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Generalized effective completeness for continuous logic

CALEB CAMRUD

Abstract: In this paper, we present a generalized effective completeness theorem for
continuous logic. The primary result is that any continuous theory is satisfied in a
metric structure which admits a presentation that is Turing reducible to that theory.
It then follows that any decidable theory is satisfied by a computably presentable
metric structure. This work runs parallel to the effective completeness results of
Didehvar, Ghasemloo, and Pourmahdian, as well as those of Calvert, though given
in the setting of computable presentations.
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1 Introduction

Completeness results relate theories to structures. Effective completeness results relate
decidable theories to computable structures. The first such result was given by Millar
in [10]. However, the method provided in that manuscript only applies to classical
logic and classically computable structures. Hence, it cannot be directly applied to
continuous logic and uncountable structures.

In [1], Ben Yaacov et al developed a model theory for metric structures using continuous
first-order logic, and a completeness result was proven by Ben Yaacov and Pedersen in
[2]. Calvert then extended this result to an effective version of completeness, relating
decidable theories in continuous logic to probabilistically decidable structures.

Theorem 1 ([5, Theorem 4.5]) Let T be a complete, decidable, continuous first-order
theory. Then there is a probabilistically decidable, continuous weak structure M such
that M ⊨ T .

In the last decade, however, computable presentations rather than probabilistic decid-
ability have become standard for the study of effectivity on metric structures (see, eg,
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2 Caleb Camrud

Brown, McNicholl, and Melnikov [4] and Franklin and McNicholl [8]). The motivation
for this paper was, therefore, the question “Is there an effective completeness theorem
for continuous logic and computable presentations?”

Didehvar, Ghasemloo, and Pourmahdian provided one version of an answer to this
question in [7], perhaps implicitly with respect to computable presentations. The result
proven was a qualified effective completeness result for the first-order rational Pavelka
logic (RPL∀).

Theorem 2 ([7, Theorem 3.5]) Every consistent, linear-complete, computably axiom-
atizable Henkin theory in RPL∀ has a decidable model.

As the authors note, the above theorem also applies to the continuous logic of [1], since
it is a fragment of RPL∀.

Our primary result can then be considered as running parallel to these results, while
being firmly situated in the setting of computable presentations. We show that there is an
effective procedure which, given a name of a continuous theory, produces a presentation
of a metric structure which models that theory. In other words, any continuous theory
is satisfied in a structure which admits a presentation that is Turing reducible to that
theory. Hence, if the theory is decidable, the presentation is computable. Of note is that
the effective procedure constructs a presentation of a bona fide metric structure, rather
than a weak structure, as given by Calvert.

In Section 2, we provide a brief review of continuous logic, metric structures, computable
analysis, and computable presentations. Section 3 recalls previous results in the model
theory of metric structures. These results are then extended to important preliminary
model-theoretic propositions in Section 4.1. Section 4.2 follows to include our primary
lemma, allowing us to uniformly effectively extend theories to complete theories. We
then prove our main theorem, a generalized version of effective completeness, in Section
4.3. Standard effective completeness follows from this as the concluding corollary.

2 Background

2.1 Continuous logic

The logical symbols of continuous logic differ from those of classical logic primarily
in the sense that ¬, 1

2 , and .− are the connectives, while sup and inf serve as the
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Generalized effective completeness for continuous logic 3

quantifiers.1 A signature is a quintuple L =
(
P,F , C,∆, η

)
where P , F , and C are

mutually disjoint sets of predicate, function, and constant symbols, ∆ : P ∪F → NN is
a modulus map, η : P∪F → N\{0} is an arity map, and there is a distinguished binary
predicate symbol d ∈ P such that ∆(d) = idN , which ultimately will be interpreted as
a pseudometric or metric. For the remainder of this section, unless stated otherwise, we
will assume we have a fixed signature L .

The construction of terms and well-formed formulas (wffs) is straightforward, as are the
definitions of free variables and sentences, though explicit definitions can be found in
[1]. Moreover, the following syntax maps are used as shorthand.

Shorthand String
φ ∨ ψ ¬

(
(¬φ) .− ψ

)
φ ∧ ψ φ .− (φ .− ψ)

0 supx d(x, x)
1 ¬ 0

φ∔ ψ ¬
(
(1 .− φ) .− ψ)

)
mφ

(
...(φ∔ φ) ∔ · · ·∔ φ

)︸ ︷︷ ︸
m–many

2−k 1
2
. . .

1
2︸ ︷︷ ︸

k–many

1

ℓ
2k

(
...(2−k ∔ 2−k) ∔ · · ·∔ 2−k)︸ ︷︷ ︸

ℓ–many

It is also important to note, perhaps prematurely, some semantic heuristics. In contrast
to classical logic, .− can be interpreted as “only if”, ∨ as “and”, ∧ as “or”, and each ℓ

2k

as the dyadic number ℓ
2k .

1 In some versions of continuous logic, the set of connectives contains a distinguished symbol
u for each continuous map u : [0, 1]η(u) → [0, 1]. The resulting set of well-formed formulas for
such a logic is, however, uncountable and thus fails to perform effectively. Our choice of ¬ ,
1
2 , and .− as the connectives was made for four reasons. First, ¬ plays precisely the role of
classical negation (¬) and .− of reverse implication (←). The interpretation of the 1

2 operator
is similarly intuitive, as will be shown in the following subsection. Second, in Ben Yaacov
and Usvyatsov [3], it was shown that after interpretation, ¬ , 1

2 , and .− are dense in the set of
all continuous maps on [0, 1]. Thus finitary well-formed formulas in these connectives can
approximate those in the wider set of connectives arbitrarily well. Such an approximation is,
moreover, sufficient for completeness (as seen in Ben Yaacov and Pedersen [2]). Third, when a
signature is effectively numbered, the sentences and well-formed formulas of that signature may
be effectively enumerated. And finally, due to the previous remarks, ¬ , 1

2 , and .− have become
a somewhat canonical set of connectives for continuous logic.
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4 Caleb Camrud

The standard list of axiom schemata for continuous logic can be found in [2], and a
simplified list, more parsimonious for effective constructions, is given in Camrud [6].
The rules of inference can also be found in those sources.

2.2 Metric structures

Continuous logic was developed with the purpose of describing pseudometric and
metric structures. On this note, a signature must be able to speak about the continuity
of maps on such structures.

Definition 1 Let (|M|, d) and (|M′|, d′) be pseudometric spaces of diameter 1 and let
f : |M| → |M′|. A map ∆(f ) : N → N is called a modulus of continuity for f if for
every a, b ∈ |M|, d(a, b) < 2−∆(f ;n) implies that d′(f (a), f (b)

)
≤ 2−n .

An interpretation of L is a map ·M with domain P ∪F ∪C such that for some universe
|M|, each of the following hold.

• For every predicate symbol P, PM : |M|η(P) → [0, 1].
• For every function symbol f , fM : |M|η(f ) → |M|.
• For every constant symbol c, cM ∈ |M|.

·M is a continuous interpretation if, moreover, each of the following hold.

• dM := d is a pseudometric.
• For every predicate symbol P, ∆(P) is a modulus of continuity for P.2

• For every function symbol f , ∆(f ) is a modulus of continuity for f .

When ·M is an interpretation, the quintuple

M =
(
|M|, d, {PM : P ∈ P \ {d}}, {fM : f ∈ F}, {cM : c ∈ C}

)
is an L–pre-structure. Moreover, if ·M is a continuous interpretation, M is a continuous
L–pre-structure. Lastly, if ·M is a continuous interpretation and

(
|M|, d

)
is a complete

metric space, then M is an L–structure. If |M| is countable, M is called weak.

When M is an L–pre-structure, PM is the set of predicates of M, FM the set of
functions of M, and CM the set of distinguished points of M.

For our purposes, the language of non-continuous pre-structures is dropped, and every
pre-structure is assumed to be continuous. Also what were given here as “L–structures”

2Here the domain of PM is considered as the pseudometric space
(
|M|η(P), (dM)η(P)

)
and

the range the metric space
(
[0, 1], | · |

)
.
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Generalized effective completeness for continuous logic 5

are often designated as “metric L–structures”. In this manuscript, however, we assume
every structure is interpreting a continuous signature, so we drop the prefix “metric”.

Variable assignments (σ or, for more specificity, σ(x 7→ a)) and interpretations (·M,σ )
of terms in a given structure are defined naturally, though a precise description can be
found in [2]. Finally, the value of a well-formed formula φ is defined recursively as
follows.

•
(
P(t0, ..., tn)

)M,σ := PM
(
tM,σ
0 , ..., tM,σ

n
)

.
• (¬φ)M,σ := 1− φM,σ .
•

( 1
2φ

)M,σ := 1
2 · φ

M,σ .
• (φ .− ψ)M,σ := max {φM,σ − ψM,σ, 0}.
•

(
supx φ

)M,σ := supa∈|M| φ
M,σ(x 7→a) .

•
(

infx φ
)M,σ := infa∈|M| φ

M,σ(x 7→a) .
When φM,σ = 0, M with σ satisfies φ (M, σ ⊨ φ). That 0 represents satisfaction
differs importantly from classical logic since the predicate d plays the role of equality,
ie, when d is a metric, d(a, b) = 0 if and only if a = b.

Sometimes, one structure may embed into another of the same signature. When L is
that signature, this is called an L–morphism or L–embedding, and is defined in detail in
Definition 6.5 of [2].

2.3 Computable analysis and presentations

Computable analysis is summarized well in Weihrauch [11]. For our purposes, however,
we need only mention the definitions of a computable real number and a computable
map into the reals.

Definition 2 A real number r is computable if there is an effective procedure which,
given k ∈ N, outputs a rational q ∈ Q such that

|r − q| < 2−k.

When A is a countable set, a map f : A → R is computable if there is an effective
procedure which, given a ∈ A and k ∈ N, outputs a rational q ∈ Q such that

|f (a)− q| < 2−k.

Since metric structures often have uncountable domains, a method for discussing
effectivity on such structures was introduced by Melnikov [9], recently also seen in
Franklin and McNicholl [8]. An effectively numbered signature is necessary for this
method.
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6 Caleb Camrud

Definition 3 A signature L is effectively numbered if there is an effective mapping
of the natural numbers onto P ∪ F ∪ C and, moreover, an effective procedure which,
given the code of a predicate or function symbol, outputs that symbol’s arity and an
index of a Turing machine which serves as a modulus of continuity for that symbol.

We now introduce computable presentations. From here we will assume we are working
under a fixed effectively numbered signature L .

Definition 4 Given an L–structure M and A ⊆ |M|, the algebra generated by A is
the smallest subset of |M| containing A that is closed under every function of M.

A pair (M, g) is called a presentation of M if g : N → |M| is a map such that the
algebra generated by ran(g) is dense. Such an (M, g) is also denoted as M♯ . Every
point in ran(g) is called a distinguished point of the presentation, and each point in
the algebra generated by the distinguished points is called a rational point of the
presentation (Q(M♯)). Notably, ran(g) does not need to be dense, but the algebra it
generates does.

Definition 5 A presentation M♯ is computable if the predicates of M are uniformly
computable on the rational points of M♯ .3

An index of a computable presentation M♯ is an index of a Turing machine which,
given a code of P ∈ P , codes of a0, ..., aη(P)−1 ∈ Q(M♯), and k ∈ N, outputs a code
of a rational q such that

|PM(a0, ..., aη(P)−1)− q| < 2−k.

Example 1 Let M be the metric structure consisting of the continuum [0, 1], the
Euclidean metric, and as functions the average map

avg(x, y) =
x + y

2
and bounded addition

∔(x, y) = min{x + y, 1}.

Defining g : N→ [0, 1] as g(n) := nmod2 provides a computable presentation. While
ran(g) is only {0, 1}, the algebra generated by ran(g) is all dyadics in [0, 1], which is
clearly dense in [0, 1]. Moreover, the Euclidean metric is uniformly computable on
those dyadics.

3Since the metric is a binary predicate on M , this entails that the distance between any two
rational points is uniformly computable.
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Generalized effective completeness for continuous logic 7

3 Previous completeness results

We now recall many results related to completeness which were proven in [2]. We have
altered some of the notation in order to make these results more applicable to our work,
but the results proven remain the same. Important to this work is the introduction of the
formal notion of dyadic numerals.

Definition 6 The dyadic numerals (Dyad) are all sentences of the form ℓ
2k for ℓ, k ∈ N.

When p ∈ Dyad, by p we mean the real number such that for every L–pre-structure M,
pM = p. Because of this, when no confusion is likely, we will simply write p for p.

Maximal consistency is defined similarly to the classical case, but with an extra condition
concerning limiting behavior.

Definition 7 A set of wffs Γ is maximally consistent if for every pair of wffs φ and ψ ,
the following hold.

(i) If Γ ⊢ φ .− 2−k for every k ∈ N, then φ ∈ Γ.
(ii) Either φ .− ψ ∈ Γ or ψ .− φ ∈ Γ.

Notably, without condition (i), we would not gain the intuitive property that if Γ is
maximally consistent, then for every φ /∈ Γ, Γ ∪ {φ} is inconsistent.

In [2], Ben Yaacov and Pedersen implemented a continuous version of a Henkin
construction to prove their completeness theorem. To accomplish this, Henkin witnesses
must be added to a signature.

Definition 8 Given a signature L, the Henkin extended signature of L (L+ ) is the
smallest signature that extends L and that, for every combination of L+–wff φ, variable
symbol x , and p, q ∈ Dyad, contains a unique constant symbol cφ,x,p,q .

When Γ is a set of L+–wffs, we say it is Henkin complete if for every L+–wff φ, every
variable symbol x , and every p, q ∈ Dyad,(

sup
x
φ .− q

)
∧
(
p .− φ[cφ,x,p,q/x]

)
∈ Γ.

We now note a relevant lemma and theorem from Ben Yaacov and Pedersen.

Lemma 1 ((ii) of [2, Lemma 8.5]) Let T be an L–theory. Then for every pair of
L–wffs φ and ψ , either T ∪ {φ .− ψ} or T ∪ {ψ .− φ} is consistent.
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8 Caleb Camrud

Theorem 3 (From [2, Theorem 8.10 and Proposition 9.2]) Let T be an L–theory.
Then there exists a maximally consistent, Henkin complete set of L+–wffs Γ which
extends T .

In what follows, the original Henkin model created will be a continuous L+–pre-
structure. To make the move to a genuine L+–structure, the following theorem is
needed.

Theorem 4 ([2, Theorem 6.9]) Let M′ be a continuous L–pre-structure. Then there
is an L–structure M and an elementary L–embedding of M′ into M.

We now summarize the construction of the Henkin model from [2]. Completeness
follows.

Definition 9 Let Γ be a maximally consistent, Henkin complete set of L+–wffs.
Define the Henkin continuous L+–pre-structure over Γ (M′

Γ ) as follows.
• |M′

Γ| is the set of all terms of L+ .
• For every constant symbol c of L+ , cM

′
Γ := c.

• For every function symbol f of L+ and t0, ..., tη(f )−1 ∈ |M′
Γ|,

fM
′
Γ
(
t0, ..., tη(f )−1

)
:= f (t0, ..., tη(f )−1).

• For every predicate symbol P of L+ and t0, ..., tη(P)−1 ∈ |M′
Γ|,

PM′
Γ
(
t0, ..., tη(P)−1

)
:=

sup {p ∈ [0, 1] : p ∈ Dyad and p .− P(t0, ..., tη(P)−1) ∈ Γ}.
The basic assignment on M′

Γ is defined as σ(x) := x for every variable symbol x of
L+ . By a slight abuse of notation, when M′

Γ is a Henkin continuous L+–pre-structure,
by φM′

Γ we mean φM′
Γ,σ , and by M′

Γ ⊨ φ we mean M′
Γ, σ ⊨ φ, where σ is the basic

assignment. The Henkin L+–structure over Γ (MΓ ) is the structure induced by the
metric completion of

(
|M′

Γ|, d
M′

Γ
)

and the elementary morphism given in Theorem 4.

Theorem 5 ([2, Theorem 9.4]) Let Γ be a maximally consistent, Henkin complete
set of L+–wffs. Then MΓ ⊨ Γ.

Corollary 1 (Completeness of Continuous Logic [2, Theorem 9.5]) A set of L–wffs
is consistent if and only if it is completely satisfiable.

Ben Yaacov and Pedersen then introduce important maps from sets of L–wffs into
[0, 1]. These maps serve as upper bounds on relative provability and interpretation of
sentences following from those sets of L–wffs.
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Generalized effective completeness for continuous logic 9

Definition 10 Let Γ be a set of L–wffs. The degree of truth with respect to Γ ( · ◦Γ ) is
a map from wffs to [0, 1], defined as

φ◦
Γ := sup {φM,σ : M, σ ⊨ Γ}.

The degree of provability with respect to Γ ( · ⊚Γ ) is a similar map, defined as

φ⊚
Γ := inf {p ∈ [0, 1] : p ∈ Dyad and Γ ⊢ φ .− p}.

The Completeness Theorem then implies that these maps are the same.

Corollary 2 ([2, Corollary 9.8]) For any L+–wff φ and set of L–wffs Γ, φ◦
Γ = φ⊚

Γ .

Definition 11 A set of L–wffs Γ is complete if there is a structure M and assignment
σ such that for every L–wff φ,

φ◦
Γ = φM,σ.

In contrast to the classical case, even if a theory is complete, its set of consequences may
not be maximally consistent. This is due to the limiting behavior condition discussed in
Definition 7. The Deduction Theorem for continuous logic encounters a similar issue.

Theorem 6 (Deduction Theorem [2, Theorem 8.1]) Let Γ be a set of L–wffs. Then
for every L–wff ψ , Γ ∪ {ψ} ⊢ φ if and only if Γ ⊢ φ .− mψ , for some m ∈ N.

We also note the Generalization Theorem, which will be useful in what follows.

Lemma 2 (Generalization Theorem [2, Lemma 8.2]) Let Γ be a set of L+–wffs and
φ an L+–wff. If x does not appear freely in Γ and Γ ⊢ φ, then Γ ⊢ supx φ.

And lastly, we note the following lemma of Calvert’s.

Lemma 3 ([5, Lemma 4.6]) There is an effective procedure which extends L to its
Henkin extended signature L+ .

4 Main result

4.1 Model-theoretic preliminaries

In this section, we prove four important model-theoretic propositions which extend
the results of [2] and are vital to the proof of the generalized effective completeness
theorem.

Journal of Logic & Analysis 15:4 (2023)



10 Caleb Camrud

Proposition 1 Let Γ be a set of L–wffs and B a finite set of L–wffs. Then for every
L–wff φ:

φ◦
Γ∪B ≤

(
φ .−

∨
θ∈B

θ
)◦

Γ

Proof Fix an L–wff φ. If φ◦
Γ∪B = 0 the result follows trivially. Thus, suppose

φ◦
Γ∪B > 0. Notably, this implies that Γ ∪ B is consistent. Fix p ∈ Dyad such

that p < φ◦
Γ∪B . Then there is some L–structure M and assignment σ such that

M, σ ⊨ Γ∪B while φM,σ> p. But, clearly, since M, σ ⊨ B,
(∨

θ∈B θ
)M,σ

= 0. Hence,(
φ .−

∨
θ∈B θ

)M,σ
> p. Then since M, σ ⊨ Γ, this implies that

(
φ .−

∨
θ∈B θ

)◦

Γ
> p.

Since this is true for every p < φ◦
Γ∪B , we have that φ◦

Γ∪B ≤
(
φ .−

∨
θ∈B θ

)◦

Γ
.

Proposition 2 Let Γ be a set of L–wffs and B a finite set of L–wffs such that Γ∪ B is
consistent. Then there are infinitely many L–wffs φ such that(

φ .−
∨
θ∈B

θ
)◦

Γ
= 1.

Proof Recall that since Γ ∪ B is consistent, we may fix some L–wff φ such that
Γ ∪ B ⊬ φ. By Corollary 2, φ◦

Γ∪B >
1
M , for some M ∈ N. It follows that for every

m ≥ M , (mφ)◦Γ∪B = 1. Hence, by Proposition 1,
(

mφ .−
∨
θ∈B θ

)◦

Γ
= 1, for every

m ≥ M .

Note that for our purposes, a theory is a consistent set of sentences. Therefore, theories
do not contain any free variables.

Proposition 3 Let T be an L–theory and φ an L–wff with free variables x⃗ . Then:

φ◦
T =

(
sup

x⃗
φ
)◦

T

Proof Fix a signature L , an L–theory T , and an L–wff φ with free variables x⃗ . Notice
that since T contains only L–sentences, none of x⃗ appear freely in T . It follows via
Corollary 2 and the Generalization Theorem that:

φ◦
T = inf {p : p ∈ Dyad and T ⊢ φ .− p}
= inf {p : p ∈ Dyad and T ⊢ sup

x⃗
φ .− p}

=
(

sup
x⃗
φ
)◦

T

Journal of Logic & Analysis 15:4 (2023)



Generalized effective completeness for continuous logic 11

Proposition 4 Let T be an L–theory. Then for every L+–wff θ ,(
sup

x⃗
θ[⃗x/⃗c]

)◦
T = θ◦T

where c⃗ is the tuple of all constants from L+ , but not in L , appearing in θ .

Proof Fix an L–theory T and an L+–wff θ . Recall that no variable from x⃗ appears
freely in T , nor does any constant in c⃗ appear in T , since it is an L–theory. Hence
for every L–structure M such that M ⊨ T , and every tuple a⃗ ∈ |M|, there is an
L+–structure M+

a⃗ such that c⃗M
+
a⃗ = a⃗ and M+

a⃗ ↾L= M. Then:(
sup

x⃗
θ[⃗x/⃗c]

)◦
T = sup

{(
sup

x⃗
θ[⃗x/⃗c]

)M : M ⊨ T
}

= sup
{

sup
{σ(⃗x 7→a⃗):⃗a∈|M|}

(
θ[⃗x/⃗c]

)M,σ(⃗x 7→a⃗) : M ⊨ T
}

= sup
{(
θ[⃗x/⃗c]

)M,σ(⃗x 7→a⃗) : M, σ(⃗x 7→ a⃗) ⊨ T, a⃗ ∈ |M|
}

≤ sup
{(
θ[⃗x/⃗c]

)M+
a⃗ ,σ(⃗x 7→a⃗) : M+

a⃗ , σ(⃗x 7→ a⃗) ⊨ T, a⃗ ∈ |M|
}

= sup
{
θM

+
a⃗ ,σ : M+

a⃗ , σ ⊨ T
}

≤ sup
{
θM

+,σ : M+, σ ⊨ T
}

= θ◦T

Now notice that for any L+–structure M+ and assignment σ , there is an assignment

σ(⃗x 7→ c⃗M
+
a⃗ ). Then the L–structure M+↾L is such that θM

+,σ=
(
θ[⃗x/⃗c]

)M+↾L,σ(⃗x 7→c⃗M
+
a⃗ ).

It follows that:

θ◦T = sup
{
θM

+,σ : M+, σ ⊨ T
}

= sup
{(
θ[⃗x/⃗c]

)M+↾L,σ(⃗x 7→c⃗M
+
a⃗ ) : M+↾L, σ(⃗x 7→ c⃗M

+
a⃗ ) ⊨ T

}
≤ sup

{(
θ[⃗x/⃗c]

)M,σ : M, σ ⊨ T
}

=
(
θ[⃗x/⃗c]

)◦
T

But by Proposition 3,
(
θ[⃗x/⃗c]

)◦
T =

(
sup⃗x θ[⃗x/⃗c]

)◦
T . Therefore, θ◦T ≤

(
sup⃗x θ[⃗x/⃗c]

)◦
T .

The claim follows.
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12 Caleb Camrud

4.2 Effectively extending theories

Since any L–theory T has an associated degree of truth map ·◦T , to analyze the
effectiveness of a theory we will actually consider the effectiveness of the related degree
of truth map. The following definition was given by Ben Yaacov and Pedersen in [2].

Definition 12 An L–theory T is decidable if ·◦T is a computable map from the set of
wffs to [0, 1].

Since there are uncountably-many such maps, we introduce a naming system.

Definition 13 Given an L–theory T , we say that X ∈ NN is a name of T if the
following hold.

• For every n, k ∈ N, there is some m ∈ N such that ⟨n, k,m⟩ ∈ ran(X).
• For every n, k,m ∈ N, if ⟨n, k,m⟩ ∈ ran(X), then qm ∈

[
(φn)◦T − 2−k , (φn)◦T +

2−k
]
.

Proposition 5 An L–theory is decidable if and only if it has a computable name.

Proof For the forward direction, suppose T is a decidable L–theory. Recall that this
means ·◦T is computable, ie there is an effective procedure which, given the pair n and
k as inputs, outputs m such that qm ∈

[
(φn)◦T − 2−k , (φn)◦T + 2−k

]
. Fix one such

procedure. For every code of a pair, define X(⟨n, k⟩) := ⟨n, k,m⟩ where that procedure
outputs qm when given n and k . On every natural number that fails code a pair, let X
be 0. By construction X ∈ NN is computable, and, by simple inspection, a name of T .

For the reverse direction, suppose X is a computable name of an L–theory T . We
construct an effective procedure which will witness the computability of ·◦T as follows.
Given the pair n and k , begin computing ran(X) until a code of a triple of the form
⟨n, k,m⟩ is output. It follows that qm ∈

[
(φn)◦T − 2−k , (φn)◦T + 2−k

]
. Hence defining

the effective procedure to output m on inputs n and k suffices.

Let L+ be the Henkin extended signature effectively given by Lemma 3, and let (θn)n∈N
be an effective enumeration of the L+–wffs. The next lemma we present is similar to
Lemma 4.7 in Calvert [5]. However, in our case, the construction is with respect to any
name of an L–theory, X ∈ NN . Moreover, careful consideration is taken with respect to
when two L+–sentences are provably equivalent with respect to a given L+–theory.

The basic idea is the following. Given the degree of truth of a theory ·◦T , find the first
L+–wff of the form φ .− ψ which has a strictly positive degree of truth. It follows that
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there is some structure M and assignment σ such that M, σ ⊨ T while M, σ ⊭ φ .− ψ .
Hence M, σ ⊨ T ∪ {ψ .−φ}. Moreover, ·◦T∪{ψ .−φ} is shown to be effective in ·◦T . Thus
we may effectively complete T as an L+–theory.

Lemma 4 There is an effective procedure which given X , a name of an L–theory
T , outputs Φ(X) ⊆ N such that T ∪ {θn : n ∈ Φ(X)} is consistent, and for every
pair of L+–wffs φ and ψ , either φ and ψ are provably equivalent with respect to
T ∪ {θn : n ∈ Φ(X)}, or exactly one of φ .− ψ or ψ .− φ is in {θn : n ∈ Φ(X)}.

Proof We proceed via effective recursion to construct a partial computable function
which sends names of L–theories to sets of natural numbers. First define Φ0(X) := ∅,
for every X ∈ NN . As the recursive assumption, we suppose that at stage s, if X is a
name of an L–theory T , then Φs(X) is defined, finite, and T ∪ {θn : n ∈ Φs(X)} is
consistent. At stage s + 1, the following procedure attempts to construct Φs+1(X).

For every pair of L+–wffs φ and ψ , define the real number

rφ,ψ,X,s+1 :=
(

sup
x⃗,⃗y

sup
z⃗

((
(ψ .− φ) .−

( ∨
n∈Φs(X)

θn

))
[⃗z/⃗c]

))◦

T

where x⃗ and y⃗ are the free variables appearing in ψ .− φ and
∨

n∈Φs(X) θn , respectively,
c⃗ is the (possibly empty) tuple of constants from L+ and not in L appearing in
(ψ .− φ) .−

(∨
n∈Φs(X) θn

)
, and z⃗ is a |⃗c|–tuple of variable symbols distinct from x⃗

and y⃗. Notably, these real numbers are computable in X , uniformly in φ, ψ , and
s. To see this, notice that each recursively defined Φs(X) is finite, each free variable
becomes bound by the quantifier, and every constant from L+ not in L is replaced by
a variable and bound. Hence each formula checked above is actually an L–sentence,
so X can compute a rational approximation of rφ,ψ,X,s+1 within 2−(s+2) . Call such
a rational qφ,ψ,X,s+1 . Then search the pairs of L+–wffs for the first pair φ and ψ

such that φ .− ψ /∈ {θn : n ∈ Φs(X)} and qφ,ψ,X,s+1 ≥ 2−(s+1) . By Proposition 2,
there are infinitely many L+–wffs ψ such that r0,ψ,X,s+1 = 1, and hence such that
q0,ψ,X,s+1 ≥ 2−(s+1) . Thus, when X is a name of an L–theory, the procedure must halt.
When such a pair φ and ψ is found, search the effective enumeration of the L+–wffs
for the index m of φ .− ψ and define Φs+1(X) := Φs(X) ∪ {m}. Clearly, if Φs+1(X)
is defined, it is also finite, by construction. We now claim that this Φ =

⋃
s∈NΦs

witnesses the lemma.

Fix a name of an L–theory X ∈ NN . To see that T ∪ {θn : n ∈ Φ(X)} is consistent, we
show that each T ∪ {θn : n ∈ Φs+1(X)} is consistent, for every s ∈ N. We proceed
inductively.
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Suppose T ∪ {θn : n ∈ Φs(X)} is consistent and fix m ∈ Φs+1(X) \ Φs(X). By
construction this m is the index for φ .− ψ where qφ,ψ,X,s+1 ≥ 2−(s+1) . It follows by
the definition of qφ,ψ,X,s+1 and Propositions 3 and 4, Corollary 2, logical equivalence,
and the Deduction Theorem, that we have each of the following:(

(ψ .− φ) .−
( ∨

n∈Φs(X)

θn

))◦

T
≥ 2−(s+2)

=⇒
(

2−(s+2) .−
(

(ψ .− φ) .−
( ∨

n∈Φs(X)

θn

)))◦

T
= 0

=⇒ T ⊢
(

2−(s+2) .−
(

(ψ .− φ) .−
( ∨

n∈Φs(X)

θn

)))
.− 2−(s+3)

=⇒ T ∪ {θn : n ∈ Φs(X)} ∪ {ψ .− φ} ⊢ 2−(s+3)

Therefore, T ∪ {θn : n ∈ Φs(X)} ∪ {ψ .− φ} is inconsistent. It follows by Lemma 1
that φ .− ψ is consistent with T ∪ {θn : n ∈ Φs(X)}.

Hence, we need only show that for every pair of L+–wffs φ and ψ , either φ and ψ are
provably equivalent with respect to T ∪ {θn : n ∈ Φ(X)}, or exactly one of φ .− ψ or
ψ .− φ is in {θn : n ∈ Φ(X)}.

Note that a pair of L+–wffs φ and ψ is provably equivalent with respect to T ∪ {θn :
n ∈ Φ(X)} if and only if for every s ∈ N, there is some S ∈ N such that

T∪{θn : n ∈ ΦS(X)} ⊢ (φ .−ψ) .−2−(s+2) and T∪{θn : n ∈ Φs(X)} ⊢ (ψ .−φ) .−2−(s+2).

Now fix a pair of L+–wffs φ and ψ that are not provably equivalent with respect to
T ∪ {θn : n ∈ Φ(X)}. Then there must be some s ∈ N such that for every S ∈ N, either

T∪{θn : n ∈ ΦS(X)} ⊬ (φ .−ψ) .−2−(s+2) or T∪{θn : n ∈ ΦS(X)} ⊬ (ψ .−φ) .−2−(s+2).

At least one of these two cases must hold for infinitely many S ∈ N. Without loss of
generality, since the cases are symmetric, suppose it is the latter. It follows by Corollary
2 that for every S ∈ N, (ψ .− φ)◦T∪{θn:n∈ΦS(X)} ≥ 2−(s+2). Hence by Proposition 1, for
every S ∈ N: (

(ψ .− φ) .−
( ∨

n∈ΦS(X)

θn

))◦

T
≥ 2−(s+2)

Then by Propositions 3 and 4, for every S ∈ N, rφ,ψ,X,S+1 ≥ 2−(s+2) . Thus for some
S ≥ s + 2, φ and ψ will have to be the first pair such that φ .− ψ /∈ {θn : n ∈ ΦS(X)}
and qφ,ψ,X,S+1 ≥ 2−(s+3) ≥ 2−(S+1). It follows that the procedure will place the index
for φ .− ψ into ΦS+1(X), so φ .− ψ ∈ {θn : n ∈ Φ(X)}.
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It should be noted that if T is not complete, a name of T does not specify a unique
consistent extension of T . The above procedure constructs a complete extension, which
itself has a unique maximally consistent extension, but the procedure is dependent
on the enumeration of the L+–wffs. When that enumeration changes, if T is not a
complete theory, the above extension of T may also change.

4.3 Generalized effective completeness

We now come to our main result.

Theorem 7 (Generalized Effective Completeness) There is an effective procedure
which, given a name X ∈ NN of an L–theory T , produces a presentation of an
L+–structure M such that M ⊨ T .

Proof Compute L+ as in Lemma 3. Given a name of an L–theory X ∈ NN , let Φ(X)
be as in Lemma 4. Then, by Theorem 3, extend T ∪ {θn : n ∈ Φ(X)} to a maximally
consistent, Henkin complete L+–theory Γ. By Proposition 5, MΓ ⊨ T .

Since L+ is effectively numbered, the set of constants of L+ is also effectively numbered,
which we may effectively join to an effective numbering of the variable symbols. Let
g′ be such an effective numbering. Then, for every n ∈ N, define g(n) := [g′(n)],
the equivalence class of g′(n) in |MΓ|. By construction, the algebra generated by
ran(g) in MΓ is the set of all equivalence classes of terms of L+ , that is, equivalence
classes of the elements of |M′

Γ|. It follows that this algebra is dense in |MΓ|, since by
construction |MΓ| is the metric completion of |M′

Γ|. Thus (MΓ, g) is a presentation
of MΓ . We further claim that (MΓ, g) is a computable presentation.

To see this, fix a code of an arbitrary N –ary predicate symbol P, codes of rational
points [t0], ..., [tN−1], and k ∈ N. From these, use g′ to decode L+–terms t0, ..., tN−1

corresponding to [t0], ..., [tN−1]. Then execute the following.

Compute the finite set D = {p ∈ Dyad : the denominator of p is less than 2k+2}. By
the construction of Φ(X), with access to an oracle that computes X we may compute
the least M ≥ k + 2 such that for all but one p ∈ D, exactly one of p .− P(t0, ..., tN−1)
or P(t0, ..., tN−1) .− p is in {θn : n ∈ ΦM+1(X)}.4 Then compute the finite set

4It may be that for some p ∈ D , for every M ∈ N ,
(
P(t0, ..., tN−1) .−

∨
n∈ΦM (X) θn

)◦
T and

p differ by less than 2−(M+2) . This can only occur if P(t0, ..., tN−1) and p are provably
equivalent with respect to T ∪ {θn : n ∈ Φ(X)} , which can happen for at most one p ∈ D , since
T ∪ {θn : n ∈ Φ(X)} is consistent.
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E = {p ∈ D : p .− P(t0, ..., tN−1) ∈ {θn : n ∈ ΦM+1(X)}}. Notice that by construction:

max
p∈E

p .− P(t0, ..., tN−1) ∈ Γ and P(t0, ..., tN−1) .−
(

min
p∈D\E

p ∔ 2−(k+2)) ∈ Γ

Therefore:

MΓ ⊨ max
p∈E

p .− P(t0, ..., tN−1) and MΓ ⊨ P(t0, ..., tN−1) .−
(

min
p∈D\E

p ∔ 2−(k+2)
)

It follows that:

max
p∈E

p ≤
(
P(t0, ..., tN−1)

)MΓ≤
(

min
p∈D\E

p + 2−(k+2)
)

This implies that:(
P(t0, ..., tN−1)

)MΓ ∈
[(

min
p∈D\E

p− 2−(k+1)
)
,
(

min
p∈D\E

p + 2−(k+1)
)]

Note lastly that this procedure was uniform in X ∈ NN .

It follows that the presentation given by the above theorem is Turing reducible to the
name input. Hence if the name given is computable (meaning the theory is decidable),
the presentation produced is also computable. Standard effective completeness then
comes as a corollary.

Corollary 3 (Effective Completeness of Continuous Logic) Every decidable theory
is modeled by a computably presentable structure.
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