove F5 C ¢|2“. Let v € Fjs be given. Assume that s € Bin. Note that
Va € Bingy) Vb € Bing)lp|(s x (0) xa) Ly vV v L ¢|(s* (1) x b)]. Conclude, using
Lemma 2.6 that Va € Bing,)[¢|(s * (0) xa) L v] V Va € Bingy[y L ¢|(s * (1) xa)].

Define 7 in 2¥ such that Vs € Bin[n(s) = 1 <+ Va € Bingy[e|(s * (0) * a) L ~]1].
Define « in 2“ such that Vn[a(n) = n(an)]. Note that, for all 5 in 2%, for all n, if
n = upla(p) # B(p), then ¢|B L ~,ie, forall 5 in 2¢,if 8 L «, then ¢|8 L ~.

We now prove p|la = . Assume that p|a L «. Find n such that plan L ~.
Define m = n + ((an) and note that Vd € Bim,[d L an — ¢|d L ~]. Conclude
that Vd € Biny[p|d L ~]. Note that Vd € Bin,,[length(p|d) < m]. Conclude that
d(ym) # 0, which is a contradiction. We thus see that —(p|a L «) and p|a = 7.

Conclude that Vv € Fsda € 2¥[p|a = 7] and ¢[2¥ = F;.

(iv) Assume that Vo € (w*)@3B[Spr(B) A ¢|2¥ = F3]. Using Brouwer’s Continuity
Principle BCP (see Section 1.1.6) we prove that this assumption leads to a contradiction
as it implies LPO, see Section 1.1.11.

Let o be given. We intend to prove o =0 V a #0.

Define ¢: 2 — w® such that Vy € 2¥[¢|((0) *v) = o A ¢|((1) xv) = 0].
Note that p|2% = {a,0}. Find 3 such that Spr(3) and {a,0} = F3. Note that
Vs[B(s) =0 <« (s C a V s C 0)]. Note that Vy € Fg[y = a V v = 0]. Applying
BCP, find m such that either Vv € Fg[gm Cy—=~v=0],andOm L o V a=0;o0r
Vv € ]-'B[Qm C~v—v=al,and « = 0. Conclude that « =0 V «a #0.

We thus see that Va[ae =0 V « # 0], ie LPO, a contradiction. O

Definition 7 We introduce three subsets of w® :
UNC = {B | VaTy € FgVn[y # "1}
UNC' = {8 e UNC | Spr(B)}
UNC" .= {B | YaTy € EFsVnly # o1}

UNC, UNC' and UNC" are the sets of the codes of (positively) uncountable closed

sets, (positively) uncountable located closed sets and (positively) uncountable analytic
sets, respectively.
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The classical result corresponding to the following theorem is due to W. Hurewicz,
see Kechris [14, Theorem 27.5]. The proof in [14] is very different from ours and not
constructive.

Theorem 2.8 UNC, UNC' and UNC" are 1 —complete.

Proof WEe first prove that UNC is E1.

Using Theorem 2.4, note that, for each 8, 3 € UNC if and only if there exists
@p: 2 Fz. Now define A :={"5,07 | p: 2¢ — w A Vs € 25Vt C p|s —
B(t) = 01}. Then UNC = Ex(A). Note, using Theorem 2.5, A € II3. Conclude,
using Theorem 2.1, that UNC € E1.

We now prove that UNC is 2%—complete. Define ¢: w“ — w* such that, for all «,
for all s, (¢|a)(s) = 0 if and only if there exists u such that V¢ C u[a(f) = 0] and
length(#) = length(s) and Vi < length(s)[s(i) = 2u(@) + 1 V s(i) = 2u(@) + 2]. We
prove that ¢ reduces &/ to UNC.

First, assume that o € 511. Find ~ such that Vn[a(7n) = 0]. Define 3 such that, for
all s, B(s) = 0 if and only if Vi < length(s)[s(i) = 2v(@) + 1 V s() = 2v(@) + 2].
Note that Pfspr(3) and Fg C ]{p‘a. Conclude, using Theorems 2.5(i) and 2.4, that
pla e UNC.

Now let « be given such that p|a € UNC. Using Theorem 2.5, find 3 such that
Pfspr(8) and Fg C Fo- Find § in . Find v such that Vn[6(n) = 2y(n)+1 V d(n) =
27(n) + 2]. Conclude that Vr[a(7n) = 0] and « € 511. We thus see that 511 reduces to
UNC. As &] is Tl -complete (see Theorem 2.1) so is UNC.

We now consider UNC’. Define A’ := {73, € A | Spr(B)}. Note that A’ € II9
and UN'C' = Ex(A"). Conclude that UN'C' € %!. We now want to prove that UNC’
is 2}—complete. We would like to use again the function ¢ we used in the previous
paragraph, but, unfortunately, not: for every «, p|« is a spread-law. We therefore
define ¢ : w* — w® such that, for all «, for all s, (¢)|a)(s) = 0 if and only if there
exist k, ¢ such that (p|a)(f) = 0 and s = ¢ x Ok. Observe that, for every «, 1|« is a
spread-law and F |, C Fyo. We prove that ¢ reduces El toUNT'.

First, assume that o € &]. Then Fola € UNC. Note that Fola © Fylass0also Fy,
is (positively) uncountable, and, as 1|« is a spread-law, ¥|a € UNC'.

Now let « be given such that ¢)|a € UN'C’. Find § such that Pfspr(8) and F3 C Fpla-
Note that forall s, if 3y € F3[s C 7], then Vi < length(s)[s(i) > 0]], and (¢|a)(s) = 0.
Conclude that Fg C Fyy, and a € &} .
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We now consider UNC". Define A" := {"3,¢7 | p: 2% — EF3}. Note, using the
Second Axiom of Continuous Choice AC; ; (see Section 1.1.6), for every /3, for every
@, p: 2% = EFg if and only if Jop: 2¥ — wVy € 2*[ |y, |y € Fa]. Define
A= {"8,07 [ @r: 29— w” A @i 2% = w” A Yy € 2°[Torly, euly™ € Fpl}.
Note that UN'C" = Ex(A") = Ex(A*), and, using Theorem 2.5, A* € II9. Conclude
that UNC" € %1.

In order to see that UN'C” is £} -complete, we remind ourselves of the fact: II? C X1.
Define 7: w* — w* such that V/Vs[(7]5)(s) = B(s;)] and note that VBIEF -5 = F3l.
Conclude that 7 reduces UNC to UNC”, and, as UNC is E}-complete, so is
UNCc”. O

2.4 Share(ZN F) and Share(ZN F N 2%)
The following definition occurs already in Veldman [31].

Definition 8 Foreach X C w®, we define Share(X) := {3 | Spr(5) N Iy € Falvy €
X1}

If 3 € Share(X), one says: ‘The spread Fg shares an element with the set X’.
Definition 9 ZNF := {« | Vm3n > m[a(n) # 0]}.

If « € ZN'F, then D,, := {n | a(n) # 0} is a decidable and infinite subset of w.
The next result corresponds to a well-known fact in classical descriptive set theory, see

Kechris [14, page 209, Exercise 27] or [27, page 137, Exercise 4.2.3].

Theorem 2.9 Share(ZN F) and Share(ZN F N 2¥) are £1 —complete.

Proof We first observe that these two sets are indeed ] . Note that {3 | Spr(3)} is
Hg. For each 3, 3 € Share(ZN F) if and only if Spr(3) and a3 € [w]“Va[B(an) =
0 A «ao((n) # 0]. Conclude, using Theorem 2.1, Share(ZN F) is 2{.

For each 3, B € Share(ZNF N 2¥) if and only if Spr(8) and Ja € 2¥3( €
[w]“Vn[B(an) = 0 A a o ((n) # 0]. Conclude that Share(ZN F N 2%) is Z}.

We now prove that Share(ZN F) and Share(ZN F N2“) are Z{ —complete. First define
§ such that §(0) = 0 and VsVn[d(s * (n)) = 6(s) * On * (1)]. Then define p: wW¥ — w®
such that VaVs[(¢|a)(s) = 0 «» In3tls = 5(¢) * On A Vu C t[a(u) = 0]]]. Note that,

Journal of Logic & Analysis 14:5 (2022)



Projective sets, intuitionistically 31

for each a, Spr(y|a), ie ¢|a is a spread-law, and F |, C 2*. We show that ¢ reduces
&! to both Share(ZN'F N 2%) and Share(ZN F).

First, assume that o € 811. Find ~ such that Va[a(3n) = 0]. Note that VaVi[r C
o(yn) — (gp\a)({) = 0]. Find € in 2% such that Va[6(7n) C €]. Note that ¢ € F, and,
as Vnle(n + >1Z( () = 1], also e € ZN'F. Conclude that p|a € Share(ZN F N
2¥) C Share(ZN F).

Now assume that ¢|a € Share(ZN'F). Find ¢ in ZN'F N F,,. Define v such
that v(0) := pi[e(i) # O] and Vn[y(n + 1) = pile(y(n) + i+ 1) # 0]. Note that
Vn[d(7n) C €] and Vn[a(n) = 0] and « € 811. We thus see that ¢ reduces 511 to
both Share(ZNF N 2¢) and Share(ZN F). It follows that these sets, like £}, are
%! —complete. i

2.5 Strictly analytic subsets of w“

Definition 10 X' C w® is strictly analytic or £1* if and only if there exists 3 such
that Spr(8) and X = EF 3 := Ex(Fp) = {a | Y[,y € F3l}.

X C wY thus is strictly analytic if it its the projection of a closed and located subset of
w"; see Section 1.1.4.

Recall that X C w? is located if and only if Ja[{s | Iy € X[s C v]} = D,], ie the
set {s | 3y € X[s T 71} is a decidable subset of w, and X C w® is semi-located if
and only if Ja[{s | Iy € X[s C 7]} = E,], ie the set {s | Iy € X[s = ~]} is an
enumerable subset of w.

Also recall that, for every infinite sequence Xy, X7, ... of subsets of w*, D,(AX},) =
{7 | 3Inly" € &,]} and C,(X,) = {7 | Vn[y" € X,]}; see Section 1.2.5.

The following theorem shows that 2%* is a proper subclass of 2% and behaves less
nicely.

Note that, as a consequence of the first item of the theorem, every strictly analytic subset
of w® is either empty or inhabited.

Theorem 2.10

(i) Forevery X Cw", X € 2}* S X =0V Jo: w — WX = plw?]).
(ii) Forevery X C w¥,if X € 2}*, then X is semi-located.
(iii) Forevery X C w“, if X is inhabited and semi-located, then X € 2{*.
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(iv) Not every inhabited and closed subset of w* is semi-located, ie ~V[([Iy[y €
Fsl — Fg is semi-located |.

(v) Every spread is strictly analytic but not every closed subset of w“ is strictly
analytic, ie VB[Spr(8) — F € B1*] but ~VB[Fs € B}, ie ~(I1) C E1*).

(vi) Semi-located and closed subsets of w“ are not always located subsets of w®, ie
—VB[Fs is semi-located — Fg is located ].

(vii) The closure of an open subset of w® is not always a closed subset of w*, ie
—VBIVF, = Gal.

(viil) E{* is closed under the operation of (finite) union but 2{* is not closed under
the operation of (finite) intersection, because: —V3[{8} N {0} € X!*] and
~WBI{B, 1} N {0, 1} € =1,

(ix) X1* is not closed under the operation of countable union, because: —ValJ,{8 |
B=0 A a®) #0} € B*].

(x) For every infinite sequence Xy, X, Xy, ... of strictly analytic and inhabited
subsets of w*, the sets | J,, X, D,(X,) and C,(X,) are strictly analytic.

(xi) For every strictly analytic X C w*, Ex(X) is strictly analytic.

Proof (i) First, assume that X' € 2{*. Find /3 such that Spr(3) and X = Ex(Fg).
There are two cases: (3(0) # 0 and 5(0) = 0. In the first case: X = F = (). In the
second case, let p : w* — Fg be the canonical retraction’ of w* onto F3. Define
v: w* — w® such that Ya[p|a = (p|a);] and note that X' = p|w®.

Conversely, let X C w® and ¢: w* — w*“ be given such that X = p|w*. Define
in 2% such that 5({ )) = 0 and, for each n > 0, for each s in w", 3(s) = 0 if and only
if Vi < n— 1[sy(i) C sp(i + D] and Vi < n[57( + 1) £ ¢|(su(i))]. Note that Spr(8),
Y = Fs and plw¥ =Y.

(i) Assume that X € B1*; that is, by (i) either X = ) or Jp: w* — W[X = p|w*].
Note that ) is semi-located. Now assume that X is inhabited. Find ¢: w* — w®
such that X = p|w®. Note that Vs[Iy[s T ¢|y] <> Jtls T ¢l|t]]. Define § such
that Va[(n; C plng — 6(n) = n;+ 1) A (—=(n; C p|ny) — d(n) = 0)]. Note that
Es = {s| 3v[s C ¢|y]} and conclude that X = p|w® is semi-located.

(iii) Assume that X C w is inhabited and semi-located. Find ¢ such that E5 = {s |
Iy € X[s C 7]}. Note that In[d(n) = ( )+1 = 1] and Vs € EsInIp[d(n) = sx(p)+1].
Define € such that £(0) = 0 and, for all s, n, if Ip[d(n) = e(s)*(p)+1], then e(s*(n)) =
d(n)—1, and, if not, then e(s* (n)) = 6(m)— 1, where m = pq[Ip[d(q) = (s)*(p) +1]].
Now define ¢: w® — w® such that YaVn[e(@n) C ¢|a] and note that X' = p|w®.

see Section 1.1.5
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(iv) Define ¢: w* — w® such that VaVs[(p|a)(s) = 0 < (s Co s 1 A
Os T a))]. Note that YaV~y[y € ]{p‘a > (7 =0V (w=1 o = Q))].
Assume that Va[}'ﬂa is semi-located]. Using ACy ;1 , find ¢: w® — w® such that
ValEyo = {s | 3y € Fyals C 71}, Note that (1) € Ey. Find p such that
(¥|0)(p) = (1) + 1. Find ¢ such that ¢/"(0g) = (1) + 2 and Vi < g[¢"(0i) = 0]. Note
that Va[0g C o — (1) € Ey|o]. Conclude that Ya[0g C o — o = 0], a contradiction.

(v) Let 8 be given such that Spr(3). Define ~ such that Vs[v(s) = 0 <> S(s;) = 0].
Note that Spr(y) and F3 = Ex(F,). Conclude that F3 € 2{*.

Assume that H(l) - 2%*. Then, according to (ii), V3[Fp is semi-located]. This
conclusion contradicts (iv).

V
A

(vi) Assume that V3[F3 is semi-located — Fg3 is located]. Let o be given. Define
$3 such that Vs[8(s) = 0 <> (length(s) > 1 — a o s(0) # 0)]. Note that Fg =
{7 | a@o~(0) # 0]}. Define ¢ such that for each n, if either length(n;) > 1 and
aony(0)#0,orn; =0 = () and a(ny) # 0; then: §(n) = n; + 1 and, if not, then
d(n) = 0. Note that E5 = {s | 3y € Fals T v]}. Conclude that F3 is semi-located.
Using the above assumption, conclude that 3 is located. Find € such that E5 = D,.
Note that if £(0) = 0, then 0 ¢ D. = E5 and Vn[a(n) = 0] and, if £(0) # 0, then
0 € D. = E5 and dn[a(n) # 0]. Conclude that Vn[a(n) = 0] V dn[a(n) # 0]. We
thus see that our assumption implies LPO and is contradictory; see Section 1.1.11.

(vii) Assume that V33y[F, = Gs]. Define p: w” — w* such that VaVs[(p|a)(s) =
0« (s LO A as L 0)]. Note that G,o = 0, and, for every «, if a # 0, then
Gola = {0 | 6 # 0}. By our assumption, Ya3y[F, = G,|4]. Using ACy, find
p:w? — w? such that Va[F,, = G,|a]. Note that F,y = ), and, for every «, if
o # 0, then ]-'p‘oé = w®. Assume that we find n such that (p|0)(On) # 0. Determine p
such that Va[Op C a — (p|a)(On) # 0]. Conclude that Va[Op C o — 0 ¢ F, ], a
contradiction. Conclude that Vn[(p|0)(0n) = 0] and 0 € Fpj0- @ contradiction.

(viii) Assume Xp, X1 C w® are strictly analytic. It suffices to consider the case that
both A}, X are inhabited. Find ¢ such that Vi < 2[90i: wY =W A A= 90i|w“’].
Define 1: w* — w* such that YaVn[|((0) x @) = @|la A |({n+ 1) x @) = ']
and note that Xy U X} = ¢|w?.

Assume that VB[{8} N {0} € E1*]. Using (i), conclude that V3[{3} N {0} =
0 Vv Fyly € {8} N0}, and VB[B # 0 VvV B = 0]. Using BCP, find p such that

either: V3[0p = B — B # 0] or VB[0p C B — B = 0]. Both alternatives are false, so
we obtain a contradiction.

Now assume that VS[{3,1} N {0, 1} € B{*]. According to (ii), for each 3, {3,1} N
{0, 1} is semi-located, ie F0[Es = {s | Iy € {8,1} N {0, 1}[s T ~]}]. Using AC; 1,
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find p: w* — w* such that, for each 3, E g = {s | Iy € {8,1} N {0, 1 }[s = ~1}].
Note that (0) € E |y and find p such that (¢|0)(p) = (0) + 1. Find m such that
VBI0m C B — (¢|B)(p) = (#|0)(p)]. Conclude that V3[0m = 3 — (0) € E,|5] and
VAIOmC 8 — 0€ {B,1} N{0,1}],ie VB[0Om C B — B = 0], a contradiction.

(ix) Assume that Vo[l J, {8 | 8 =0 A a(n) # 0} € ¥1*. Then, according to (i),

VolU, {BB=0N am)#0} =0V IyyeU,{B[B=0 A am) # 0}]], and
Ya[Vrla(rn) = 0] V dn[a(n) # 0]], ie LPO, a contradiction; see Section 1.1.11.

(x) Let Xy, &7, ... be an infinite sequence of inhabited strictly analytic subsets of
w“. Using (i) and ACy j, find ¢ such that Va[¢" : w* — w* A &, = ¢"|w"].
Define ¢: w* — w* such that, for all n, for all a, ¥|((n) * @) = ¢"|c and note
that |, &, = t|w® is strictly analytic. Define p: w“ — w* such that, for all n, for
all o, (p|((n) x @))" = ¢"|(a") and, for all i # n, (p|((n) *x @))" = o' and note that
D, X, = p|w® is strictly analytic. Define 7: w* — w“ such that, for all n, for all «,
(T]a)" = ¢"|() and conclude that C, X, = 7|w* is strictly analytic.

(xi) Assume X C w? is strictly analytic. Then, according to (i), one may decide
that X = () or X is inhabited. Note that Ex()) = 0 is strictly analytic. If X is
inhabited, find ¢: w* — w* such that X = p|w®. Define ¥: w* — w* such that
Va[y|a = (p|a)r] and note that Ex(X) = ¢|w® is strictly analytic. O

Using Theorem 2.10(x), one may prove that for every o in HRS, &, and A, are strictly
analytic. The sets &, A, , are the leading sets of the intuitionistic Borel hierarchy; see
Section 1.2.4.

We conclude our discussion of strictly analytic subsets of w* by observing that Kripke’s
scheme K8, see Section 1.1.10, makes the gap between analytic and strictly analytic
subsets of w* somewhat smaller.

Theorem 2.11 (Using KS:)

(i) Every inhabited and definite closed subset of w® is strictly analytic.
(i) Every inhabited and definite analytic subset of w® is strictly analytic.

Proof (i) Assume F C w® is inhabited, definite and closed. According to Theorem
1.1 in Section 1.1.10, F is semi-located. According to Theorem 2.10(iii), F is strictly
analytic.

(i) Assume X C w® is inhabited, definite and analytic. Find F in I'I(l) such that
X = Ex(F). Note that F is inhabited. We assume that also F is definite. According
to (i), JF is strictly analytic. According to Theorem 2.10(xi), also X' = Ex(F) is strictly
analytic. a
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John Burgess, in [7], also studies strictly analytic subsets of w“, or, as he calls them,
using a term of of Brouwer’s and following Gielen—de Swart—Veldman [11], “dressed
spreads”. Avoiding AC; ; but not restricting application of the Brouwer-Kripke scheme
to definite propositions, he concludes that every inhabited analytic subset of w* is
strictly analytic. The argument given here for Theorem 2.11(ii) is essentially his.

3 Separation theorems

3.1 Results by Lusin and Novikov

Definition 11 Let X, ) be subsets of w*”. We define: the pair (X,))) is positively
disjoint, notation X # ), if and only if, for all « in X, forall 5 in Y, a # 6.10

We also define: the pair (X,))) is Borel-separable, notation X #2°%' ), if and only if
there exist (positively) Borel sets A, B suchthat X C A, Y C B and A# B.

Lemma 3.1 Let Y, Xy, X1, X>, ... be an infinite sequence of subsets of w“. If, for
each n, Y #7°°% X, then Y #7°% | J X,,.

Proof Assume that for each n, ) #2°*! X,. Find,!! for each n, Borel sets A,, B,
such that ) C A, and &, C B, and A, # B,. Define A:=(), A, and B :=J, B,.
Note that A, B are Borel and Y C A and |J, &, C B and A # B. Conclude that
y #%oteI Un Xn 0O

A version of the next theorem occurs in Veldman [30, Theorem 18.4.1, page 163]. A
related result is proven in Aczel [1].

Theorem 3.2 (Lusin’s Separation Theorem) Let X',) C w® be strictly analytic. If
X #), then X #2° ).

Proof Let X', ) C w® be strictly analytic. Assume that X # ).

If X =0, wedefine A := () and B := w", and are done. If J = (), we define A := w®
and B := 0, and are done.

Yo L B4 a#8 < In[an) # Bn)], see Section 1.1.2.

''"We are silently applying the Second Axiom of Countable Choice ACy ;, as Borel sets should
be thought as given by means of their codes, see Section 1.2.4. We do so at other occasions too,
without further warning.
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We thus may assume that X', ) are inhabited. Find ¢,9¢: w* — w® such that
X = plw” and Y = Y|w®. Define B := {s | |s" L v|s'}. We first prove that B is a
bar in w®.

Let a be given. Find n such that ¢|a®n L ¢|aln. Then find m such that p|an C
¢|a%m and ¥|aln C |a'm. Find p such that a®m C (@p)? and a'm C (ap)' and
note that ap € B. We thus see that Vadp[ap € B], ie B is a bar in w®.

Now define C := {s | ¢|(w® N s%) #20% |(w*” Ns')}. We first prove that B C C. Let
s in B be given. Then |s® L ¢|s'. Define A := w® N (¢|s®) and B := w® N (1]s).
Note that (A, B) is a (positively) disjoint pair of basic open sets and ¢|(w* Ns%) C A
and 1 |(w* Ns') C B. Conclude that s € C. We thus see that Vs € B[s € C],ie B C C.

Note that C is monotone: for each s, for each n, s° C (s * (n))? and s C (s * (n))!,

and, therefore, if s € C, also, s x (n) € C.

We finally prove that C is inductive. Let s be given such that Va[s x (n) € C]. We want
to prove: s € C. Consider k := length(s) and distinguish three cases.

Case (a). =3i < 23t[k = (i) * 1]. Then, for each n, (s * (n))? = s and (s * (n))! = s'.
Note that s % (0) € C, and, therefore, also s € C.

Case (b). Ft[k = (0)  f]. Then, for all n, (s * (n))° = s” % (n) and (s * (n))' = s'.
Conclude that for all 7, o|(w® N s? * (n)) #2% )| (w* N s'). Note that p|(w® Ns%) =
U, #l@® Ns® (n)). Conclude, using Lemma 3.1, ¢|(w® N s%) #2°% |(w® N s1), ie
seC.

Case (c). 3tk = (1) % £]. Then, for all n, (s * (n))® = s and (s * (n))! = s' * (n).
Conclude that for all 7, @|(w* N s°) #2% 4)|(w* N's! * (n)). Note that Y |(w* Ns!) =
U, ¥|w* Ns! % (n)). Conclude, using Lemma 3.1, ¢|(w* N s0) #Bovel | (W N s1), e
s e C.

Using the Principle of Bar Induction BI, see Section 1.1.9, we conclude that () € C,
ie (p‘ww #%ote[ w’ww' 0

Definition 12 Let Xj, &, ... be an infinite sequence of subsets of w*. We define: the
infinite sequence Xy, X, . . . positively refuses to have a common point, or is w—separate,
notation #,X,,, if and only if, for every o, if Vn[a"* € X,,], then JiJj[a’ L o/].

We also define: the infinite sequence Xy, Xy,... is w—Borel separable, notation
#Bovel ' if and only if there exists an infinite sequence By, B; ... of (positively) Borel
sets such that Vn[X,, C B,] and #,5,,.
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Lemma 3.3 Let )y, ), ... and Xy, &}, ... be infinite sequences of subsets of w* .

It, for each n, the infinite sequence Y, Xy, X1, . .. is w—Borel separable, then also the
infinite sequence Un Y, Xo, X1, . .. is w—Borel-separable.

Proof Assume that for each n, the infinite sequence ),, Xy, X1,... is w—Borel
separable, Find, for each n, an infinite and w—separate sequence B, C,0,Cu 1, - ..
of (positively) Borel sets such that J C B, and, for each i, &; C C,;. Define
B := |J, B, and, for each i, C; := [),Cp,i. Note that B is Borel, and for each
i, C; is Borel and Un YV, C B and, for each i, &; C C; and the infinite sequence
B,Co,Cy, ... is w—separate. Conclude that the infinite sequence | J, My, Xo, A1, ... is
w-Borel-separable. a

Theorem 3.4 (Novikov’s Separation Theorem) Let Ay, X7, ... be an infinite sequence
of inhabited strictly analytic subsets of w® . If #,(X,,), then #2°%'(X,,).

Proof Let Ap, Xy, ... be an infinite sequence of inhabited strictly analytic subsets of
w® such that #,(X,). Using ACy 1, find ¢ such that Vn[¢" : w¥ — w® A X, = ¢"|w"].
Define B := {s | JiTj[¢'[s' L ¢/|s']}. We first prove that B is a bar in w*.

Let a be given. Find i,j,n such that pilain L @|a/n. Then find m such that
pllain E ¢'|(adm) and @/|lodn T @/|(odm). Find p such that ofm C (ap)’ and
o/m T (app) and note that ap € B. We thus see that VaIp[ap € B].

Define C := {s | #2°%©"|(w® N s™)}. Note that, for each p, (p) € C if and only if
() € C,as,foreach p, (p)° = (p)! = (); see Section 1.1.1. We prove that B C C. Let
s in B be given. Find i,j such that |s' | ¢/|¢/. Define an infinite sequence By, By, . . .
of subsets of w* such that B; = w* N ¢'|s; and Bj =w*N d]sj, and, for all k,if k #£ i
and k # j, then By = w®. Note that, for all n, B, is Borel and ¢"|(w* Ns") C B,.
Also note that #,8,,. Conclude s € C. We thus see that Vs € B[s € C],ie B C C.

Note that C is monotone as, for all s,z, for all ¢ : w¥ — w*, if s C ¢, then
Y| N1 CPl(w? Ns).

We finally prove that C is inductive. Let s be given such that Va[s % (n) € C]. We want
to prove: s € C. Consider k := length(s).

Case (a). k =0. Then s = () and s * (0) = (0) and s * (0) € C and, therefore, s € C.

Case (b). k # 0. Find i such that k = (i) * . Note that for each n, (s * (n))’ = s’ * (n),
and, for all j # i. (s * (n)) = §/. Conclude that for each n, the infinite sequence of sets

wol(W® Niso), 1w Ns1), ... @it (W Nisi—1), @il (WY Nsi*(n)), pip1| (W Nsig1), ...
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is w—Borel-separable. Note that ¢;|(w® Ns;) = |J, ¢i|(w* Ns; * (n)). Conclude, using
Lemma 3.3 that the infinite sequence of sets:

©ol (W M50), p1|(W* Ns1), ... wim1[(W N sim), il (W Ns), ir1| (W N sigr), ...
is w—Borel-separable, ie s € C.

Using the Principle of Bar Induction BI, we conclude that { ) € C, ie #X°%'p,|w”. O

3.2 Lusin’s representation Theorem

Definition 13 We define: X C w* is regular in Lusin’s sense if and if there exists a
spread F C w*“ and a strongly injective function ¢: F »— w* such that p|F = X .

Theorem 3.5 (One half of Lusin’s Regular Representation Theorem) Forall X C w®,
if X is regular in Lusin’s sense, then X' is positively Borel.

Proof Let /3, be given such that Spr(5) and ¢: Fg ~— w®“. Note that for all s, ¢,
if 8(s) = B(t) = 0 and s <4 ¢, then s L 7 and p|(Fg Ns) # p|(FgN1). Using
Theorem 3.2, find for all s, # such that 5(s) = B(¢) = 0 and s <y, t a positively disjoint
pair (By, 0, Bs,1) of Borel sets such that |(Fg Ns) C By,o and o|(FgN1) C By
Define, for each s such that 5(s) = 0:

Ds = m Bs,t,O N m Bt,s,l
ﬂ(t):07s<lext B(t):07t<lexs

Note that for all s, if (s) = 0, then D; is (positively) Borel and ¢|(Fg Ns) C Dy.
Also note that for all s, ¢, if B(s) = B(t) = 0 and s <., t, then D # D;. Note that
Vy € FVn[p|y € D, and VONS[(B(S) =0 AN ac ’Ds) — pls C af.

Now define, for each n,
H,I:U{DSI,B(S):O A s€Ew'}

and note that Vn[p|F3 C H,]. We thus see that ¢|F3 C (), H, and now prove
Mo Hn € @l Fs.

Assume that « € (), H,. Find § such that, for each n, §(n) € w", 5(6(n)) = 0, and
a € Dsyy. Note that for each n, a € Dsyy N Dsiut1), SO ﬂ((S(n) 1L d(n+ 1)) and
d(n) C 6(n + 1). Note that for each n, o € Dsy,), and therefore | ((5(11)) C «. Find v
such that Vn[6(n) C ]. Note that v € Fg and ¢|y = o and a € | F3.

We thus see that ¢|Fg = (), H, is (positively) Borel. |
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Theorem 3.5 shows that if X C w® is regular in Lusin’s sense, then X is (positively)
Borel. The converse, a famous result in classical descriptive set theory, can not be true
intuitionistically, as every X C w* that is regular in Lusin’s sense is strictly analytic;
and, as we know from Theorem 2.10(v), it is not even true that every closed X C w® is
strictly analytic. The next result shows that the converse of Theorem 3.5 is also not true
for strictly analytic sets.

Theorem 3.6
(i) Let F C w¥ be aspread and let o: F — D*(A) ={y|+"=0 v ! =0}
be surjective. There exist a,~y in F such that o # vy and p|a = ¢|y = 0.
(i) D2(A) ={y|7° =0 Vv ~! =0} is strictly analytic and not regular in Lusin’s
sense.
(iii) Ay, &, Ay are regular in Lusin’s sense and &, is not.

Proof (i) Define, for both i < 2, P; := {7 | ¥/ = 0}. Note that D*(A;) = Py U Py
and Py, P; are spreads. Assume that Spr(8) and ¢: F — D*(A;) = {v | 7° =
0 Vv ~! =0} is surjective. Find « in F such that |a = 0. Note that Vy € FTi <
2[(|y)" = 0]. Applying Brouwer’s Continuity Principle BCP, find m and i < 2 such
that Vy € Fg N am[(p|y)" = 0]. Again applying BCP, find n, s such that s € w™ and
B(s) =0 and V& € P1_; N 0nIy € Fz Nsle|y = d].

Now distinguish two cases.
Case (a). s C a.

Define 6 in P;_; N On such that 6 # 0. Find ~y in F N's such that ¢|y = §. Conclude
that @m C + and &' = (ap\'y)i = 0, a contradiction. Conclude that Case (a) can not
occur.

Case (b). s L «.
Now find « in F3 N s such that |y = 0 and note that o # v and p|a = p|y = 0.

(ii) As we saw in (i), D*(A;) = Py U P, and Py, P; are spreads. Conclude, using
Theorem 2.10(v) and (viii), that D2(A;) is strictly analytic. It also follows from (i) that
D?(A,) is not regular in Lusin’s sense.

(iii) Note A, is a spread, and every spread is regular in Lusin’s sense, for obvious
reasons.

Define ¢: w* — w* such that Va[p|a = 0a(0) * (a(1) + 1) * a0 S 0 S] and note that
p: w — w and plw¥ = &, so & is regular in Lusin’s sense. Define ¢: w* — w®
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such that YaVn[(1p|a)" = ¢|(a")] and note that ¢: w* — w* and Y|w” = Az, so
Ay is regular in Lusin’s sense. Assume that F C w* is a spread, and ¢: F —» & is
surjective.

Slightly adapting the argument given in (i), the reader may find «,~ in F such that
a# v and pla = |y = 0. Conclude that &, is not regular in Lusin’s sense. |

Theorem 3.6 shows that it is not so easy, for a strictly analytic (positively) Borel set,
to be regular in Lusin’s sense. The set & !, to be discussed in the next section, see
Theorem 6.4, is an example of a set that is positively Borel and strictly analytic and also
regular in Lusin’s sense, but, like the set Dz(Al), fails to be co-analytic. It is not true,
therefore, that positively Borel sets regular in Lusin’s sense must be co-analytic.

Lusin would perhaps have been disappointed that there is no satisfying intuitionistic
counterpart to the other half of Lusin’s Theorem. He once observed that his representation
theorem may help one to believe, in spite of possible qualms about generalized inductive
definitions, that, after all, the collection of all positively Borel subsets of w® is a
well-defined set, see Lusin [17, pages 38—39] and Suslin [26].

4 Co-analytic sets

4.1 The class IT}

Some relevant definitions may be found in Section 1.2.6.

Definition 14 X C w* is co-analytic or H% if and only if there exists $ such that
X =UGs :=Un(Gp) = {a | Vy["a,v" € Ggl}.

X C w* thus is co-analytic if X is the co-projection of an open subset of w*.

The next theorem shows that the class H% behaves not so nicely as the class E% . The
class H} is closed under the operation of countable intersection but not under the
operation of finite union. Most (positively) Borel subsets of w* are not co-analytic.
Fortunately, every set reducing to a co-analytic set is itself co-analytic. The class I} is
also closed under co-projection.

Theorem 4.1
i) UpP!.= {a|ayg €eUG,,} is H}—universal.
(i) Al = {a| VyIn[a@@n) # 01} is I} —complete.
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(iii) Forevery infinite sequence Xy, X1, ... in II}, N, X € I}, ie VIV, UG =
ug,l.
(iv) D*(A)) ¢ I0j.
(v) My C1l and Y ¢ I}
(vi) Forall X Cw®,if X € I}, then Un(X) € I}, ie V33y[UnUUGp) = UG,].
(vil) Forall X,y Cw¥,if X XY € II ,then X € T, ie VBV : w* — w*Iv[{a |
plo € UG} =UG).

Proof (i) For each o, a € L{P{ < ag € UGy, < YY[Tan,y! € Gyl <
Vy3n[oa("ag, vy 'n) # 0]. Define 8 such that, for all n, forall a, ¢ in ", 8("a,c™) # 0
if and only if, for some m < n, "aj,c'm < n and a;("ay, ¢ 'm) # 0. Then, for each
a, o € UGg if and only if Vy[ ",y € Ggl if and only if Vy3n[B(" o,y 'n) # 0] if
and only if Vvy3n[a (" ay, v 'n) # 0] if and only if oy € UG, if and only if o € UP{.
Conclude that UP} =UGg € H%.

Also: for each €, UG, = UP] | . Conclude that UP] is I} —universal.

(ii) For each «, o € A} > Vy3n[a(n) # 0]. Define G := {« | Inlay(@gn) # 01}
and note A{ = Un(G). Define g such that Va[S(a) # 0 < In[agn < length(a;) A
aj(agn) # 0]] and note that G = Gz. We thus see that 81 € Hl.

Let ¢ be given. Note that Va[a € UG, <> VyIn[e(Ta, 7 'n) # 0]]. Define p: w* —
“ such that YaVkVe € wk[(p|a)(c) = e("ak, cT)]. Note that o reduces UG. to Al
Conclude that A} is H}—complete.

(iii) Let Xy, X7, ... be an infinite sequence of co-analytic subsets of w*. Using ACy 1,
find 3 such that Va[X,, = UGsn]. Define Vo := {a | Im[BO(Tay, oy 0 S7m) # 0]}.
Then: V) € XY and, for all a, a € (), &, <> VnVy["a, 7 € Ggu] > @ € Un(Vp).
Conclude that (), X, € II}.

(iv) Use (ii) and Theorem 1.5(iv).

(v) Assume that G € XY. Define V := {a | oy € G}. Then V € X? and
G = Un(V) € II}. Conclude that £ C TI! and, using (iii), IIY C II!. Note that
D%(A)) € Zg and conclude that, using (iv), ﬂ(Eg - 1'[}).

(vi) Let 3 be given. Note that for every o, a € Un(UGg) < Vy[" o,y € UGR]
\V/’)/VC;[F'_CM”Y—l, 51 S gﬁ] <~ V’Y[l—'_a/Yl—"VII—' S gﬁ]

Define Z := {"a,y" | In[B(""a,y ", yu 'n) # 0]} and note that Z € 2(1) and
UnUGp) = Un(Z) € I}

(vii) Assume that X € II! and ¢: w* — w* and define: Y := {a | pla € X}.
Find G in 2(1) such that X = Un(G). Then, for every o, « € Y < pla € X «
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VB[ p|a, B7 € G]. Define V := {a | "¢|as,ay " € G}. Conclude that V € X9 and
Y =Un(V) €II}. o

4.2 The set WF
Definition 15 We define WF := {a | V5 € (T,)*3InlB(n) <kp B(n + 1)]}.

WU is the set of all « such that the tree T, := {s | V¢ C s[a(t) = 0]} is well-founded
with respect to the Kleene-Brouwer-ordering <gp; see Definition 3 in Section 2.2.

The following theorem is a counterpart to Theorem 2.2. Note that Theorem 2.2 is the
statement that £/ does not coincide with ZF . Note that both (€], A}) and (ZF, W.F)
are complementary (E}, H})—pairs; see Section 1.2.6.

Theorem 4.2 WF = Al.

Proof We first prove that W.F is a subset of \A].

Assume that « € W.F. Let «y be given. Define /3 such that 5(0) = () and, for each
n,if y(n+ 1) € T,, then B(n + 1) = F(n + 1), and, if not, then B(n + 1) = B(n).
Note Vn[B(n) € T,] and find n such that S(n) <gg B(m + 1). Conclude that
Bn+1) #~m+ 1) and Ji < n[a(Fi) # 0]. We thus see that VyJi[a(7i) # 0], ie
o€ A}. Conclude that WF C A}.

We now prove that A% is a subset of WWF. This proof is more difficult and we have to
use the principle of Bar Induction BI; see Section 1.1.9.

Assume that o € A]. Define B := w\ T, = {s | 3t C s[a(r) # 0]} and note that B
isabarin w?. Define C := {s | V3 € (T,)“[Vils C B()] — FIBY) <ks B(G + DI}
and note that B C C, as, for each s in B, for each u such that s C u, u ¢ T,. Also
note that C is monotone, ie VsVm[s € C — s x (m) € C].

We now will prove that C is inductive. Let s be given such that Vm[s * (m) € C].
We want to prove that s € C. Define, for each m, P(m) := Vj € (Ta)“[(Vi[s C
B A s*(m) T B(0)) — Fj[B() <ks B( + D]]. Before proving ‘s € C’, we first
prove the auxiliary statement Vm[P(m)]. We use induction. Let m be given such that
Vk < m[P(k)]. Let 8 in (T,)* be given such that Vi[s T 3(i)] and s * (m) = [3(0).
We intend to prove Jj[3(j) <gp B( + 1)]. Define 8* such that 3*(0) = 5(0) and, for
each n, if Vi < n+ 1[s * (m) C B()], then 5*(n + 1) = S(n + 1); and, if not, then
B*(n+ 1) = 5*(n). Note that Va[s x (m) C 8*(n)] and s * (m) € C, and find j such
that 8*(j) <gp B*( + 1).
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If 8*() = B() and B*(j+ 1) = B(G + 1), conclude that 3(j) <gg B( + 1); we are done.
If not, define iy := pi[— (s x (m) C 5(i))] and distinguish two cases.

Case (a). B(ip) = s. Note that ip > 0 and (g — 1) <k B(ip); we are done.

Case (b). s C B(ip). Find k such that s * (k) C 3(ip). Note that k # m and distinguish
two cases.

Case (bl). m < k. Note that iy > 0 and 5(0) <gp B(ip) and Jj < iy[B() <ks BG+ D];
we are done.

Case (b2). k < m. Define 37 such that Va[3T(n) = B(io +n)]. Note that s* (k) C 57(0)
and apply P(k). Find [ such that () <gz 57(I+ 1) and, therefore S(iy + I) <ks
B(ip + 1 + 1); again, we are done.

We conclude that P(m). This completes the proof of the auxiliary statement Vm[P(m)].

We now are ready to prove that s € C. Let 5 in (T,)“ be given such that Vi[s = 5(i)].
Consider $(0) and 5(1). Either we find m such that either s x (m) C £(0)] or
s * {(m) C B(1), and, considering 3 or 5 o S and using P(m), we conclude that
FIBG) <ks BG + DI; or B(0) = B(1) = s and B(0) <gp B(1). Conclude that
VB € (To)*[Vils C B®] — FBG) <k BG + DI, ie s € C.

Using BI, we conclude that ( ) € C,ie V3 € (T,)*Jj[BG) <ks B(G+ 1)],ie « € WF.
We thus see that A] C WF and A} = WF. O

The statement A} = W is, in the formal context of Basic Intuitionistic Mathematics
BIM, an equivalent of OI(2%), the Principle of Open induction on Cantor space 2%,
see Veldman [37].

4.3 Sink*(FZN) and Sink*(ALMOST*FIN)
Definition 16 We define: FZN := {« | ImVn > m[a(n) = 0]}.

FIN is the set of all v such that D, := {n | au(n) # 0} is a finite subset of w.
For items (i) and (iii) of the next theorem, see also Veldman [33, Theorem 3.3.(iii) and

W]

Theorem 4.3

() D*A) £ FIN.
(i) FIN is X9 but not 9—complete.
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(iii) D?(A,) is not I}.
(iv) FIN isnotII}.

Proof (i) Assume that ¢: w* — w* reduces D*(A4A;) = {a |a® =0 Vv a! =0}
to FZN . We prove that ¢ maps the closure D2(A;) of D*(A;) into FZN and thus
obtain a contradiction. Let « in D2(A,) be given. Define ag, «; such that Vi <
2[(c))' =0 A Vj[-3nlj = (i) * n] = o;(j) = a(j)]]. Note that Vi < 2[c; € D*(A;)]
and —(a # ap A « # «y). Find mgy,m; such that Vi < 2Vn > m;[(¢|a;)(n) = 0].
Define m = max(mg, m;). Suppose n > m and (p|a)(n) # 0. Then a # ap and
a # ay, a contradiction. Conclude that Vn > m[(p|a)(n) = 0] and ¢|a € FZN and,
therefore, o € D*(A;). We thus see that D2(A;) C D?(A;) and, according to Theorem
1.3 in Section 1.2.5, obtain a contradiction. Conclude that D*(A;) A FIN.

(i) FIN = U, {a | Vo > mla(n) = 0]} clearly is X9, but, as D*(4,) is X9 and,
according to (i), D*(A;) ﬁ FIN, FIN is not Eg—complete.

(ii1) See Theorem 1.5(iv).

(iv) Assume that ¢: w* — w* reduces FZN to Al. Define 7 := {a € 2¢ |
VmVnla(m) = a(n) = 1 — m = n]}. T is the set of all infinite binary sequences
that assume the value 1 at most one time. Note that 7 is a spread, and 0 € T, and
Va e Tla#0 — o € FIN)],and T C Perhaps(FZN). Assume that T C FZN,
ie Yo € T3ImVn > m[a(n) = 0]. Applying Brouwer’s Continuity Principle BCP (see
Section 1.1.6) find p, m such that Voo € T[0p C o — Vn > m[a(n) = 0]]. We now
have a contradiction: define ¢ := max(m + 1, p) and consider o := 0q * (1) % 0.

Conclude that =(7 C FZN) and FZN is not perhapsive, and that FZN does not
reduce to A{ and is not H% ; see Theorem1.5. O

Definition 17 We define ALMOST*FIN = {a | V(¢ € [w]“In[a o {(n) = 0]}.
ALMOST*FIN is the set of all « such that D,, is an almost-finite subset of w.

Lemma 44 ALMOST*FIN is 1.

Proof We shall prove that, for each a:
V(¢ € [w]¥Tnla o ((n) = 0] if and only if V(In[a o {(n) = 0] V ((n+ 1) < ((n)]

The desired conclusion then follows easily.
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Let 7 be the canonical retraction!? of w* onto the spread [w]¥. The function 7 satisfies
the conditions: V( € [w]“[7|¢ = (] and V([¢ # 7|¢C — In[C(n + 1) < ((M)]].

Let « be given. First assume V(¢ € [w]“3n[a o ((n) = 0]. Let ¢ be given. Find n such

that « o (7|¢)(n) = 0. Either (7|({)(n) = ((n) and « o {(n) = 0; or, (7|{)(n) # ((n)
and Ji < n[¢(i+ 1) < ((@)]. We thus see that V(In[ao ((n) =0 V ((n+ 1) < ((n)].

Now assume that V¢(3n[ao ((n) =0 V ((n+ 1) < {(n)]. Let  in [w]¥ be given.
Find n such that c« o {((n) =0 V {(n+ 1) < ((n). Conclude that a o {(n) = 0. We
thus see that V( € [w]¥3In[a o ((n) = 0]. O

The set ALMOST* FIN has been studied in Veldman [33, Section 3]. It has been
shown there that ALMOST*FIN is not (positively) Borel, see [33, Section 0.9.2(ii)
and Theorem 3.17(iii)]. In particular, FZN is proper subset'>of ALMOST*FIN .
It has also been shown in [33] that ALMOST*FIN is the best II} —approximation
of FIN, ie, for every Z in II!, if FIN C Z, then ACMOST*FIN C Z, see
[33, Theorem 3.21(v)]. As one might expect, ALMOST*FIN is not I} —complete,
see [33, Theorem 3.24(iii)].

In the following definition we introduce a new word for a well-known concept.

Definition 18 For all X, C w*, we define: X sinks into ) if and only if X C ).
For each X C w*, we define Sink(X) := {f | Fg € X'} and Sink™(X) := {f €
Sink(X) | Spr(B)}.

Sink(X) is the set of the codes of all closed subsets of w* that sink into (ie, are a subset
of) X and Sink*(X) is the set of the codes of all spreads, ie all closed and located
subsets of w*, that sink into (ie are a subset of) X.

We now want to treat some results that, together, are a counterpart'* to Theorem 2.9.
The moral of the story is that, in order to obtain a satisfying such counterpart, one
should work with ALMOST*FIN rather than with FZN .

Recall that for all X,Y C w¥: X ~ Y (X, Y reduce to each other / are Wadge—
equivalent), if and only if both X <)Y and Y < X.

Theorem 4.5

25ee Section 1.1.5

BPorall X,Y C w¥, X is a proper subset of ) if and only if ¥ C ) andnot ) C X, ie
the assumption ‘) C X’ leads to a contradiction.

"“Note that, from a classical point of view, the sets Share(ZN F), Sink(FZN), for instance,
are each other’s complement.
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() Sink*(FIN N2¥) ~ FIN.
(i) Sink*(FIN N2¥) £ Al and Sink*(FIN) £ A}.
(i) Al < Sink*(FIN).
(iv) Al < Sink*(ALMOST*FIN N2¥) < Sink"(ALMOST*FIN).
(v) Sink*(ALMOST*FIN) < Aj.
(vi) Sink*(ALMOST*FIN) and Sink*(ALMOST*FIN N2%) are I} - com-
plete.

Proof (i) Assume that Spr(8) and F3 C FZN N2“. Conclude that Vs[3(s) =
0 — s € Bin] and Fan($3) and Vvy € Fg3dmVn > m[y(n) = 0]. Applying the First
Axiom of Continuous Choice AC , see Section 1.1.3, find ¢: Fz — w such that
Vv € FgVn > @(y)[v(n) = 0]. Applying the Fan Theorem FT, see Section 1.1.7,
find p such that Vy € Fglp(y) < p]. Note that Vn > pVs € Bin,[8(s) = 0 —
s(n) = 0]. Conclude that for each 3, 3 € Sink*(FZN N 2¥) if and only if Spr(3)
and Vs[B(s) = 0 — s € Bin] and dpVn > pV¥s € Bin,([B(s) = 0 — s(n) = 0]].
Define ¢: w* — w“ such that, for all 3, for all n, (¢»|5)(n) = 0 if and only if
Vs < n[B(s) = 0 — s € Bin] and Vs € Bin,[8(s) = 0 — s(n) = 0]. Note that v
reduces Sink*(FZN N2¥) to FZN . Define p: w* — w® such that, for all «, for all s,
(p|a)(s) = 0 if and only if s € Bin and Vi < length(s)[s(i) = 1 <> a(i) # 0]. Note that
p reduces FZN to Sink*(FZN N 2¥). Conclude that Sink*(FZN N2%¥) ~ FIN .

(ii) Use (i) and Theorem 4.3(iv) and conclude that Sink*(FZN N 2¥) £ A} . Define
v: w¥ — w® such that, for all 3, for all s, (p|B)(s) = 0 if and only if (s €
Bin A B(s) = 0) vV Jr < s[t ¢ Bin A S(¢) = 0]. Note that ¢ reduces Sink*(FZNN2%)
to Sink*(FZN). Conclude that Sink*(FZN) £ Al.

(iii) Define p: w* — w* such that, for all «, for all s, (¢|a)(s) = 0 if and only if
3t € ToIn[s = (S o 1)+ 0n]."> Note that for all «, Spr(|a) and Vy € F,Vn[y(n) =
0 — v(n + 1) = 0]. We now prove that ¢ reduces A} to Sink*(FZN).

First assume that o € Al. Also assume that v € Fyla- Find € such that, for each
n, if v(n) > 0, then e(n) + 1 = v(n), and, if y(n) = 0, then (n) = 0. Find m such
that «(Em) # 0. Then: Em + 1) ¢ T, and Y(m + 1) # So&(m + 1). Find k < m
such that (k) = 0 and note that Vn > k[y(n) = 0] and v € FZN . We thus see that
Vy € Fualy € FIN]. Conclude that 7, € FZN and ¢|a € Sink*(FIN).

Now assume that ¢|a € Sink*(FZN). Then Vv € F o, ImVn > m[y(n) = 0]. Let &
be given. Define « such that, for each n, if €(n + 1) € T,, then y(n) = e(n) + 1, and,
if not, then y(n) = 0. Note that v € F |, and find m such that y(m) = 0. Conclude

SRecall: length(S o f) = length(¢) and Vi < length(?)[(S o 1)(i) = (i) + 1].
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that £(m + 1) ¢ T, and 3i < m + 1[«(Ei) # 0]. We thus see that Ve3i[a(Ei) # 0], ie
o € Al. We thus see that Vala € Al < p|a € Sink*(FZN)], ie ¢ reduces A} to
Sink*(FZN).

(iv) Define ¢ such that 6(0) = 0 and, for all s, for all n, d(s * (n)) = §(s) * On * (1).
Define ¢: w” — w* such that for all «, for all s, (¢|a)(s) = 0 if and only if
3t € T, 3n[s = J(¢) = On]. Note that for all a, Spr(p|a) and f¢|a C 2“. We prove
that ¢ reduces Aj to Sink*(ALMOST*FIN N2%).

Assume that a € A}. Also assume that v € F, and ¢ € [w]”. Define ~
such that Vn[y' o ((n) = 1] and Vn[Vi[n # ((i)] — +'(n) = ~(n)]. Define ¢ such
that €(0) = pp[y'(p) = 1] and Va[e(n + 1) = up > e(n)[7'(p) = 1]]. Note that
¢ € [w]¥ and, for all n, 5(Zn) C +'. Find n such that a(gn) # 0. Note that
gn+1) ¢ T, and (p|a)(6(E(n + 1)) # 0. Find m such that v/m = §((n + 1)).
Note that (p|a)(y'm) # 0 = (p|a)(Fm) and conclude that v'm # ym. Find i < m
such that 7/(i) # ~(i). Determine j < m such that i = ((j) and conclude that
v 0 ((j) = 0. We thus see that Vy € F,,V( € [w]”Tj[y o ((j) = 0]. Conclude that
Fola € ALMOST*FIN and p|a € Sink"(ALMOST*FIN N2%).

Now assume that p|a € Sink*(ALMOST*FIN N2¥). Let v be given. Find S
in 2 such that Vr[6(7n) C (5]. Define ¢ such that ((0) = v(0) and Vn[((n + 1) =
((n) +v(n+ 1) + 1]. Note ¢ € [w]* and Vn[B o ((n) = 1]. Define 8* such that,
for each n, if B(n+ 1) € Ty, then f*(n) = B(n), and if not, then §*(n) = 0.
Note that §* € Fp o € ALMOST*FIN and find n such that §* o ((n) = 0.
Define p := ((n) + 1 and conclude that 3p # *p and fp ¢ T,|. Find m such
that Sp C 0(ym) and note that ym ¢ T, and Ji < m[a(7i) # 0]. We thus see that
VyJilaFi) # 0], ie a € Al

Conclude that for each v, o € Al if and only if p|a € Sink*(ALMOST*FIN N2¥),
ie ¢ reduces Al to Sink*(ALMOST*FIN N2%).

Finally, define ¢ : w* — w* such that, for all 3, for all s, (¢/|8)(s) = O if and only
if either B(s) =0 A s € Bin or 3t C s[8(r) = 0 A s ¢ Bin]. Note that ¢ reduces
Sink*(ALMOST*FIN N2¥) to Sink* (ALMOST*FIN).

(v) We first prove a preliminary observation. For all 3 such that Spr(3), Va € FgV( €
[w]¥dnlao(n) = 0] if and only if VaV(In[aol(n) =0 V ((n+1) < ((n) V B(an) #
0]. The argument is a small extension of the argument given for Lemma 4.4.

Let 8 be given such that Spr(53).

First assume Vo € FgV( € [w]“dn[a o ((n) = 0]. Let p,7 be the canonical
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retractions'® of w“ onto the spreads Fs and [w]“, respectively. Let o, be given.
Find n such that ((p]oz) o (7]¢ ))(n) = 0. There are three cases to consider. Case (a).
T|C(n+1) # C(n+ 1). Then Ji[C(i + 1) < (()]. Case (b). T|C(n+1) = ((n+ 1) and
@(C(n)—k 1) # a({(n)+ 1). Then Ji[5(ai) # 0]. Case (c). TTC(n—i- 1)=C_(n+1)and
pla(C(n) + 1) = @({(n) + 1). Then a o {(n) = 0. Conclude that Va¥{3In[a o {(n) =
0V {(n+1)<((n) VvV Bl@n) #0].

Now assume VaV(In[ao((n) =0 V ((n+1) < {(n) V B(an) # 0]. Let « be given
in F3 and ¢ in [w]“. Find n such that a0 ((n) =0 V ((n+1) < ((n) V B(an) # 0
and conclude that o o ((n) = 0. We thus see that Vo € FgV( € [w]“3In[a o ((n) = 0].

Now observe: {3 | Spr(5} belongs to Hg. Using our preliminary observation and also
Theorem 4.1, conclude that Sink*(ALMOST*FIN) = {5 | Spr(8) N VaV{In[a o
C(m)=0V ¢(n+1)<((n) V B(@n) # 0]} belongs to II1.

(vi) Use (iv) and (v). O

Theorem 4.5(i) seems to contradict classical results: its proof uses the strongly
nonclassical axiom AC; . Theorem 4.5(iv) is a counterpart to Theorem 2.9. Both
Theorem 4.5(vi) and Theorem 2.9 resemble a classical result due to Hurewicz that
plays a key role in the sketch of the proof of a theorem by Solovay and Kaufman
in Kechris—Louveau [15]. The Solovay—Kaufman Theorem states that the set of the
codes of closed sets of uniqueness and the set of the codes of closed sets of extended
uniqueness are H}—complete. Note that we obtained the more ‘classical’ results of
Theorem 4.5 by replacing FZN by ALMOST*FIN .

4.4 Exactly one path
Definition 19 &]! := {a | Iy[Vnla(@n) = 0] AVS[S # v — In[a(dn) # 011}

511! is the set of all o admitting exactly one path. In Kechris [14, pages 125-127],
there is a fascinating argument, due to Kechris, showing that, in classical descriptive
set theory, &£ 11! is H} —complete. We will see that this result does not go through in our
intuitionistic context.

Definition 20 D?!(A4)) := {a | Ji < 2[a =0 A a'7F # 0]}, and &! = {a |
In[a* =0 A Vm # n[a” #0]]}.

16See Section 1.1.5
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Note that D!(A;) is £ and &! is X9.

We will see that the set & ! is an example of a subset of w® that is positively Borel and
regular in Lusin’s sense,!’ see Theorem 4.6, but not H} , see Theorem 4.8.

Theorem 4.6
(i) D21(A)) X &! and &! < &
(i) Ay < &!and Al < &N
(i) D?!N(A)) = Ay
(iv) D*(A)) £ &!

(v) &! isregular in Lusin’s sense.

Proof (i) Define ¢: w“ — w® such that Vo [Vi < 2[(pla) = a'] A Vi > 2[(pla) =
l]] and note that ¢ reduces D21(A;) to &!. Define P w¥ — w* such that
VaVs[(1|a)(s) =0+ 3n[s T nrn A o's T 0]] and note that 1) reduces &! to 811!.

(ii) Define ¢: w® — w® such that Ya[(p|a)? =0 A Vi[(¢|a)™! = o] and note that
¢ reduces A, to &!. Define 1: w® — w® such that, for all o, Vn[(¢)|a)(On) = 0]
and YmVnVt[(1)|a)(On x (m + 1) * 1) = a(#)]] and note that v reduces A} to 511 B

(iii) Define ¢: w* — w* such that, forall v, forall n, (p|)°(n) = max (a’(n), a'(n)),

and, for all i, (p|a)T!(n) # 0 if and only if either a%i = 0 or a!i C 0. Note that ¢
reduces D?!(A4)) to A,.

(iv) Assume that ©: w* — w“ maps D?(A;) into 811 !. We shall prove that v also
maps the closure D2(A;) of D?(A,) into £]! and thus does not reduce D?(A4;) to &]!.

First, as in the proof of Theorem 3.6, define, for both i < 2, P; := {3 | ' = 0}.
Note that Py, P; are spreads and D*(A;) = Py U P;. Assume that o € D2(A;). We
are going to prove: ¥|a € 811 !. The following notion is useful. We define, for all
s, s is fine for a if and only if 3ImVj3 € D*(Ap[am C B — Iy € Fyals C 711
We will prove that for each p there exists exactly one s such that length(s) = p
and s is fine for o. Define g, such that, for both i < 2, (a;)) = 0 and
Vj[—=3nlj = (i,n)] — a;(j) = a(j)]. Define ag; such that (ap;)® = (co1)' = 0 and
Vj[—3i < 23n[j = (i,n)] — ap1(j) = a(j)]. Note that if o # «ap, then o = o) € Py,
and, if o # a1, then o = g € Py, and, if o # «g;, then either o # o9 or o # o1, and,
therefore o € Py U Py = D?(A;). Note that ag; € Py N P;.

Let p be given. Note that Vi < 2V € P;3s[length(s) = p N Fy € Fypls C 71l
Using Brouwer’s Continuity Principle BCP, see Section 1.1.6, find sg, 51, mg, m; such

7See Definition 13.
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that length(sg) = length(s;) = p and Vi < 2V € P; Nagim3y € Fyglsi T 1.
Assume so L s1. Then 3y € Fyq0, 30 € Fiyjaq [0 © v A s1 C 0] and this contradicts
Ylagr € 811!. Conclude that sg = 5. Define s := 59 and m := max(mg, m;), and note
that if @m = agm, then s is fine for . Now assume that am # agym. Find k < 2
such that & = «a and note (@m)' % L 0. Find s2, my such that length(s;) = p and
m < my and V3 € P, Namp3y € .7:¢|5[S2 C ~v]. As (@my)' =% L 0, conclude that
Vi <2VpB € Pinamy3y € Fyglsa C 7], and sy is fine for av. Clearly then, for each
p,one may find s such that length(s) = p and s is fine for a.

Suppose s,t are given such that both s,¢ are fine for . Find m such that V3 €
D*(A)[am C a — (v € fso‘ﬁ[s CHl A dye .7-'¢|5[t C vD]. Find k& < 2 such that
am T . Note that o € D?*(A4,) and olog € 811! and conclude that sC ¢ V ¢ C s.
We thus see that if both s, ¢ are fine for o, then s C ¢ V t C 5. We thus may define ¢
such that, for each p, dp is fine for . Conclude that § € Fyla»>and Pla € &l ie Yla
admits a path. We still have to prove that 1| admits exactly one path. Let 7 be given
such that § # 7. Note that 1| € £!! and find X in Fiplag - Using the co-transitivity
of the relation #, distinguish two cases.

Case (a): n # . Find n such that (¢)|ag)(mn) # 0. Either (¢|a)(n) = (¥ |c)(mn) # 0,
or a# o and o = oy and Im[(Y|a)(Mm) # 0].
Case (b): 6 # X\. Then a # ap and o = «; and Im[(¢p|)(im) # 0]. We thus see that
Viln # 8 = 3pl(¥la)@p) # 011, and Y|a € &}
Conclude that Vo € D2(A)[¢)|a € E]1]. Now assume that ) reduces D?(A,) to E]!.

Conclude that Yo € D2(A))[a € D?(A))]. According to Theorem 1.3 (see Section
1.2.5) we have a contradiction.

(v) Define ¢: w*® — w*“ such that, for all o, (¢]|a)*® = 0 and ¥n < a(0)[(¢|a)" =
0a°2n) * (a®°2n + 1) + 1) * o] and Vi > a(0)[(p|a)* = 0a°(2n — 2) x (a’(2n —
1)+ 1) % a"]. Then ¢: w* — w* and p|lw* = &!. Conclude that &! is regular in
Lusin’s sense. O

According to Theorem 4.6(iv), D?(A;) £ &!, and, therefore, also & £ &!. This is
an intuitionistic phenomenon, as, in classical descriptive theory, £ =< &!. One may
understand this classical fact by replacing &, & ! by sets that, from a constructive point
of view, are extensions of them, although, classically, they would be judged to be the
same. Theorem 4.7 will make this clear.

Definition 21 ALMOST =& := {a | a # Ay} = {a | Vy3n[a” (y(n)) = 01}, and
ALMOST =& .= ALMOST -EN{a | Ym¥n[m # n — Fpla™(p) # 0 V o (p) #
Ny
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ALMOST -& and ALMOST -&! may be called I} —approximations to & and
&1, respectively.

Theorem 4.7 ALMOST -& <= ALMOST -&,).

Proof Define 9, p: w* — w* such that, for each «, (0|a)(0) = 0 and (p|a)’ =
a® = a0 and, for each n,
(1) if a0 (a4 1) © 0 then ($la)(n + 1) = (b)) and (pla)™+! = 1, and

@ if a@0(n 4 1) L 0 then (a)(n + 1) = (la)(n) + 1 and (play™! =
a@len+D)

The idea behind these definitions is the following. ¢ will be the function reducing
ALMOST =& to ALMOST-E,!, and 1) will be an auxiliary function. Given «,
we check its subsequences, a’, ', ... one by one. At stage 0, we start with studying
a® and we define (1|a)(0) = 0 and (¢|a)? = a°. Atevery stage n+ 1, if (1|a)(n) = k,
we consider of, and we distinguish two cases. Case I. We discover that ok #0, (as
J(n + 1) L 0). We now decide to study okt at the next stage n + 1, so we define
(W|a)(n + 1) = k+ 1. We also define (p|a)"! = oft!. Case 2. We do not yet see
that of # 0 (as J(n + 1) C 0). We decide to continue our study of ok at stage n + 1,

so we define (¢|a)(n + 1) = k. We also define (p|a)**! = 1.

Note that for each «, for all k, if Vi < k[o/ # 0], then there exists j such that
(|a)(j) = k. If jo is the least such j and of = 0, then (¢|a)? = 0 and, for
all i # jy, one has (g0|a)i # 0. Also note that for all n,m, if n < m, then either
(Y]a)(n) < (Pla)(m) and (p|a)" # 0; or, (P|a)(n) = (|a)(m) and (pla)" = 1 # 0.
Also note that for each n, (¢|a)" = 1 or (p|a)" = @l

We now prove that ¢ reduces ALMOST-& to ALMOST-E!. Assume that
a € ALMOST-E,. Let «y be given. We want to find m such that (p|a)” ('y(m)) =0.
Define § such that §(0) := 0 and, for each n, if Vi < n[((,0|oz)5(i) oy 0 d(i) # 0] then
d(n+ 1) := pl(W|a)(§) = n + 11; and, if not, then d(n + 1) := é(n). Note that for
each n, if Vi < n[(g0|a)5(i) oy o0 d(i) # 0], then Vi < n[(cp|a)5(i) = a/]]. Define
n = pk[aX o~y o §(k) = 0]. Conclude that (¢]|a)?™ = o and (p|a)’™ oy o §(n) =0
and Im[(p|a)™ o v(m) = 0]. We thus see that VyIm[(p|a)” o v(m) = 0], ie
ola € ALMOST -E,. As we observed already: for all m, n, if m # n, then either
(pla)™ # 0 or (p|a)" # 0. Conclude that p|a € ALMOST -&,!.

Now assume that p|a € ALMOST -&,!. Let v be given. We want to find m such
that o™ (y(m)) = 0. Define § such that, for each n, 6(n) = v((¢)|a)(n)). Find n
such that (p|a)" o §(n) = 0. Note that (¢|a)* # 1 and (p|a)" = a¥1V®  Define
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m := (¢|a)(n) and note that o (y(m)) = a¥1DW(y(y|a)(n)) = (| (5()) = 0.
We thus see that Vy3n[a” o y(n) = 0], ie a € ALMOST -&,. ad

The following definition has been given already in Section 1.2.7.

Definition 22 For every X C w*, we define Perhaps(X) = {« | 30 € X[a # 5 —
a € X]}. X C w” is called perhapsive if and only if Perhaps(X) = X.

Theorem 4.8

(i) Al is perhapsive.
(i) &! is not perhapsive.
(iii) &! and &} are not I} .

Proof (i) See Theorem 1.5(iv).

(i1) Let X be the set of all « such that a(0) = O and, for all n, if n = ,up[ao(p) # 0],
then o"t! = 0 and, if n # up[a®(p) # 0], then o' = 1. We shall prove that
X is a subset of Perhaps(&;!) but not of &! itself. It then follows that & ! is not
perhapsive. Define ¢ such that ((0) = 0 and CO = 0 and Vn[¢"*! = 1]. Note that
(€ XN&!. Assume that o« € X and o # ¢. Find i, n such that o/(n) # Ci(n). Either
i=0and a’(n) # 0;0ri >0, &/(n) # ¢'(n) = 1 and a’(i — 1) # 0. In both cases,
a® #0 and o € &!. We thus see that Voo € X[av # ¢ = «a € &!] and conclude that
X C Perhaps(&)).

Assume that X C &!. Note that X’ is a spread containing (. Using BCP, find
m,n such that Voo € X[(m T o — «* = 0]. In particular: ¢" = 0, and n = 0.
But 3o € X[(m T o A o # 0], a contradiction. Conclude that X ¢_ &>! while
X C Perhaps(&;!), so Perhaps(&;!) Q & ! and &! is not perhapsive.

(ii1) Use (1), (i1), and Theorems 1.5(i), 4.1(ii) and 4.6(1). O
5 Al and ¢/

In this section, we study the sets A] = BAR = {a | VyInla(®n) # 0]} and
&l = PATH = {a | IyVnla(yn) = 0]}. We have seen that A} is IT} ~complete and
that 511 is 2{—complete, see Theorems 4.1(ii) and 2.1(11).
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5.1 Al positively fails to be strictly analytic

The following definitions have been given already in Section 1.1.2.

Definition 23 For each «, T, := {s | Vt C s[a(t) = 0]}.

Forall o, 3, for all v, we define: v : o« <* 3 <> (Vs[s €Ty — (s) € Tg] A VsVi[s C
t— () C Y1), and v : oo <* B <> (Vs[s € To — Y(s) € Tyl A VsVi[s C t —
V) O] A () # ().

Forall o, 8, we define: o <* <> Ay[v:a <" Bl,and a <* < Iy[y: a <F 5]

T, is called the tree determined by «.. Note that Va[0 = () € T,].
o <* 8 if and only if there exists a C—preserving embedding of T, into Tg.

a <* B if and only if there exists n in w and a C—preserving embedding of T, into
{s € Tg | (n) C s}.

Lemma 5.1
(i) Forall o,B,v,a <*aand (a <*B AN < vy) s a< vyand a <*  —
a<*Band(a<*BANB<FY)sa<vyand (<L A B<Ty) = a<t

Y-
(i) Va e AlVB e Alla <* B — a#S].

Proof (i) Note that for all «,f3,v,d,¢, if § : o <* g and € : B <* ~, then
€00 :a <*~. Conclude that if & <* § and 8 <* v, then o <* 7.

The proofs of the other statements are also straightforward.

(ii) Let o, B in A} be given such that a <* . Find 7 such that Vs € T,[7(s) € T3l
and VsVi[s T t — (s) C ()] and vy({ )) # ( ). Define € such that £(0) = () and, for
each n, e(n+1) = yoe(n). Note that for all n, e(n) C e(n+ 1), and, if e(n) € T,, then
e(n+1) € Tg. Find ¢ such that Vn[e(n) C ¢] and note that In[on ¢ T,]. Conclude
that Im[e(m) ¢ T,] and define p := umle(m) ¢ T,]. Note that p > 0 and find g such
that p = ¢ + 1. Conclude that e(q) € T, and e(p) € Tg \ T, and o # 3. ad

The next Theorem, Theorem 5.2, shows that A{ positively fails to be strictly analytic

or $1* in the following sense: given a (continuous) function from w* into Al one may
construct an element of A% that does not occur in the range of ¢.

Theorem 5.2
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(i) Cantor’s diagonal argument: Vo : w* — Alda € AIVB[a # p|B].
(ii) The Boundedness Theorem: Vip: w* — A{Ela IS A{Vﬁ[gp]ﬁ <* a].

Proof (i) Assume that ¢: w* — .A%. We claim that there exists o : w“ — w such

that V3[a(B) = (¢|BA)(B) + 1].

We first give an informal description of such an .. Given f3, find p := un[(¢|B)(Bn) #
0]. Now ensure that, for some ¢, ¢ = pun[a(Bn) # 0] and a(Bq) = (¢|3)(Bp) + 1. A
precise definition of such an « is the following. Define « such that for each c, if there
isno b C ¢ such that b < length(p|c) and (¢|c)(b) # 0, then a(c) = 0, and, if there is,
then a(c) = (p|c)(bo) + 1, where by is the least such b. Note that o € A{ and, for

each 3, a # | as a(B) # (¢|B)(B).

(ii). Assume that ¢: w* — Al. Note that VAVdIn[(p|B8)(n) # 0], and
VAYS§3nIm[e™(Bm) > 0 A Vi < m[¢*(Bi) = 0]]. Define o such that Vs[a(s) #
0« 3t CsFu Cspl’(w) >0 A Vv T ulp'(v) = 0]]]. Note that o € A}. Let
3 be given. Define ¢ such that VdVn[n = length(d) — (d) = "fn,d"]. Note that
e |8 <* a. We thus see that V3[p|5 <* o]. O

Using Lemma 5.1, one may obtain Theorem 5.2(i) from Theorem 5.2(ii), as follows.
Assume « € .A} and Vf[|B <* a]. Note'®: §*(a) € Al and VB[p|B <* $*(a)] and
thus, according to Theorem 5.2(i), V3[p|5 # S*(a)].

5.2 & positively fails to be II!

The next Theorem, Theorem 5.3, should prepare the reader for Theorem 5.4. The
proof of Theorem 5.3 is elementary in the sense that no use is made of intuitionistic
principles like Brouwer’s Continuity Principle BCP or the Fan Theorem FT. The proof
of Theorem 5.3(i) has been given in Veldman [35, Section 5.4]. Theorem 5.3(iii) is a
rather weak statement if one compares it to the result of the Borel Hierarchy Theorem,
Theorem 1.2 in Section 1.2.4. One should compare Theorem 5.3(iii) to Theorem 5.5(i).

Theorem 5.3
(1) &, positively fails to be 1'[(2): if a continuous function maps &, into A;, it also
maps some element of Aj into A :
Vo: w’ — w[Va € &pla € Ay] — Ja € Alpla € Aq]]

8For each v, $*(c) is the element 3 of w* such that 3(0) = 0 and Vn[3" = a]; see Section
1.1.8. If a € .A}, then also S*(a) € .A%. S*(a) is called the successor of «.

Journal of Logic & Analysis 14:5 (2022)



Projective sets, intuitionistically 55

(i) If &, is contained in a set X that is a countable intersection of open sets, also
some element of Ay isin X : VB[E, C }"g — Jafa € Ay N ]-"é]].

(iii) The assumption that A, is a countable union of spreads leads to a contradiction:
—3B[Vn[Spr(BM] A A =, Fprl.

Proof (i) Assume ¢: w* — w® and Vo € &[p|a € A;]. Now define « such that,
for all n, for all m, o’ (m) # 0 if and only if (p|am)" L 0. Note that for all n, o # 0
if and only if (p|a)" #0.

We now prove that for all n, both o and (p|a)" are in €. Let n be given. Define
oy, such that (a,)" = 0 and Vj[—3t[j = (n) * 1] — a,(j) = «(j)]. Note that o, € &,
vla, € Az, and (p|a,)* L 0. Find t C «, such that (¢|f)" L 0 and distinguish two
cases. Either 7 — « and (p|a)" #0 and also o" # 0;0r, 7t L o, oy L v, & #0, and
also (p|a)" # 0. We thus see that for all n, o # 0 and (p|a)" # 0, ie « € A, and
vla € A,.

(i) Let S given such that & C .7-"5. Find ¢: w* — w" reducing ]—"é to A,. Note that
Va € &[p|la € Ay]. Applying (i), find « in A; such that p|a € Ay, 50 a € Ay ﬁ]:é.

(iii) Let S be given such that Va[Spr(8")] and A, = gé =, Fs,- Find p such that,
for each n, p" : w* — Fpn is the canonical retraction of w® onto Fg.. Assume that
a € &. Note that V§ € Asx[a # d] and VnVo € Fau[o # 6] and Vn[a # p|a] and
Vn3m[B"(am) # 0] and Vn[a € Ggn] and o € .7-%. We thus see that Vo € &[a € .7-%],
ie & C Fé. Applying (i), we find o € Ay N F3 = gé N ]:é = (), a contradiction. 0O

The proof of the next theorem, Theorem 5.4, is also elementary.

Theorem 5.4

@) 511 positively fails to be H{: If a continuous function from w* to w* maps
&l into A}, it also maps some element of Al into Al: Vip: w¥ — w¥[Va €
Ellpla € All — 3a € Allp|a € Al

(i) If & is contained in a I} set X, also some element of Aj isin X : VB[E] C
UGz — Jala € Al NUG4].

Proof (i) Assume ¢: w“ — w* and Vo € 511 [pla € A}]. Now define « such
that, for all ¢z, a(r) # 0 if and only if Is T f[(p|ar)(s) # 0]. Note that for all ~,
In[a(yn) # 0] if and only if In[(p|a)(Fn) # 0].

We now prove: for all v, In[a(Fn) # 0] and In[(p|a)(Fn) # 0].

Journal of Logic & Analysis 14:5 (2022)



56 Wim Veldman

Let «y be given. Define c., such that Va[a(7n) = 0] and Ve[t L v — a4 (1) = a(?)].
Note that o, € & and ¢|a,, € Al. Find m such that (p|a,)(Fm) # 0. Find ¢ C .,
such that (¢|f)(ym) # 0 and distinguish two cases. Either 7 C «, (¢|a)(7m) # 0, and
In < mla(Fn) #0];or, t L o, a L vy, In[a(Fn) # 0], and In[(p|a)(Fn) # 0].

We thus see that for all 7, In[a(Fn) # 0] and In[(p|a)(Fn) # 0], ie a € Al and
ola € Af.

(ii) Let B given such that & C UGp. Find ¢: w* — w® reducing UGg to Al
Note that Yo € E[[p|a € Al]l. Applying (i), find « in Al such that ¢|a € Al, so
ae Al NUgs. m

5.3 May one prove: ‘A] is not analytic’?

The following theorem should be compared to Veldman [35, Theorem 5.2(iv)].

Theorem 5.5

(i) If A, is a countable union of closed sets, there exists o not in either Ay or &, :
Ay 2& = Jala g & N ad Al

(i) If Al is analytic, there exists o not in either Al or £!: Al < &l — Jala ¢
EL AN ag¢ ALl

Proof (i) Let p: w“ — w* be given. Define « such that, for all n, for all m,
o'(m) # 0 if and only if (p|am)” L 0. Note that for all n, Im[a(m) # 0] if and only
if Im[(p|a)*(m) # 0], so " € & if and only if (p|a)" € £ and " € A; if and only
if (p|la)" € A;. Conclude that « € &, if and only if p|a € & and « € A if and only
if pla € A,.

Now assume, in addition, that ¢ reduces A, to & . If a € Aj, then both p|a € &, and
pla € Ay, acontradiction. If « € &, then both p|a € & and « € A;, a contradiction.
We thus see that o ¢ A and o ¢ &;.

(i) Let ¢: w* — w” be given. Define « such that, for all 7, a(r) # 0 if and
only if s C #[(¢|ar)(s) # 0]. Note that for each «y, In[a(Fn) # 0] if and only if
Inl(p|a)(Fn) # 0]. Conclude that @ € &} if and only if p|a € £} and « € Al if and
only if ¢|a € Al.

Now assume, in addition, that ¢ reduces A% to 511. If o € Al, then both p|a € 511
and ¢|a € Al, a contradiction. If a € &/, then both ¢|a € 511 and a € Al, a
contradiction. We thus see that o ¢ Al and o ¢ &]. ]
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Markov’s Principle MP, in our view a dubious assumption (see Section 1.1.11), proves,
for all o,

a ¢ & — ~InVm[a (m) = 0] — VYn——Im[a (m) # 0]
— Vodm[a"(m) #£0] - a € A,
and thus, together with Theorem 5.5(1), A £ &.
MP also proves, for all «,
a ¢ 511 — =IyWVnla(Fn) = 0] — Vy——In[a(Fn) # 0]
— Vay3n[a(@n) # 0] — o € Al
and thus, together with Theorem 5.5(ii), A} ﬁ E 11 .

Intuitionistically, one obtains the conclusion A, £ & as a corollary of a stronger
statement proven from Brouwer’s Continuity Principle BCP; see Theorem 1.2 in
Section 1.2.4. No such argument seems to be available for the conclusion .A% £ 811 .

One may prove A} £E !, avoiding MP but using KS; see Section 1.1.10. One may
argue that .A% is definite, and therefore, if analytic, also strictly analytic; see Theorem
2.11 in Section 2.5. We have seen that A% is not strictly analytic; see Theorem 5.2.

54 £! and A! positively fail to be (positively) Borel

In classical descriptive set theory, the following statement holds:

A continuous function p: w* — w* reducing X C w® to 811 reduces

W\ X to Al
So, if one has seen that every Borel X C w* is 2{ and reduces to 511 , one may conclude
that every Borel X C w* reduces to .A} and is H}. In our constructive context, this
conclusion is wrong, see Theorems 2.1(iv) and Theorem 4.1(iv).

The following subtle Lemma 5.6 replaces the just mentioned statement.

Lemma 5.6 For every complementary pair (X, ))) of positively Borel sets there exists
p: w¥ — w" reducing X to 511 and mapping ) into A{.

Proof We use induction on the class of complementary pairs of Borel sets and
distinguish three cases.

Case 1. Let 3 be given such that X = Gg = {a | In[B(an) # 0]} and Y = Fg =
{a | Vn[B(@n) = 0]}. Define ¢: w* — w® such that Va[(p|a)(0) =0 A Vs >
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Ol(p|a)(s) =0 < ﬁ(a(s(O))) # 0]]. Note that ¢ simultaneously reduces X to 811 and
Y to Al, because for each «:

a € Gg  In[B@n) # 0] < J[B@y(0) # 0] < Iy[(¢|a)((1(0)) = 0]
© Inl(pla)Fn) = 0]  pla € &

and o € Fg ¢ Vn[B(@n) = 0] <+ ¥y [B(@y(0)) = 0] <> ¥[(¢]a)((1(0))) # 0]
“ ¥y3nl(pla)Fn) # 0] ¢ pla € Aj

Case 2. Let 3 be given such that X = Fg and Y = Gg. Define ¢: w* — w“ such
that VaVs[(p|a)(s) = 0 «» Vj < s[S(@j) = 0]]. Note that ¢ simultaneously reduces X’
to 511 and ) to A!, because, for each a:

a € Fp «» Vn[B(@n) = 0] < Vs[(p|a)(s) = 0] <> VVn[(¢|a)(Fn) = 0]
“ IyVnl(pla)Fn) = 0] + plo € &}
and a € Gg < In[B(an) # 0] < sVt > s[(p|a)(t) # 0]
& Vy3nl(pla)Fn) # 0] > pla € Al

Case 3. Let (Xp, Vo), (X1, V1), ... be an infinite sequence of complementary pairs of
(positively) Borel sets and let ¢ be given such that, for each n, ¢" : w* — w* reduces
X, to & and maps Y, into Al.

Case 3a. Define X = (J, &, and ) := (), V,. Define ¢: w* — w* such that
Val(|a)(0) =0 A VaVs[(h|a)((n) * s) = (¢"|a)(s)]]. Note that 1 reduces X to &}
and maps ) into A}, because: for each o,

a € X + Infa € X,] < In[¢|a € 811] < InIVWVm[(¢"|)(Fm) = 0]
& IWVm[(h|a)Fm) = 0] < la € &}
and  a €Y < Vnla e Y] = Voo € Al < Vavy3m[("a)(Fm) # 0]
< Vyam[(la)(Fm) # 0]

soa €Y —Ylae Al

Case 3b. Define X = (), X, and Y := |J,V,. Define ¢: w* — w“ such that
VaVs[(p|a)(s) = 0 < Vn < sVt C s"[(¢"|a)(#) = 0]]. Note that ) reduces X to &}
and maps ) into A!, because, for each a:
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a € X + Vn[a € X,] <> Vn[y"|a € 511] < YnIyWVm[(¢"|c)(Fm) = 0]
& O3VnVm[(¢"|)(Y'm) = 0] <> IyWm[(1)|a)Fm) = 0] < Y|a € &}
and
a €Y+ Infa € Y,] — In[p"|a e A{] < InVyIm[(¢"|)(Fm) # 0]
— 209y 3nTm[("|@)(Y'm) # 0] <> YyIm[(|a)(Fm) # 0] < ¥]a € Al
soa €Y —Ylac Al O

Theorem 5.7 (€] and A} positively fail to be (positively) Borel)
(i) For every o in HRS, for every ¢: w* — w*, if <p|€11 C &, then Ja €
A%[(p\a c&;].
(ii) Forevery X in Bovel, if & C X, then 3o € Al[a € X].
(iii) For every o in HRS, for every ¢: w* — w®, if p|Al C &,, then 3o €
Ell[cp\a c &y].
(iv) Forevery X in ‘Bovel, ifA} C X, then Ja € 811 [a € X].

Proof (i) Let o, ¢ be given such that 0 € HRS and ¢: w* — w* and ¢|&] C &,.
Using Lemma 5.6, find 1: w* — w*“ reducing A, to &£ and mapping &, into A}.
Note that o x )2 maps A, into &,. Applying the Borel Hierarchy Theorem, Theorem
1.2, find 8 in &, such that (¢ x )| € &,. Define o := 1|3 and note that a € Al
and pla € &,.

(ii) Let X' in Borel be given such that & C X. Find ¢ in HRS and ¢: w — w*
reducing X to &,. Note p|&! C &,. Applying (i), find v in A} such that ¢|a € &,
and, therefore, a € X'.

(iii) Let 0, ¢ be given such that ¢ € HRS and ¢: w* — w* and | Al C &,. Using
Lemma 5.6, find v : w* — w* reducing &, to &/ and mapping A, into Al. Note that
@ %1 maps A, into &,. Applying the Borel Hierarchy Theorem, Theorem 1.2, find /3
in &, such that (¢ x9)|3 € &,. Define o := 9|3 and note that o € £ and ¢|a € &,.

(iv) Let X in Borel be given such that A} C X. Find o in HRS and ¢: w* — w*
reducing X' to &,. Note ¢| Al C &,. Applying (iii), find o in &] such that p|a € &,
and, therefore, o € X. O

We are applying the Second Axiom of Countable Choice, ACy : VmIy[mR~y] —
IyVm[mR~™], see Section 1.1.3.

*The contraposition of ACy ;: VyIm[mR~™] — ImV~y[mR~], is not constructively valid,
and, therefore, we have here a single arrow only.

For all p,¢: w¥ — w¥, also @ * 1: w¥ — w® and, for all o, ¢ * Y|a = ¢|(Y|), see
Section 1.1.5.
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5.5 Other results showing that £! and A} are not (positively) Borel

MONPATH :={a | Iy € FoVn[y(n) < v(n+ 1) < 1]} is what might be called a
simple E{ set, as, from a classical point of view, MONPATH is H(l). The assumption
that MONPATH is (positively) Borel leads to a contradiction, see Veldman [33,
Theorem 2.23(vi)]. It follows that 511 is not positively Borel, but the statement of
Theorem 5.7(i1) is a stronger conclusion.

As we mentioned in Section 4.3, ALMOST*FIN = {a | V(¢ € [w]¥In[a o ((n) =
01} is I} but not (positively) Borel. ALMOST*FIN might be called a simple I}
set, as, from a classical point of view, ALMOST*FIN is Eg. It follows that also .A{
is not (positively) Borel, but the statement of Theorem 5.7(iv) is a stronger conclusion.

As one might expect, the results about MONPATH and ALMOST*FIN strongly
use Brouwer’s Continuity Principle BCP.

5.6 One half of Souslin’s Theorem

Theorem 5.8

(i) Forevery o in STP,{a|a <" o} € Borel.
(i) Every X C w" that is both strictly analytic and co-analytic is (positively) Borel:
T NI} C Borel.

Proof (i) Note that Va[a <* 1* <> a(0) # 0]. Also note that for all o # 1* in STP,
Vola <* g < VmIn[a™ <* ¢"]]. Now use induction on ST P.

(ii) Assume that X € B{*NII}. If X = 0, clearly X € Bovel. Assume X is inhabited.
Find ¢: w* — w® such that X = p|w”. Find ¢: w* — w* reducing X to A}.
Using Theorem 5.2(ii), find £ in .A} such that Va[(y) x p)(c) <* (]. Note that Dg is a
bar in w*. Using Brouwer’s Thesis on bars in w* BT, see Section 1.1.9, find a stump
o such that Dg N T, is bar in w®. Conclude that Va[a <* 8 — a <* o]. Conclude,
using (i): X = {vy | ¢|y <* o} € Borel. O

Theorem 5.8(ii) is of limited application as every II] subset of w* is perhapsive, see
Theorems 4.8(i) and 1.5(i) , and “most” positively Borel sets are not. Therefore, there
are not “many” positively Borel sets that are both co-analytic and strictly analytic. The
converse of Theorem 5.8(ii), although classically a well-known fact, is far from true.
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6 Countable and almost-countable spreads

6.1 Countable spreads

Countable closed subsets of the set of the real numbers were among the first objects
studied by Cantor. One might say that this study led him to discover set theory.

In our constructive context we study located and closed subsets of w®, ie spreads, and
ask ourselves what could be a useful notion of countability.

Definition 24 For each 0, we define Ens = {0" | n € w}. We also define:
COUNT :={B|Spt(B) N F0[Fp C Ensl}

Eng is called the subset of w® enumerated by §, see Section 1.1.2.

If 3 € COUNT, we call Fg an (at most) countable spread.

Definition 25 X C w" is called discrete if and only if Voo € XVfS € X[a# 8V a =
Bl.

Recall that FZN is the set of all « such that 3nVm > n[a(m) = 0], ie D, := {m |
a(m) # 0} is a finite subset of w.

Like Theorem 2.8, the following Theorem 6.1 should be compared to a classical result
due to W. Hurewicz, see Kechris [14, Theorem 27.5].

Theorem 6.1

(i) For every spread F C w®: F is (at most) countable if and only if F is discrete:
VBB € COUNT < (Spr(B) A Vv € Fa¥yi € Falvwo #v1 V v =1l
(i) FIN XCOUNT.
(iii) A] X COUNT.
(iv) COUN'T is not the co-projection of a closed subset of w“ but it is the co-
projection of a (positively) Borel subset of w*: COUNT is not IIi but
COUNT is T, *.

Proof (i) Assume 3 € COUNT, ie Spr(3) and Fz is (at most) countable. Note
that if 5(0) # 0 then Fg = () is discrete. Assume that 3(0) = 0 and find ¢ such
that g C Ens. Then Vy € Fg3n[y = §"]. Let 40,71 in Fg be given. Using
Brouwer’s Continuity Principle BCP (see Section 1.1.6), find ng, mg, ny, m; such that

Journal of Logic & Analysis 14:5 (2022)



62 Wim Veldman

Vi < 2V € Fg[yim; C v — v = 6™]. Note that if yomg L 77m, then yo # 1, and,
if not, then g = 6" = ;. We thus see that Vyo € FgVy1 € Fglo#7n V v =mnl,
ie Fp is discrete.

Now assume Spr(3) and Fp is discrete. We may assume that 3(0) = 0, ie Fg is
inhabited. Define ¢ such that, for all s, e(s) = 0 if and only if 5(s;) = B(sy) = 0.
Note that Spr(¢) and for all v, v € F. if and only if both v; and ~y are in Fg.
Conclude that Vv € F.[v1 # yo V 1 = vi]. Using the First Axiom of Continuous
Choice ACj (see Section 1.1.6) find ¢: F. — w such that Vy € .7-"5[(4;7(7) =0—
v # fy”) A («p(’y) >0 =y = fy”)]. Note that Vy € Fgle("v,v ") > 0] and, for
all n, if B(n) = 0 and ¢|"n,n" L (0), then there exists exactly one € F3 such that
n C 7. Find § such that, for each n, if S(n) = 0 and ¢|"n,n" L (0), then n C 6" and
0" € Fp, and note that 3 C Ens. We thus see that 5 is (at most) countable.

(i) Define : w® — w* such that YaVs[(¢|a)(s) = 0 <> ImIk[s = am = 0k]]. We
shall prove that ¢ reduces FZN to COUN'T . Note that for every «, Spr(p|a) and
o€ ‘7:<P|Oé‘

First, let a in FZN be given. Find m such that Vn > m[a(n) = 0]. Note that
VY € Fyla ¢ dk < m[y = @k % 0]]. Define § such that Vk < m[6% = @k = 0].
Note that F,, € Ens and ¢la € COUNT . Clearly, for every «, if @ € FZN, then
pla € COUNT .

Now let o be given such that p|ae € COUNT . According to (i): F, is discrete.
Note that o € F . Using Brouwer’s Continuity Principle BCP, see Section 1.1.6,
find m such that Vv € ]:@|a[am C v — a = v]. Conclude that Vrn > m[a(n) = 0]
and o € FZN . Clearly, for every a, if p|a € COUNT , then o € FIN .

We thus see that ¢ reduces FZN to COUN'T .

(iii) Recall that we defined, for each «, T, = {¢ | Yu C t[a(u) = 0]}. Define ¢: w® —
w¥ such that, for all «, for all s, (¢|a)(s) = 0 if and only if 3¢ € T, 3k[s = ¢ * Ok].
We shall prove that ¢ reduces A} to COUN'T . Note that Va[Spr(p|a)].

First, assume that o € A]. Let 79,7y in Fola be given. Find ng := un[a(yon) # 0]
and n; := pn[a(F1n) # 0]. Note that Fgng € T, and Yo(no+1) ¢ T, and o = Fono*0.
Similarly, v; = F1n; * 0. If Jono L 7111, then v # v, and, if not, then vo = ;. We
thus see that Vo € Fy 1o V71 € Foalro #71 V 70 = 1l ie Fy, is discrete. Using (i),
conclude that p|a € COUN'T . Clearly, for each «, if o € A}, then p|a € COUN'T .

Now let a be given such that p|a € COUNT. Let v be given. Define v* such
that, for each n, if ¥(n + 1) € T,, then v*(n) = ~v(n); and, if not, then v*(n) = 0.
Note that v* € F . According to (i), F|, is discrete. Using Brouwer’s Continuity
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Principle BCP, find n such that Vo € F ,[y*n C 6 — ~* = 6]. Suppose that
Vm < nla(y*m) = 0]. Then Vp[v*n x (p) € T, and (p|a)(v*n x (p)) = 0].
Conclude that Im < n[a(y*m) # 0], and Im < n[a(ym) # 0]. We thus see that
VyImla(ym) # 0], ie o € A}. Clearly, for each a, if p|a € COUNT, then o € Al.

We thus see that ¢ reduces A} to COUN'T .

(iv) As FZN reduces to COUNT, see (ii), and FZN is not II!, see Theorem 4.3(iii),
also COUN'T is not II}.

Note, considering the proof of (i): forall 8, 5 € COUN'T if and only if Spr(53) and Fp
is discrete, ie Vy € FgdnVsVi[(B(s) = ) =0 AnEs AynEt) - (sEt VvV 1 C
5)]. Conclude, using the last observation of Section 1.1.5, that for all 3, 3 € COUNT
if and only if Spr(5) and Vy3anVsVe[(B(s) = Bt =0 A AnCs A nC1) — (s C
t V tCs)]. Let X be the set of all 3 such that Spr(/3;) and either 3n[3;(B;n) # 0] or
VsV (Bi(s) = Pr(H) =0 A Byun Ts A Bun T t) — (s Tt V t C s)] and note that
X € Y and COUN'T = Un(X) and COUNT is I . O

6.2 Almost-countable spreads

One might feel that the notion of a countable spread as introduced in Section 6.1 is
perhaps too strong. We therefore introduce a weaker notion.

Note that for each 9, for each ~, if Vn[~ # 0"], one may define « such that, for each =,
a(n) = pw(p)[7p L §"]. Conclude that Vn[vy # 6"] if and only if daVr[Fa(n) L §"].
One may consider « such that Vr[¥a(n) 1 §"] as evidence for the fact that Vn[v # §"].

Definition 26 For all -y, §, we define: ~ almost belongs to Ens = {¢" | n € w} if and
only if Vadn[Fa(n) C 0"].

So 7 almost belongs to Ens if every attempt to give evidence that y is apart from every
element of Eng fails in finitely many steps.

Lemma 6.2

(i) Forall v,d,¢, if Ens C En. and v almost belongs to Eng, then ~y almost belongs
to En..

(ii) For all v, 6, ¢, if Eng = En., then v almost belongs to Eng if and only if -y
almost belongs to En..
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Proof (i) Let §,& be given such that Ens C En.. Let v be given such that
Vadn[ya(n) C 6"]. Using the First Axiom of Countable Choice ACy(, see Sec-
tion 1.1.3, find ¢ such that Vn[6" = ¢®]. Let a be given. Find n such that
Fa o ((n) T 0" = £ and conclude that dm[ya(m) = €™]. Conclude that
Yadn[ya(n) C €"].

(i1) immediately follows from (i). O

Define § such that Vn[6" = n * 0] and note that FZN = {6" | n € w} = Ens. Recall
that ACMOST*FIN = {~ | V¢ € [w]“Tn[y o {(n) = 0]}; see Definition 17.

Lemma 6.3  Foreach v, v € ALMOST*FIN if and only if ~y almost belongs to
FIN.

Proof Let vy in ALMOST* FIN be given. We want to prove that v almost belongs
to FIN = {n*0 | n € w} . Let a be given. We want to prove: In[ya(n) C
n * 0]. To this end, we define ( in [w]¥, step by step. If 7a(0) L 0O, define
C(0) = ui < a(m)[y(@@) # 0]; and, if not, define {(0) = 0. Now assume p > 0 and we
defined ¢(0),¢(1),...,{(p — 1). Define m :=~(C(p — 1)+ 1). If Fa(m) L m =0,
ie yay({p — D+ 1)) L 5(Cp —1) + 1) %0, define {(p) = pi < am)i >
C(p — 1) A~(@) # 0], and, if not, define ((p) = ((p — 1) + 1. Now find n such that
v o ((n) = 0 and conclude that for some p < n we must have seen Ja(m) C m * 0,
where m = i(g(p -+ 1). We thus see that v almost belongs to FZN .

Conversely, let vy be given such that v almost belongs to FZN/, ie VaIn[ya(n) C nx*0].
Assume that ¢ € [w]¥. Find 7 in [w]“ such that Vn[( o n(n) > length(n)]. Define
« such that, for each n, a(n) = ( o n(n) + 1. Find n such that ya(n) C n * 0 and
conclude that v o ( o n(n) = 0. We thus see that V( € [w]“dn[y o ((n) = 0], ie
v € ALMOST*FIN . O

Definition 27 For each 6, we let ALMQOST *(Eng) be the set of all y that almost
belong to Eng, ie such that Va3n[Ja(n) C 0"]. We also define:

ALMOST*COUNT = {3 | Spr(B) N F0[Fz C ALMOST"(Ens)1}
If 3 € ALMOST*COUNT, we call Fg an almost-countable spread.

Lemma 6.4 For each (3, if Fg is an inhabited almost-countable spread, then there
exists € in (Fg)* such that Fg C ALMOST™(En,).
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Proof Let /3,6 be given such that Spr(3) and (0) = 0 and Fg C ALMOST *(Ens).
Let p be the retraction of w* onto F3. Define € such that Va[e" = p|6"] and note that
Vnle" € Fgl. We now prove: Fg C ALMOST*(En.). Assume vy € F3 and let o
be given. Find n such that ¥a(n) C §". Conclude that 3 (Wa(n)) =0 and Fya(n) C €".
We thus see that 3 € ALMOST *(En). m|

Lemma 6.5 If F,H are inhabited spreads and F maps onto H and F is almost-
countable, also H is almost-countable.

Proof Let 3y and 3| be spread-laws such that 3,(0) = 5;(0) = 0 and Fp, is almost-
countable. Assume ¢: Fg, — Fp, is surjective. Using Lemma 6.4, find § in (Fg,)*
such that Fg, € ALMOST*(Ens). Define € such that Vn[e" = ¢|§"]. Assume
that ¢ € Fg3, and find 7 in Fg, such that p|y = (. Let o be given. Find 7
such that Vr[e"a(n) T |0"n(n)]. Find n such that n(n) C 6" and conclude that
Ca(n) = plya(n) T ¢|d" = €". We thus see that V¢ € Fp,VaIn[Ca(n) C €], ie

Fp € ALMOST (En.) and Fg, is almost-countable. m]
Theorem 6.6
(i) Foreach (3 such that Spr(f3), Fp is a countable spread if and only if F3 embeds
into FIN .
(ii) For each 3 such that Spr(3), if Fg is an almost-countable spread, then Fg
embeds into ALMOST*FIN .

Proof (i) Assume that Spr(3) and Fj is an inhabited countable spread. Find ¢ in
(Fp)* such that Fg = Ens, ie Vy € Fg3n[y = ¢"]. Using the First Axiom of
Continuous Choice ACj o, see Section 1.1.6, find ¢: Fz — w such that Vy € Fg[y =
597, Define 1 Fz — w® such that Vy € Fgly|y = 1(7y) * 0] and note that
W Fg— FIN.

Conversely, assume that Spr(3) and Fjz embeds into FZN. Find ¢ such that
@: Fg — FIN . Note that FZN is discrete, ie for all &y, d; in FZN, either §y = 0,
or 0o # ¢1. Conclude that for all o,y in Fg, either ¢|vo = |1 or ¢|vo # ¢|y1, and,
therefore, either v = 71 or o # 71, ie Fg is discrete. Using Theorem 6.1(i), conclude
that Fg3 is a countable spread.

(i) Assume that Spr(/3) and Fj is an inhabited almost-countable spread. Using Lemma
6.4, find 6 in (Fp)¥ such that Fg = ALMOST*(Ens).

We first prove the following observation: for all s such that 3(s) = O there exists n
such that s C ¢". Let s be given such that 5(s) = 0. Find 7 in F3 such that s T .
Then find n such that Jlength(s) C ¢" and conclude that s C §".
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Now define ¢: Fg — w® such that, for all v in Fg, for all n, if up[yn C 6] <
pp[F(n 4 1) T 0711, then (p|y)(n) = pp[F(n 4 1) T 67]; and, if pp[Fn C #] =
up[y(n + 1) = 6P]1], then (p|y)(n) = 0. We prove that ¢ is a strongly injective
function from Fg into w®. Let 79,7 in Fg be given such that v # 7. Find n
such that 7pn # #1n. Note that up[yon T 6] # up[yin T 6P]. Conclude that
Ji < nl([0)@) # (Ply)@] and p|yo # @[y

We prove that ¢ maps Fg into ACMOST*FIN . Let v in Fz be given and consider
©ly. Let ¢ in [w]“ be given. Find n such that ﬁ(g(n) + 1) C ¢". Assume that
Vi < n[(¢]7)(¢()) # 0]. Conclude that Vi < n[0 < (|7 (¢(H) < (1) (¢G+ D)I,
and (¢[7)(((n)) > n+ 1. Conclude that pp[¥({(n) + 1) T 6’1 > n+ 1 and also that
7(¢(n) + 1) C &". This is a contradiction. Conclude that 3i < n[(p]y)(¢(@)) = 0].
Clearly, V¢ € [w]¥3il(]|7) (¢()) = 0], ie ¢y € ALMOST*FIN . m|

For the converse of Theorem 6.6(ii), see Corollary 6.14.

6.3 Cantor-Bendixson sets

Definition 28 Let ¢, 8 be given. We define v = CB(e, 8) in 2“ as follows. For each
s, v(s) = 0 if and only if either s C ¢ or there exist m,n,t such that s = gm * (n) * t
and £(m) # n and B'"""(f) = 0.

Lemma 6.7 Let ¢, 3 be given.

(i) If, for all n, Spr(3"), then Spr(CB(e, B3)).
(i) If, forall n, 3" € ALMOST*COUN'T , then CB(e, 8) € ALMOST*COUNT.

Proof (i) The proof is straightforward and left to the reader. If, for all n, Spr(5"), and
v = CB(e, ), we call € the spine of the spread F,, .

(ii) Assume that for all n, " € ALMOST*COUN'T . Using the Second Axiom
of Countable Choice ACy ;, see Section 1.1.3, find § such that, for all n, Fgn C

ALMOST*(Eng:). Define n such that n° = ¢ and, for all m, n, p, if e(m) # n, then

Define v := CB(e, ). We prove that F,, is a subset of ALMOST *(En,). Assume
that v € F,,. Let o be given. We want to prove: dn[ya(n) C n"]. If ya(0) C n° = ¢,
we are done. Now assume that a(0) L n° = ¢. Define m = up[y(p) # (p)]
and n := y(m). Define k := J(m,n) and s := Zm * (n). Note that s C  and find
p such that v = s % p. Note that o € Fge. Find p such that zi(a(J(k,p) + 1)) C
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%P, Conclude that ya (J(k,p) + 1) T s * il (J(k, p) + 1) T s % 650 = p/0H1
Conclude that Yadn[ya(n) C n"], ie v € ALMOST(En,). We thus see that
Fu, C ALMOST*(Eny) and v = CB(e, ) € ALMOST*COUNT . O

Definition 29 We introduce a subset CB of w* by means of the following inductive
definition.

(i) Forall 3, if Spr(8) and 5(0) # 0 (so Fg = () then 8 € CB.
(ii) For all €, for all 3, if, for all n, " € CB, then CB(e, 8) € CB.
(iii) All members of CB are given by (1), (ii).

The following theorem may be compared to Cantor’s result [8, Theorem C] in [9, page
220], and to a related intuitionistic result: Veldman [38, Theorems 9.1 and 9.2].

Theorem 6.8 ALMOST*COUNT =CB.

Proof Using Lemma 6.7 and induction, we conclude that CB C ALMOST*COUN'T .
We now prove that ALMOST*COUN'T is a subset of CB.

Let 8 in ACMOST*COUN'T be given. One may assume that 5(0) = 0. Using
Lemma 6.4, find 6 in (F)* such that Fg3 C ALMOST *(Ens). Now define
in 2¢ such that, for all ¢, 8%(c) = 0 if and only if Vi < length(c)[3(c(i)) =
0] A (i + 1 < length(c) — ¢(i) C c(i + 1))]. Note that Spr(5™). Define B := {c |
Ji < length(c)[c(i) C ¢']}. We now prove: B is a bar in Jp+. Let v in Fg+ be given.
Find ¢ in Fj such that Vn[y(n) C (]. Find « such that Vn[vy(n) = Ca(n)]. Find n
such that Ca(n) C 8" and, therefore: v(n) C 6" and F(n + 1) € B. We thus see that
Barr_, (B). We define: (Y = (), and, for each n > 0, for each ¢ in w", & := c(n — 1).
Define C :=J,{c € w" | BT(0) =0 A (Vi < nlc(i) L 6] - B € CB])}. Note that
B C C and C is monotone in {s | 31 (s) = 0}. Let ¢, n be given such that ¢ € w" and
BF(c) = 0 and VI[BT(c * (t)) = 0 — ¢ x (t) € C]. Assume that Vi < n[c(i) L &'].
Note that for all ¢, if ¢ C ¢ and S(f) = 0 and ¢ L 6", then ¢ * () € C and '3 € CB.
Find € such that ¢ x e € Fg, and, if ¢ T ¢", then 6" = ¢ * €. Define v := ¢/3 and note
that € € F,, and, for all s, if v(s) = 0 and ¢ L s, then *v € CB. In particular, for all
m,n,s,if s = gm * (n) and e(m) # n, then *v € CB. Conclude that v = 3 € CB,
and ¢ € C. We thus see that C is inductive in {s | 37(s) = 0}. Using the Principle of
Bar Induction BI, see Section 1.1.9, we conclude that ( ) € C,ie 8 € CB.

We thus see that ALMOST*COUNT C CB. |
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6.4 Reducible spreads

Definition 30 For each o in STP, we define the collection RED, of codes of
o—reducible spreads, as follows, by induction.

(i) R(SD[* = R(":'DL = {l}
(i) Forevery o # 1* in STP, RED,, is the set of all 5 in 2% such that Spr(3) and,
for some € in Fg:
VYmVn [(5(1@) #m N BEnx* (m)) = 0) — Elp[gn*<m>ﬂ € REDUp]]

We also define RED := |J,c57p RED, .

If 8 € RED,, then Fg is called a o—reducible spread. If 3 € RED, then Fy is called
a reducible spread.

The notion of a reducible spread goes back to Cantor. We here introduce this notion
without bringing up the operation of taking the derivative of a given X C w®“. Cantor
defined a closed set to be reducible if one, by repeating the operation of taking the
derivative, if needed transfinitely many times, ends up with the empty set.

Note that, for all o in ST P, for all 3 such that Spr(3), F3 is o—reducible if and only
if s x F is o—reducible. Also note that, for all 3y, 51 such that Vi < 2[Spr(/3;)] and
Fg, € Fp,,forall o in STP,if Fa, is o-reducible, then Fg, is o-reducible.

Theorem 6.9 CB = RED.

Proof We first prove that CB C RED, using induction on CB.
(1) For all 3, if Spr(/3) and 3(0) # 0, then F3 = () and 3 € RED;-.

(2) Let 3, ¢ be given such that Spr(3) and € € F3 and Vndo € STP[B" € RED,].
Using ACy 1, find 7 in STP such that 7(0) = 0 and Vn[B" € RED,»]. Conclude that
CB(e, B) € RED-.

(3) Using induction on CB, conclude that CB C |, cs7p RED, -
We now prove that RED C CB, using induction on ST P.

(1) For all o in STP, for all 3, if 0(0) # 0 and 8 € RED,, then Fg = () and
B eChB.

(2) Let o in STP be given such that ¢(0) = 0 and Vn[RED, C CH].

Let 3 in RED,, be given. Find € in Fp such that Vs[(5(s) =0 A s Le) — In[*B €
RED,n]]. Conclude Vs[(B(s) =0 A s L e) — 8 € CB],and 8 € CB. Define v
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such that, for all m, n, if e(m) # n, then /" = & 3 and, if e(m) = n, then
A7/mm — 1. Note that for all n, ¥* € CB and 3 = CB(e,~) € CB.

We thus see that RED, C CB.
(3) Using induction on ST P, we conclude that Vo € STP[RED, C CH]. O

6.5 Perhaps,—countable spread

In this section we will see that there are many notions of countability for spreads
in between the notion of a countable spread, see Section 6.1, and the notion of an
almost-countable spread, see Section 6.2.

Definition 31 For each inhabited X C w*, for each o in STP, we define P(c, X') C
w", the o—th perhapsive extension of X, as follows, by induction. For every o in

STP,

(i) if 5(0) # O then P(o, X) = X; and
(i) if o(0) = 0, then P(0, X) = {a | 3B € X[ # B — Tn[a € P(a", X)]]}.

In Veldman [36, Theorem 3.19], one may find the straightforward proof that, for all
inhabited X,y C w¥, forall o,7 in STP,if X C Y and ¢ < 7, then P(cg, X) C
P(7, D).

Definition 32 Let 3,0 be given such that Spr(3) and o € STP. The spread Fjp is
called perhaps,—countable if and only if 30[Fg C P(o, Eny)].

The proof of the third item of the next theorem, Theorem 6.10, resembles the proof of
CALMOST*COUNT C CB’; see Theorem 6.8.

Theorem 6.10

() VSLALMOST*(Eng) = U, cs7p P(0, Ens)ll
(i) ALMOST*FIN =,csrp P(o, FIN)
(iii) For all 3,6,¢, if Spr(B) and ¢: Fz — ALMOST"(Ens), then Jo €
STPly: Fg — P(o, Ens)]
(iv) For all f3,¢, if Spr(B) and ¢: Fgz — ALMOST*(FIN), then 3o €
STPle: Fs — Plo, FIN)]
(v) VB eCBio € STPIplp: Fz— Plo, FIN)]
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Proof (i) Let 6 be given. We first prove |J,cg7p P(0, Ens) € ALMOST *(Ens),
using induction on ST P. First note that P(1*, Eng) = Eng C ALMOST *(Engs). Now
let o in STP be given such that o # 1* and Vn[P(c", Ens) C ALMOST *(Ens)].
Assume that v € P(o0, Eng). Find n such that v # §" — dm[~y € P(¢™, Ens)]. Let «
be given and distinguish two cases. Case (a): ya(n) C 0". Case (b): FJa(n) L §".
Find m such that v € P(¢™, Ens). Conclude that v € ALMOST*(Ens) and
dp[Fa(p) T 67]. We thus see, in both cases, that dp[Fa(p) C 6”]. Conclude that
YV € P(o, Ens)Vadp[yap C 7], ie P(o, Eng) € ALMOST *(Ens). Using induction
on STP, conclude that |, cg7p P(o, Ens) € ALMOST *(Eny).

We now prove: ALMOST*(Ens) C U, cs7p Plo, Ens). Let v in ALMOST™(Eny)
be given. Define B := | J,{a € v’ | i < plya) C ']} and note that B is a bar in w*.
Define C := Up{a € wl | Vi < p[ya@i) L 6'1 — Jo € STP[y € P(o,Ens)]}. Note
that B C C and C is monotone. We now prove that C is inductive. Let a be given such
that Vn[a * {n) € C]. Define p := length(a). Assume Vi < p[Fa(i) L §']. Using the
Second Axiom of Countable Choice ACy,;, see Section 1.1.3, find 7 in S7TP such that
Vb[Fb L §? — v € P(r?, Eng)]. Conclude that if v L 67, then 3b[y € P(r?, Ens)], ie
v € P(1, Eng). We thus see that if Vi < length(a)[Ja(i) L §'], then 37[y € (7, En)],
ie a € C. Conclude that C is inductive. Using the Principle of Bar Induction BI (see
Section 1.1.9) we find that () € C, ie 37[y € P(7, Eny)].

We thus see that ALMOST*(Ens) € U, cs7p P(0, Ens).
(i1) This follows from (i) and Lemma 6.3.

(iii) Let (3,0, ¢ be given such that Spr(5) and ¢: Fgz — ALMOST (Ens). Note
that Yy € FsVa3n[p|ya(n) C 6"]. Define 4+ such that, for each ¢, B+(c) = 0 if
and only if Vi[i + 1 < length(c) — ¢(i) T c¢(i + 1)] and Vi < length(c)[B(c;(i)) =
0 A length(g0|c1(i)) > ¢;7()])]. Note that Spr(31). Define B := Up{c cewl| i<
ploler(en(i) T 61}. We now prove that B is a bar in Fa+. Let y in Fg+ be given.
Find ¢ in Fg such that Va[v;(n) C ¢]. Find n such that {7y (n) T ¢" and, therefore:
~(n + 1) € B. Conclude that BarfB L (B).

For each ¢ such that 57 (¢c) = 0 we define ¢ as follows. 0 = 0 and, for each ¢, for all n,
if n = length(c) > 0, then & := c¢;(n — 1). Let C be the set of all ¢ such that 37 (c) = 0
and, if Vi < length(c)[p|c;(i)cy(i) L 6], then Jo € STP[p: FgNée — P(o,Ens)].
Note that B C C and C is monotone in {s | 37(s) = 0}. We now prove that C is
inductive in {s | 31 (s) = 0}. Let ¢ be given such that 3% (c) = 0 and Vi[5 (c * (1)) =
0 — c* {t) € C]. Find n := length(c). Assume that Vi < n[p|c;(i)cy() L 6.
Note that Ve[(BF(c * (£)) =0 A o|tty(n) L §") — 3o € STP[yp: Fa N ty(n) —
P(o, Ens)]]. Using the Second Axiom of Countable Choice ACy 1, see Section 1.1.3,
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find 7 in STP such that, for all ¢, if 8T (c  (f)) = 0 and @|ft;(n) L 6", then
p: FgNt(n) = P(1', Eng). Clearly, Vy € FgNclo|y # 6" — Itlply € P(r!, Ens)]]
and ¢: F3N¢ — P(7, Ens). We thus see that C is inductive in {s | 37 (s) = 0}.

Using the Principle of Bar Induction BI (see Section 1.1.9) we conclude that () € C,
ie 3o € STPly: Fg — P(0, Ens)].
(iv) This is an immediate consequence of (iii), as 0[FZN = Eng].

(v) This follows from (iii) and Theorem 6.6(ii). O

6.6 Special and very special Cantor-Bendixson sets

Definition 33 We define a function o — cb, from ST P to w*, as follows.

(i) cby~=1
(i) Forall ¢ # 1* in STP, cb, satisfies Vm[cb,(0m) = 0] and YmVnVs[ch,(0m *
(n+41) % 5) = cbon(s)].

Note that if o # 1*, then cb, = CB(0, 3), where, for all m,n, /"D = cbyn.

We also define a function o + cb$ from STP to w®, as follows.
() ebf.=1
(ii) Forall o # 1* in STP, cb? satisfies Ym[cb3(Om) = 0], VmVs[chS(Om * (1) x
5) = chL(m) (5)] and VYm¥nVs[cbS(Om * (n + 2) * s) = 1].

Note that if o # 1%, then cbg = CB(0, 3), where, for all m, ﬁj(’"’l) = cbgum) and, for
all m,n, B/mn+2 = 1.

Note that for each ¢ in ST P, cb, is a spread-law and cbg is a fan-law and F 370 C2v.
Note that for each o in STP, for each n, F.», embeds into F.,, N On, and F 0

embeds into .7-"3,0 N 0n.

The sets Fp, , where o € STP, are called special Cantor—Bendixson sets. The sets
]:Cobg, where o € ST P, are called very special Cantor-Bendixson sets. The latter sets
occur in Veldman [33] and [36].

Lemma 6.11

(i) Forall o in STP, Fe, and F o are subsets of ALMOST*FIN .
(i) Forall ¢ in STP, F¢p, embeds into }—cbﬁ'
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Proof We use induction on S7P. Note that Fep, , = ]-"Cb?* =0 C ALMOST*FIN .
Let 0 # 1% be given such that, for each n, F_, and }'Cbon are subsets of
ALMOST*FIN. Note that, for each a in Fpp,, if o # b, then there ex-
ist myn, 3 such that « = Om * (n + 1) x 8, B € ALMOST*FIN, and o €
ALMOST*FIN . Conclude that Fp,, € ALMOST*FIN . For similar reasons,
Fopo C ALMOST*FIN.

(ii) We use induction on STP. First note that F;, = fcb?* = (; so, for 0 = 1*
the statement is trivial. Let o # 1* in STP be given such that, for all n, F_,
embeds into ]:Cbon. Using ACy1, find ¢ such that, for all n, ©" embeds F,_, into
]-'Cbon . Define 1/)(:7 Feb, — w* such that 1|0 = 0 and for all m, n, for all « in Febon s

»|0m * (n+ 1) x a = 0J(n,m) * (1) * ¢"|c. Then v embeds Fp, into Fop0- O
The proof of the following lemma does not use the Fan Theorem.

Lemma 6.12 (The Fan Theorem for very special Cantor—Bendixson sets) For every
o in STP, forevery B C w, every barin F o has a finite subbar.

Proof We use induction on STP. Assume 0 € STP. If 0 = 1%, there is nothing
to prove. So assume o # 1* and, for each n, every bar in F o has a finite subbar.

Now assume B C w is a barin F_,o. Find n such that On € B. Using the induction
hypothesis, find finite subsets By, B, ..., B,—1 of B such that, for each i < n, B; is bar
in F 0N 0i * (1). Note that the finite set {On} U J,,, B; is bar in F, . O
The next theorem shows that every Cantor—Bendixson set is, in a certain sense,
equinumerous to a special Cantor—Bendixson set.

Theorem 6.13 For every Cantor—Bendixson set F there exists a special Cantor—
Bendixson set H such that H maps onto F and F embeds into H.:

VB e CBdo € STP [El<p[<p: Feby = Fpl N Tl Fgr— ]-"Cba]]

Proof We use induction on CB. If 5(0) # 0, so Fg = (), one may take o = 1*,
as also Fep, = (). Now let 3, ¢ be given such that Spr(5) and ¢ € F3 and, for all
m,n, s, if e(n) # m and s = gn * (m), then there exist o in ST P such that F,,, maps
onto Fsg and Fs3 embeds into F,, . Using the Second Axiom of Countable Choice
ACy,1, see Section 1.1.3, find 7, ¢, 9 such that 1* # 7 € STP and, for all m,n, s, if
e(m) # n and s = Em * (n), then ¢*: Fo, , — Fig and ¢°: Fig — Fyp_, . Define
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C:={s|B(s)=0 A 3m3n[s =emx* (n) N\ e(m) # n]}. Define p: Fpp, — w* such
that p|0 = ¢ and, forall s, if s € C, then, forall y in Fep,_, , p|(Os* (s+1)x7) = sxp°|y
and, for each § in Fp_, if there is no s in C such that Os * (s + 1) C §, then p|§ = ¢.
Clearly, p maps F.,, onto Fg. Define x: F3 — w* such that x|e = 0 and, for all
sin C, forall v € Fig, x|(s * ) = 0s * (s + 1) x 1)*|y. Clearly, x embeds Fj into
beT. O

The following corollary proves the converse of Theorem 6.6(ii).

Corollary 6.14 Every almost-countable spread embeds into ALMOST*FIN .
Proof Use Theorem 6.13 and Lemma 6.11(i). O

The next result, Theorem 6.15, gives a refinement of Theorem 6.13: every finitary
Cantor—Bendixson set is, what one might call, equinumerous to a very special Cantor—
Bendixson set.

Theorem 6.15 For every Cantor—Bendixson set F that is a fan there exists a very
special Cantor-Bendixson set H such that H maps onto F and F embeds into H.:

V8 € CB [Fan(B) — 30 € STP[Bplp: Foo — Fal A 3[b: Fy — }‘Cbg]]

Proof We use induction on CB. If 3(0) # 0, take 0 = 1%, and note that Fg =
Fev,. = 0. Now let 3, e be given such that Fan(3) and € € F3 and for all m,n,s, if
e(m) # n and s = Zm * (n), then there exist o in ST P such that .7-"370 maps onto Fig
and Fs3 embeds into F, C%G .

Using the Second Axiom of Countable Choice ACy i, see Section 1.1.3, find 7, p, ¥
such that 1* # 7 € STP and, for all m,n,s, if e(m) # n and s = €m * (n), then
o' Fep,s = .7-"_% and ¢*: Fig — }-3%?- Define C :={s | B(s) =0 A ImIn[s =
gm * (n) A e(m) # n]}. Note that Fan(5), and thus: Vm3pVs > p[s € C —
length(s) > m]. Using the First Axiom of Countable Choice ACy , see Section 1.1.3,
find ¢ such that VmVs > ((m)[s € C — length(s) > m]. Define p : ]:c<>b7- — w* such
that p|0 = ¢ and, for all s in C, for all v € F&Tn, p|(0J(s,0) x (1) x ) = s % |y
and, for all § in F,,_, if there is no s in C such that 0J(s,0) * (1) T d, then p|d = ¢.
Note that p is well-defined and VimVy € Fp, [0J (C (m), O) C v — ém C p|v]. Clearly,
p:Fep, = Fg.

Define x : Fg — w® such that x|e = 0 and, for all s in C, for all v in Fg,
x| (s % v) = 0J(s,0) = (1) * ¢*|y. Clearly, x : Fg — Fep, - ]
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Corollary 6.16 Let 8 be given such that Spr(53).
Fp is almost-countable if and only if 30 € STPIple: Fep, — Fal.

Proof Use Theorems 6.8 and 6.13 and Lemma 6.5. O

The second item of the following Theorem seems to be of some interest in itself. It is
an extension of Theorem 2.7(iii).

Theorem 6.17
(i) For all 3, if Yi < 2[Spr(8")] and Jp[p: Fgo — Fpil, then Tl Fgo—
.7'-,30].
(ii) Forall 3, if Spr(3°) and Fan(3') and J[+) : Fai — Fpol, then Jplp: Fgo —
Fail.
B

Proof (i) Let 3, be given such that ¢: Fgo — Fp1, and, therefore Vy € Fgida €
F 30 [¢|a = 7]. Using the Second Axiom of Continuous Choice ACy 1, see Section 1.1.6,
find ¢: Fg — Fgo such that Vy € Fai[p[(1[y) = v]. We prove that 1 is strongly
injective. Let y,0 in Fg be given such that v # 6. Find n such that yn L ¢. Find
m such that Voo € Fpo[th|ym = am — ¢|(3|y)n = p|an]. Consider a := 1|§ and
conclude that |ym # 1)|0m. We thus see that Yy € FpVo € Faily #6 — |y #1[0],
ie ¢ : ]':31 — ‘7:,80-

(ii) Let 3, be given such that Spr(5°) and Fan(3') and 1 Fg— Fpo.

We first define § such that Vs[d(s) = 0 <+ da € Fals C ¥|a]]. Let s be given. Note
Vo € Fgidmls C ¢[am V s L ¢|am]. Using the Fan Theorem FT, see Section 1.1.7,
find m such that Voo € Fi[s C tplam V s L ¢fam], ie Vi € w™[B(1) =0 — s C
Y|t Vv s L p|f]. Define 6(s) := 0 if It € w"[B' (1) =0 A s T ¥|f] and §(s) := 1 if
Vi € w[B(1) = 0 — s L ¢|r]. Conclude that Vs[d(s) = 0 <+ Ja € Fi[s C ¢|a]].
Note that Spr(d). Also note, using FT again: for each m, the set {{|am | a € Fp}is
finite. Conclude that Fan(d).

We now construct 7: F5 — Fgi such that Ve € Fs[y|(]e) = €]. Let ¢ in F;s
be given. We claim that for all s, if 3'(s) = B'(r) = 0 and s L ¢, then there
exists n such that either Va € Fa N s[v|an L zn] or Va € Fa N tlylan L zn].
We prove this claim as follows. Let s, be given such that 3'(s) = pi(r) = 0
and s L t. Note that Vo € Fg NsVy € Fz Nt[ypla L |y]. Conclude that
Va € Fg NsVy € Fg Ntdnlplan L En V 1[n L gn]. Using the Fan Theorem
FT, find n such that n > length(s) and n > length(r) and Vo € Fg NsVy €
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FaNt[ylan Len vV [yn L en]. Define A :={u € w" | ') =0 A s C u} and
B:={ucw"|B'u)=0 AtCu}. Notethat Vu € AVv € B[)|u L En V |v L En].
Note that A, B are finite sets. Conclude, using Lemma 2.6, either Yu € A[|u L Zn] or
Vv € B[y|v L gn], ie either Yo € Fg Ns[y|an L gn] or Va € Fp N t[p|an L zn].

Using the above fact repeatedly and keeping in mind that {k | 3'({k)) = 0} is a finite
set, conclude that Fk3n[B((k)) =0 A Va € Fpi[an0) # k — aplan L En]].

We now define the promised 7, inductively, first specifying 7°, then 7!, and so on. We
start with 70. Let s be given and define n := length(s). Find out if there exists k such
that 5'((k)) = 0 and Vj[(j # k A B'(ax () =0) = Yo € Fg Nax (j)[y[an L s]).
If so, find such k and define 7"+!(s) = k + 1, and, if not, define 7"!(s) = 0.
Assume that m > 0 is given and 7°, 7!, ... 7"~! have been defined. We define 7" as
follows. Let s be given. If 6(s) # 0 or 3i < m—3j < length(s)[7'(5j) > 0], define
7"+1(s) = 0. Assume 6(s) = 0 and Vi < m3j < length(s)[7(sj) > 0]. Find a such
that length(a) = m and Vi < m3j < length(s)[7/(5j) = a(i) + 1]. (One might say that
a:= 7'7|sm although this is a little previous, as 7 is still under construction.) Note
that {k | B'(a * (k)) = 0} is a finite set. Define n := length(s). Again using the
claim we proved a moment ago, find out if there exists k such that 5'(a * (k)) = 0
and Vj[(j £k N Blax(j)) = 0) — Va € Fg Nax (j[y|an L s]]. If so, find such
k and define 7"T!(s) = k + 1; if not, define 7"T!(s) = 0. Note that 7: F5 — w®
and Ve € Fs[rle € Fp A Va € Fgla L (1]e) = ¢la L €]]. In particular:
Vo € Fala L (7](®]a)) = ¢]a L ¢lal. Conclude that Vo € Fa[7|(¥]a) = al
and 7 : F5 = Fpgi.

Assume that ¢ € F5 and 9|(7|e) L . Find m such that ¢|(7|gm) L . Note
that Voo € Fa[(t]em) C a — ¢|a L €]. Conclude Ya € Fai[thla L €] and
Va € FgIn[y|an L gn]. Using FT again, find n such that Vo € Fyi[y|an L n],
and we have to conclude that 6(n) # 0 and ¢ ¢ F;, a contradiction. Conclude that
Ve € Fsly|(t]e) = el.

Let p: w* — Fjy be the canonical retraction of w* onto Fj. Define p: Fgo — Fpi
such that Vy € Fpolp|y = 7[(p|)]. Note that Ya € Fulp|(i|a) = o] and
©: ]:50 —» ]:Bl . O

Corollary 6.18 Let 3 be given such that Fan(3). Fg is almost-countable if and only
if 3o € STP3plp: Fgr— Fep, 1.

Proof Every almost-countable spread F3 embeds into some F;, , see Theorem 6.13.
Conversely, if Fan(3) and F3 embeds into some .y, , then, according to Theorem
6.17, Ip[: Fep, — Fpl, and, according to Lemma 6.5, F3 is almost-countable. O
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6.6.1 A comment

G. Ronzitti, on page 63 of her Ph.D. dissertation [24] and in the last definition
of her paper [25], suggested?” to call a spread Fs countable if and only if Jo €
STPIplp: F po = Fpl. Unfortunately, following this suggestion, one would have
to call the set {n | n € w} a not-countable set. Corollary 6.16 shows the suggestion
makes sense if one uses the non-compact Cantor—Bendixson sets given by the function
o +— cb,. The suggestion is also a good suggestion if one restricts oneself to fans,
rather than spreads, see Theorem 6.15 and Lemma 6.5.

6.7 The Cantor-Bendixson Hierarchy
Lemma 6.19 For all o in STP, for all §, if ., embeds into Ens, then o < S*(1%).

Proof Let 0,0 be given such that 0 € STP and F.», embeds into Ens. Then,
according to Theorem 6.1(1), Vyo € Fep,Vv1 € Fer [0 =71 V 70 # v1]. Using
BCP, find m such that Vy € Fp, [0m T v — 0 = ~]. Conclude that Vn[Fp,_, = 0]
and Vn[o" < 1*] and o < S§*(1%). O

Theorem 6.20 (The Cantor-Bendixson Hierarchy Theorem)

(i) Forall o,7 in STP, if F.p, is T-reducible, ie cb, € RED,,> then o < 7.
(i) Forall o,7 in STP, for all ¢, if F.,, embeds into P(, Ens), then o < §*(7).
(iii) Forall o,7 in STP, if F., embeds into P(t, FIN), then o < S*(7).
(iv) Forall o,7 in STP, forall § in (Fyp,)*, it Fep, C P(7,Eng), then o < S*(7).

Proof (i) We use induction on S7P. First, note that, for each o in STP, Fep, is
1*—reducible if and only if ., = ) if and only if o = 1* if and only if o < 1*. Next,
assume that we are given 7 # 1* in ST P such that, for each n, for each o in STP, if
Fep, 18 T"—reducible, then o < 7.

Assume that we are given o such that F;_ is 7-reducible. Find € in F_, such that
for all m, n, if e(m) # n and B(Em * (n)) = 0, then, for some p, Fopy NEm * (n) is
7P —reducible. Let p be given. Consider s := (p + 1) and ¢ := (0, p + 1) and note that
either s 1 ¢ or t L e. Find m such that either Fo,, N (p + 1) = (p + 1) x Fp_, is
7" —reducible, or Fi;, N (0,p+ 1) = (0,p + 1) x Fepp_, is 7" —reducible. Conclude
that F_, is 7" —reducible and 0¥ < 7. Conclude that VpIm[o” < 7] and o0 < 7.

We describe her suggestion in the language of this paper.
»See Definition 30.
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(i) We use induction on S7P. By Lemma 6.19, for each ¢ in STP, for each
0, if Fep, embeds into P(1*, Ens) = Eng, then o < S*(1*). Next, assume that
we are given 7 # 1* in STP such that, for each n, for each o in STP, for
each 9, if F.,, embeds into P(7", Ens), then o < S*(7"). Further assume that
we are given 0,0 such that o € STP and F.p, embeds into P(7, Ens). Find ¢
embedding F,, into P(7, Eng). Note that Vy € Fpp, Iple|y # 0P — Inlp|ly €
P(7", Eng)]]. Using Brouwer’s Continuity Principle BCP, see Section 1.1.6, find m, p
such that Vy € Fop [((0Om T v A |y # &) — 3nlp|ly € P(", Ens)]]. Consider
Yo = Om* {(p+1)*0 and v, := Om + 1) * (p + 1) * 0. Note |y # ¢|n
and find i < 2 such that |y’ # §”. Find j,n such that @[5 L é’n. Note that
Yy € Fop, N~ j3i[p|y € P(r!, Eng)]. Using BCP again, find k, / such that k > j and
Vy € Fep, [ik Ty — |y € P(7!, Eng)]. Note that Feb,, embeds into Fp, N7k and
p embeds Fp, N7k into P(r!, Ens). Conclude that Fep,, €embeds into P(7!, Ens),
and o” < §*(r!). Conclude that Vp3l[o? < §*(t)) < 7 = (§*(7)!] and & < S*(7).

(iii) Note that 35[FZN = Eng] and apply (ii).

(iv) This is an immediate consequence of (ii). O

7 The second level and the collapse of the projective hierarchy

7.1 The classes X} and IT}

Some relevant definitions may be found in Section 1.2.6.

Definition 34 X' C w“ is X} if and only if there exists (3 such that:
X =EUGz = Ex(Un(gg)) ={a| IOV [T,y € Ggl}
X Cw@is H; if and only if there exists 3 such that:

X =UEF s = Un(Ex(Fp)) = {a | V6,77, 07 € Fal}

Let 3,e,( be given such that ¢ € £UG and ¢ € UEF3. Find § such that

Vy3dn[B(""e,v",0 'n) # 0]. Find ~ such that Va[B(""(,~v ", 6 'n) = 0]. Find n
such that 3(""e,v7, 0 'n) # 0] and conclude that En # (n and € # (.

We thus see that, for each 3, EUGg # UEF 3.

The next theorem shows some properties of the classes E% and H%. Note that we do
not prove that the class H; is closed under the operation of countable union or even
under the operation of finite union.
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Theorem 7.1

() US):={a|ay € EUG,,} is B} —universal and UP) := {a | ay € UEG,,}
is Hé —universal
(i) & = {a | IVyInla("y,5n) # 0]} is Bl-complete and A} = {« |
Vo3yVnla("y, 0 'n) = 01} is II} ~complete
(iii) Zé is closed under the operations of countable union and countable intersection
and Hé is closed under the operation of countable intersection:

VB3e3(¢ EUGpn = EUG: N | \UEFgn =UEF: N | |EUGpn = EUG
B B ¢

(iv) For all X C w¥, if X € 3!, then Ex(X) € ¥}, and, if X € II}, then
Un(X) € I} :

VBINEXEUGE) = EUG, A UnUEF ) = UEF,)]

(v) Forall X,Y C w* suchthat X <Y, if Y € £}, then X € ¥}, and, if Y € I1},
then X GH%:

VoVe: w* — w3y
{a|pla € &UGs} =EUG, A {a]| pla e UEF s} =UEF,]

(vi) Bjullj CEInI}

Proof (i) Note that for each o, o € Z/{S% — ag € EUG,, < "oy, 07 €
UGy,] < Y[ Ty, 07,77 € Go, 1 <> FOVyIn[ar("Tayr, 07, v 'n) # 0]. Define 3
such that, for all a, ¢, d, if length(a) = length(d) = length(c) then 5(""a,d',c¢") =
a(""ay,d’, ¢). Note that for all o, o € US% < AOVYIn[B(Ta, 6, v 'n) #£ 0] «
a € EUGg. Conclude that Z/{S% € E%. Also note that for each ¢, EUG, = L{S% [ €
We thus see that S} is £} —universal.

Similarly, for each o, o € Z/IP% < VoIVWn[ay(""ay, 07,y 'n) = 0]]. Define 5 as
above and conclude that UP} = UEF 5 € T1}. Note that for each e, UEF. =UP) | €.
We thus see that P} is TI} —universal.

(ii) Define 3 such that, for all a,c,d, S(a,c,d) # 0 if and only if length(a) =
length(c) = length(d) > 0 and Ji < length(a)[a("ci,di") # 0]. Note that for
each «, 36Vy3In[a("An, én7) # 0] if and only if I6VyIn[B(T, 6 'n) # 0], and
V63IyWn[o("Fn, 6n) = 0] if and only if VéIyVn[B(Ty,0 n) = 0]. Conclude that
& = EUGs € x} and Al =UEFp € m.
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Let € be given. Define ¢: w* — w® such that, for all «, for all ¢, d, if length(c) =
length(d) then (p|a)("c,d™) = e("an,c”,d")]. Note that for all «,

FWéInle("a, v, 6 'n) # 0]
if and only if IVWVE3In[(p|a)(TAn, on) # 0]

ie a € EUG. if and only if p|a € &}, and Vy3SVn[e("a, 7,0 'n) = 0] if and only if
Vy36Vnl(¢|a)(n, 6n7) = 0]; ie o € UEF . if and only if p|a € AL. We thus see
that ¢ reduces the pair (EUG.,UEF.) to the pair (5%,./4%).

We may conclude that 521 is E%—complete and that Aé is Hé —complete.

(iii) Let B be given. For each «, a € |J,,UEGan if and only if Im3oVy3n
[B™(""a, 7,0 'n) # 0]. Define ¢ such that, for all m,a,c,d, e(""a,c?, (m) xd™) =
B6™"(""a,c,d "], and S(""0,07,0") = 0. Note that, for each m, for all «, =,
d, "o,y (m) 07 € G, if and only if ",y 7,87 € Ggn. Therefore, for each a,
a € EUG, if and only if Im[a € EUGgn] and EUG. = Um EUG gn . Also note that, for
each m, forall o,7,0, "o,y (m)*0" € F. ifand onlyif "",y",6" € Fgn. There-
fore, for each o, a € UEF, if and only if Vm[aw € UEF gn], ie UEF . = (),,UEF gn.
Also, for each a, a € (), UEG g if and only if Ym3SVy3n["("™"a,~™, 0 'n) # 0].
Then, by ACy,1, a € (),,UEGan if and only if IOVmVyIn[B" (", v, 0™ 'n) # 0]
if and only if 38VyIn[BO("a, v 087,670 ) #£ 0]. Define ¢ such that, for
all a,c,d, ((""a,c,d") # 0 if and only if length(a) = length(c) = length(d) >
0 and 3i < length(a)[B°O("ai,c o Si7,d“®i7) # 0]. Note that, for all «,d,
V[ 3O a,y 087,670 n) £ 0] if and only if Vy3n[""a,y",6" € G¢]. Con-
clude that for all o, o € (),,UUEG g if and only if o« € UEG,, ie EUG: =, EUG gn.

(iv) Let 5 be given. Note that for all «,

a €Ex(EUG ) if and only if 3e36Vy3n[B( "o,y 07, 'n) # 0
and a € Un(UE Fp) if and only if VeVoTIyVn[B(" "o,y ", 6, e 'n) = 0]

Define n such that, for all a,c,d, if length(a) = length(c) = length(d), then
n(""a,c,d") = B("""a,c’,d;", dip)]. One easily verifies that Ex(EUGg) = EUG,,
and UnUEF 5) = UEF,,.

(v) Let 3,¢ be given such that ¢: w” — w“. Note that, for each «a, pla €
EUG g if and only if 30VyIn[""p|a, 7,6 'n) # 0] and pla € UEF if and only
if Vo3yVn[ " pla,~v7,6m) = 0]. Define ¢ such that for all a,c,d if length(a) =
length(c) = length(d), then £(""a,c”,d") # 0 if and only if Ji[length(p|a) >
i N B("plai,cin,di) # 0].

Then {a | p|la € UEGR} =UEG. and {a | pla € EUF g} = EUF-..

O
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7.2 The collapse of the projective hierarchy

Theorem 7.2

(i) Forall X Cw¥,if X € £}, then Un(X) € £}: VB33[Un(EUG ) = EUG.].
(i) I C X!, and forall X C w* ,if X is (positively) projective, then X € .

Proof (i) Let 3 be given. Using AC; ; ,2% note that for all o, o € Un(EUG g) if and
only if VeddVyan[B("" ", v, 07, 'n) # 0] if and only if dp[p € A} A p0) =
0 A VeVyIn[B(T " a,y 7, ple, e n) # 0]] if and only if Ip[p € Al A p(0) =
0 AVeVyInIm(length(p|lem) >n A B "an,yn7, (p|egm)n™,zn) # 0]].

Using Theorem 7.1, we conclude that Un(EUGR) € E%.

(i1) This follows from (i). O

Theorem 7.2 shows that, in intuitionistic mathematics, 2% is the class of all positively
projective sets. Many difficult questions remain, for instance, if H% is a proper subclass
of 3} and if the class II} is closed under the operation of disjunction. We were unable
to answer these questions.

Note that the projection of a positively Borel set is analytic. It is not true however, that
the co-projection of a positively Borel set is always co-analytic, for the simple reason
that some positively Borel sets, like D?(A;),> are not co-analytic.

Lemma 7.3 Vo: w* = w?Jal(a € & <> pla € &) A (a € Al  pla e AD)].

Proof Let p: w* — w* be given. Define « such that for all p, c,d, if length(c) =
length(d) and p = "¢,d™, then a(p) # 0 if and only if, for some m < length(c),
Tem,dm” < length(plap) and (p|ap)("em,dm™) # 0]. Note that, for all ~,d,
dmla("y,6'm) # 0] if and only if Im[(p|a)("7y,0'm) # 0]. Conclude that
IWoTn[a("y, 5 n) # 0] « IWsInl(pla)(Ty,5 'n) # 0], ie a € & < pla €
821, and also that Vy3dVn[a("y,0'n) = 0] < Vy3IoVn[(p|a)("v,0n) = 0], ie
ae Al plae Al ]

Note that the classical mathematician would conclude, from Lemma 7.3, that A} 4 &)
and &) £ AL.

*For AC,; see Section 1.1.6. Note that ¢: w* — w* if and only if ©(0) = 0 and, for each
n, " : w* — w. Note that p: w* — w* if and only if only if ¢ € Al and ¢(0) = 0, see also
Section 1.1.5.

See Theorem 4.1(iv).
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Theorem 7.4
(i) Jalag & AN ag¢ Al
(i) Iy ¢US, A v & UP;]

Proof (i) Using Theorems 7.2(i) and 7.1(ii), find ¢: w” — w* reducing A} to &].
Applying Lemma 7.3, find o such that a € €] ++ ¢la € €1 and a € A} > pla € Al.
Assume that o € &1 . Conclude that | € A} and o € A}. This is a contradiction, as
Al # &}, Conclude that o ¢ &) and p|a ¢ £} and o ¢ Al.

(ii) Define DP) := {a | "o, € UPL}. According to Theorem 7.2(i), DP} € E1.
Using Theorem 7.1(iii), find 8 such that DP% = US% [8. Note that for every «,
Ta,a” € UPY < a € DP) < 7B,a™ € US). Define v := 73,37, and note that
v ¢ US) and v ¢ UP), as US) # UP). m

Theorem 7.4 has some noteworthy consequences. Assume that o ¢ 521 U A;. Then:
(i) —30Vy3n[a("Fn,on7) # 0,
(i) —VéIVWnla("Fn,dn™) = 0], and
(iii) VoVAVa[ a@Fn,0n") =0 V a("Fn,on") # 0].
Theorem 7.4 thus shows that, in intuitionistic mathematics it is possible that statements
) —3IxVyIz[P(x,y,2)],
(i) —Vx3dyVz[-P(x,y,z)], and
(1) VxVyVz[P(x,y,z) V —P(x,y,z)]
are simultaneously true. The example depends on AC; ;. Another example, depending
only on BCP, has been given in Veldman [35, Section 5.5]:
(i) —JaVndmlan) =0 A a(m) # 0],
(i) —VadnVm[a(n) #0 V a(m) = 0], and
(iii) VavnVm[(a(n) =0 A am) #0) V (an) #0 V a(m) =0)].

7.3 A parallel: the collapse of the (positive) arithmetical hierarchy

It has been observed by J.R. Moschovakis that, in the context of intuitionistic arithmetic,
Church’s Thesis CT causes the collapse of the (positively) arithmetical hierarchy, just as
AC 1 causes the collapse of the (positively) projective hierarchy; see J.R. Moschovakis
[18] and [20]. It seems useful to explain this.

Let 7 C w? be Kleene’s T—predicate. T is a (Kalmdr—)elementary subset of w> and,
for all e, n,z, T(e,n, z) stands for: ‘z is the code of a successful computation according
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to the algorithm coded by e at the argument n’. Let U be the elementary function
from w to w extracting from each successful computation z its outcome U(z). Every e
determines a partial function ¢, from w to w by:

Vnlpe(n) =~ U(uz[T (e, n, z])]
For each e, W, := {n | 3z[T(e,n,z)]} is the domain of the partial function ¢,.

For every X C w, we define the projection Exo(X) := {m | In[(m,n) € X]} and the
co-projection Uny(X) := {m | Vn[(m,n) € X]}.

One defines X := {W, | e € w} and I1Y := {w \ W, | e € w}, and, for each m > 0,
301 = {Exo(X) | X € II},} and 119, := {Ung(X) | X € =0,}.

One may prove: Vm > 0[X0, UTI), C 50 | N1TIY_ 1.
Using the following strong form of Church’s Thesis
CT: forevery R C w X w, Vmdn[mRn] — deVmIz[T(e,m,z) N mRU(z)]
one may prove that, for every X in X9, also Ung(X) € X9, as follows.
Assume X € 2(3). Find e such that X = Exg (Uno(We)). Consider:
Y = Ung(X) = {m | Yql(m, q) € X1} = {m | Vg3n9pIT(e, (m,p,n,q),2)1}
= {m | IfVg¥pIuT(f, q,u) A Tle, (m,p,Uw),q),)]} € 3§
One may conclude that 11§ € ¥ and |J,, ¥9 C 9.

Find f such that {e | Vp3nVz[-T(e, (e,n,p), D1} = {m | IpVnIAT(f, (m,n,p), )1},
and note that VpInVz[-T(f, (f,n,p), 2)] <> IpVnIAT(f, (f,n,p), 2)]; therefore:

—VpInVz[=T(f, {f,p,n),2)] and =3Ip¥nI[T(f, (f,p,n),2)]
Again, we see that three statements of the form
(1) _‘EXV)EZ[P(X, Y, Z)] s
(i) —Vx3dyVz[-P(x,y,z)], and
(iii) VxVyVz[P(x,y,z) V =P(x,y, z)]

may be true simultaneously.
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