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Sketches for arithmetic universes1

STEVEN VICKERS

Abstract: A theory of sketches for arithmetic universes (AUs) is developed, as a
base-independent surrogate for suitable geometric theories.

A restricted notion of sketch, called here context, is defined with the property that
every non-strict model is uniquely isomorphic to a strict model. This allows us to
reconcile the syntactic, dealt with strictly using universal algebra, with the semantic,
in which non-strict models must be considered.

For any context T , a concrete construction is given of the AU AU〈T〉 freely
generated by it.

A 2-category Con of contexts is defined, with a full and faithful 2-functor to the
2-category of AUs and strict AU-functors, given by T 7→ AU〈T〉 . It has finite pie
limits, and also all pullbacks of a certain class of “extension” maps. Every object,
morphism or 2-cell of Con is a finite structure.
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1 Introduction

My 1999 paper “Topical Categories of Domains” [12], which used geometric logic to
deal with toposes as generalized spaces, makes the following comment on the logic.

It seems to us that in the work of the paper the infinities are restricted to
those that can be accessed effectively through free algebra constructions.
This emboldens us to hope that the full geometric logic is unnecessary,
that it suffices to have coherent logic with assorted free algebras, and that
[Grothendieck toposes] could be replaced by Joyal’s arithmetic universes
[AUs].

1This paper is included in the Proceedings of the Fifth Workshop on Formal Topology, Institut
Mittag-Leffler, June 2015 (editors Thierry Coquand, Maria Emilia Maietti and Erik Palmgren).
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2 S Vickers

The aim of the present paper is to set out a formal basis for doing this, while a companion
paper [16] explores in greater depth the relation with toposes.

Our main accomplishment (Section 8) is to construct a 2-category Con that can serve
as one of generalized spaces. It is analogous to the 2-category Top of Grothendieck
toposes and geometric morphisms, or, more generally, to BTop/S , where S is a chosen
base elementary topos with nno, and BTop/S is the 2-category of bounded S -toposes
(see Johnstone [5, B4.4]).

Although Con is based on a semantics using arithmetic universes, its objects are not
AUs as such, but finite structures, presentations of AUs in the style of sketches. It is as
if we defined Grothendieck toposes to be the geometric theories they classify, with no
attempt to identify equivalent presentations. Similarly the 1-cells and 2-cells of Con are
finite structures. We prove (Theorem 51) that a 2-functor from Con to AUs and strict
AU-functors, mapping presentations T to the presented AUs AU〈T〉, is full and faithful.
This shows that we have defined the 1- and 2-cells in a sufficiently general manner.

We finish with a proof that the entire construction can be internalized in any AU, as
anticipated by Joyal’s original work on Gödel’s Theorem.

1.1 Generalized spaces via arithmetic universes

The broad goal of the AU programme of Vickers [12] is to use arithmetic universes
(AUs) to provide a predicative and base-free surrogate for Grothendieck toposes as
generalized spaces, covering also point-free ungeneralized spaces such as locales or
formal topologies, and rich enough to include significant mathematics such as the real
line.

Briefly, a generalized space is presented by a geometric theory T that describes –
as its models – the points of the space, and then the classifying topos S[T] is a
presentation-independent representation of the space. In the case of a theory for an
ungeneralized space, the topos is the category of sheaves. In general, it embodies (as its
internal logic) the “geometric mathematics” of colimits and finite limits that is generated
by a generic model of T. In other words, it is the Grothendieck topos presented by T
as a system of generators and relations.

Continuous maps (geometric morphisms) can be expressed as models of one theory in
the classifying topos of another – this is the universal property of “classifying topos”
– and so this also provides a logical account of continuity. A map from T1 to T2 is
defined by declaring “Let M be a model of T1 ”, and then defining a model of T2
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in that context (in other words, in S[T1], with M the generic model) and within the
constraints of geometricity. From this point of view one might say that continuity is
logical geometricity. See Vickers [15, 14] for more detailed accounts of the ideas.

A significant problem in the approach is that the notions of Grothendieck topos and
classifying topos are parametrized by the base topos S , whose objects supply the
infinities needed for the infinite disjunctions needed in geometric logic, and for the
infinite coproducts needed in the category of sheaves, for example to supply a natural
numbers object. Technically, Grothendieck toposes (with respect to S ) are then
elementary toposes equipped with bounded geometric morphisms to S .

The aim of the AU programme is to develop a framework in which spaces, maps and
other constructions can be described in a way that does not depend on any choice of base
topos. In this “arithmetic” logic, disjunctions would all be finite, but some countable
disjunctions could be dealt with by existential quantification over infinite objects (such
as N) defined using the list objects of AUs. Thus those infinite disjunctions become
an intrinsic part of the logic – albeit a logic with aspects of a type theory – rather than
being extrinsically defined by reference to a natural numbers object in a base topos.

Now suppose a geometric theory T can be expressed in this arithmetic way. We write
AU〈T〉 for its classifying AU, which stands in for the base-dependent classifying topos
S[T]. Models of T0 in an AU A correspond to AU-functors from AU〈T0〉 to A (we
shall return later to issues of strictness here), and an AU-functor h : AU〈T1〉 → AU〈T0〉
will, by composition, transform models of T0 into models of T1 . It is fruitfully thought
of as a point-free map between “spaces of models” of the two theories. In particular, for
any base topos S with nno, h will transform the generic model of T0 in S[T0] into a
model of T1 and so induce a geometric morphism from S[T0] to S[T1]. Thus a result
expressed using AUs can provide a single statement of a topos result valid over any
base topos with nno. This is explored in greater depth in Vickers [16].

It is already known that a range of results proved using geometric logic can in fact
be expressed in the setting of AUs. Maietti and Vickers [9] have developed some
techniques for dealing with the fact that AUs are not Cartesian closed in general, nor
even Heyting pretoposes.

This would be fully predicative, in that it does not at any point rely on the impredicative
theory of elementary toposes (with their power objects). Instead of a predicative
geometric theory of Grothendieck toposes, parametrized by an impredicative base
elementary topos, we have a predicative arithmetic logic of AUs that is itself internalizable
in AUs, and so depends on a predicative ambient logic. (This internalizability aspect
will be seen in, eg, Section 9, where we give a concrete construction of the AU presented
by a context.)
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1.2 Outline of paper

Since the objects of our Con are to be presentations of AUs, our first task is to show
that we do indeed have a suitable notion of presentation of an AU, analogous (at least
in its universal characterization, though not in its concrete construction) to the way a
geometric theory presents its classifying topos. Section 2, after some initial results
about AUs, accomplishes this by showing in detail the known result that there is a
Cartesian theory of AUs; specifically we use the approach via quasiequational theories of
Palmgren and Vickers [10]. (This algebraic mode of presenting the AU is foundationally
much more robust than that used for classifying toposes. The route to sheaves uses
presheaves to adjoin “arbitrary” colimits, and depends on a chosen base topos to explain
what “arbitrary” means.)

In principle, we could now use the algebraic generators and relations for AUs as
“arithmetic” theories for our generalized spaces. However, we find that the universal
algebra, with its fundamental reliance on equations, is too “strict”. It is difficult to get
beyond the semantics in which an algebraic expression for – say – a pullback must,
strictly, denote “the canonical” pullback.

In Section 3 we develop an alternative approach using sketches. Traditionally in sketch
theory models are defined non-strictly, so that the cone for a pullback may denote any
suitable pullback. However, it is convenient to consider strict models at the same time
and thus get a comparison between them. Our general rule of thumb, more evident
in Vickers [16], is that syntax, and algebra more generally, should be strict, while
semantics is non-strict.

In Section 4 we gain control over this interaction by giving extension rules for building
a (finite) sketch out of nothing. The sketches thus obtained are our AU-“contexts”, and
have the important property (Section 4.2) that every non-strict model of a context has a
canonical strict isomorph. A side effect of this restriction is that it is impossible for a
context to stipulate equality between objects, which in any case would be categorically
unnatural.

At this point we have the object transformation from contexts to AUs, T 7→ AU〈T〉.
Although we don’t care if different contexts map to isomorphic AUs, we do want a full
and faithful 2-functor: so our task is to define the 1-cells and 2-cells in Con so that they
match exactly the (strict) AU-functors between the AUs AU〈T〉.

Section 5 shows how the 1-cells between contexts are constructed. The universal
characterization of AU〈T1〉 tells that morphisms T0 → T1 interpret the ingredients
of T1 as structure in AU〈T0〉, so our task is to describe how that structure is derived
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from T0 . Only finitely much structure is needed to interpret the finite sketch T1 , and
our notion of equivalence extension provides extension rules that adjoin finite amounts
of uniquely determined structure. Defining a morphism (a context map) as a sketch
homomorphism from T1 to an equivalence extension of T0 provides enough morphisms
to get a full functor to AUs. This stage is a localization, forcing the equivalence
extensions to be isomorphisms.

However, we we still require faithfulness. This requires us to compare interpretations
and discover equalities required by the algebraic rules of AUs. Section 6 deals with this
with its notion of object equality, inductive rules to show when the same derivation has
been applied twice over.

The next Section 7 contains miscellaneous results about context maps and object
equalities (as particular isomorphisms) in preparation for Section 8. Here we put
the constructions together, taking context maps modulo object equality, to define our
2-category Con and explore its properties.

In Section 9 we finally prove the fullness and faithfulness (Theorem 51), showing
(Theorem 49) that AU〈T〉 is isomorphic to a hom-category of Con. We finish the
section with a proof that the entire construction can be internalized in any AU, as
anticipated by Joyal’s original work.

Note on notation: Our default order of composition of morphisms is diagrammatic.
For applicational order we shall always use “◦”. For diagrammatic order we shall
occasionally show this explicitly using “;”.

2 Arithmetic universes

We follow Maietti [8, 9] in defining Joyal’s arithmetic universes (AUs) to be list
arithmetic pretoposes.

More explicitly, as a pretopos an AU A is a category equipped with finite limits, stable
finite disjoint coproducts and stable effective quotients of equivalence relations. (For
more detailed discussion, see, eg, Johnstone [5, A1.4.8].)

In addition, it has, for each object A, a parametrized list object List(A). It is equipped
with morphisms

1 ε // List(A) oo cons A× List(A)

(where cons(a, x) = a : x is the list x with a appended at the front) and whenever we
have the solid part of the following diagram, there is a unique fillin of the dotted parts
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to make a commutative diagram.

(1) List(A)× B

recA(y,g)

��

(A× List(A))× B
cons×Boo

∼=
��

A× (List(A)× B)

A×recA(y,g)
��

B

〈ε,B〉

==

y
// Y oo g A× Y

In other words, this recursively defines r = recA(y, g) by:

r([], b) = y(b)

r(a : x, b) = g(a, r(x, b))

Note that the use of B rather than 1 corresponds to this being a parameterized list
object; that is to say, it makes List(A)× B a list object in the slice over B.

Remark 1 For future reference, we note the functoriality of List: If f : A0 → A1 , then
there is a unique List(f ) : List(A0)→ List(A1) making the following diagram commute.

List(A0) oo
cons0

List(f )
��

A0 × List(A0)

f×List(f )
��

1

ε0
77

ε1
// List(A1) oo cons1

A1 × List(A1)

To see this, consider the action of A0 on List(A1) by

List(A1) A1 × List(A1)
cons1oo A0 × List(A1)

f×List(A1)oo .

We assume the AU structure specifies canonical choices of those colimits, limits and
list objects. This enables an approach using the universal algebra of Cartesian theories,
with (partial) algebraic operators for the canonical choices.

We shall use the quasiequational form of Cartesian theories, Palmgren and Vickers [10].
Our Cartesian theory of AUs will use primitive operators as suggested by the following
proposition, although that particular choice of primitives is not critical. Doubtless there
are more efficient characterizations, and the techniques in the remainder of the present
paper are intended to be equally applicable for other choices.

Proposition 2 A category A is an arithmetic universe iff the following hold.
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(1) A has a terminal object and pullbacks (hence all finite limits).

(2) A has an initial object and pushouts (hence all finite colimits), and they are stable
under pullback.

(3) Balance (unique choice): if a morphism is both mono and epi, then it is iso.

(4) Exactness: any equivalence relation is effective (it is the kernel pair of its own
coequalizer).

(5) A has parameterized list objects.

Proof ⇒: (1), (3) and (4) are properties of any pretopos, as is the existence of stable
finite coproducts. (5) is a postulate for AUs.

Hence it remains to show the existence of stable coequalizers for all pairs X ⇒ Y . First,
because as a pretopos A is regular, we can take the image R of X in Y × Y , a relation
on Y . Next, in a pretopos we can find the reflexive-symmetric closure of R. Next, in an
AU we can find the free category over any directed graph, and in particular we can find
the transitive closure of any relation. We end up with the equivalence relation generated
by R, and at each step, we keep the same set of morphisms from Y that compose equally
with the two morphisms from X or R. Thus the coequalizer of the equivalence relation,
existing because of exactness of A as pretopos, also serves as a coequalizer for X ⇒ Y .

Stability follows from the stability, in a pretopos, of image factorization and of
coequalizers of equivalence relations.

⇐: Two properties of pretoposes remain to be proved. First, for binary coproduct, the
injections are monic and disjoint. Second, any epi is the coequalizer of its kernel pair.

Consider a coproduct cocone (bottom row here) pulled back along one of the injections.
The two squares are pullbacks, ∆ is diagonal.

K
p2 //

p1

��

X

∆

cc

i1
��

L
q2oo

q1

��
X i1

// X + Y Yi2
oo

By stability the top row is a coproduct cocone, and so we can define a copairing
morphism f = [IdK , q2∆] : X → K and calculate that f = p−1

2 . Since the kernel pair
projection p2 is an isomorphism, it follows that i1 is monic.

We can now replace K and the projections by X and identity morphisms, and the coprod-

uct property of the top row can be rephrased as follows: every triangle L q2
//   X //

commutes.
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Now consider ! : 0→ L . By stability of the initial object, we see that ! is mono. It is
also epi. For suppose we have two morphisms f1, f2 : L→ Z . Consider the following
diagram, where j1 and j2 are coproduct injections.

L
q2 //

f2
��

f1
��

X

j2
��

Z
j1 // Z + X

Both squares must commute, and we already know that j1 is monic, so f1 = f2 . By
balance, it follows that L ∼= 0.

It remains to show that any epi e : X → Y is the coequalizer of its kernel pair. In fact
we show something slightly more general, without assuming e is epi. Let K2 be its
kernel pair, with projections p1 and p2 , and let e′ : X → Y ′ be their coequalizer, with
factorization e = e′e′′ . Then we show that e′′ is mono. (If e is epi then so too is e′′ , so
e′′ is an isomorphism by balance.)

In the following diagram, where the bottom row is pulled back along e, we see that the
top row is a split fork and hence a coequalizer.

K3

p13 //
p23
//

p12

��

K2

∆122

dd
p2 //

p1

��

X

∆

cc

e
��

K2
p1 //
p2
// X e // Y

Now consider pulling back the factorization e′e′′ :

K2
f ′ //

p1

��

X′
f ′′ //

g
��

X
∆

hh

e
��

X
e′
// Y ′

e′′
// Y

By stability, we see that f ′ is a coequalizer of p13 and p23 , and by comparing with the
split fork we find ∆f ′ = f ′′−1 . We deduce that we can replace X′ by X , and have a
pullback square:

X

e′
��

X

e
��

Y ′
e′′
// Y
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Now we can use the above pullback square, turned on its side, to pull back the
factorization e′e′′ along e′′ .

L
p2

  

p1

��

X

〈e′,e′〉
??

e′
// Y ′

e′′

��

Y ′

e′′

  
X

e′
??

e
// Y

By stability (for e′ as coequalizer) we see that p2 is an isomorphism and so e′′ is
monic.

It follows that the theory of AUs is quasiequational as in Palmgren and Vickers [10].

Definition 3 We present the quasiequational theory of AUs as follows. Some of the
operators and axioms are already set out explicitly in [10] or in Maietti and Vickers [9],
and we refer back to them for some of the details.

• (See [10, Example 4].) The ingredients of the theory of categories: sorts obj, arr ,
total operators d, c : arr → obj (domain and codomain) and id : obj → arr
(identity morphisms), and partial ◦ : arr2 → arr (composition, as binary operator,
in applicational order).

• (See [10, Section 6].) Ingredients for terminal objects: a constant 1: obj and
operator !1

· : obj→ arr (unique morphism to terminal) with axioms

> � X
d(!1

X) = X ∧ c(!1
X) = 1

c(u) = 1 � u u = !1
d(u) (for uniqueness).

• (See [10, Section 6.1].) Ingredients for pullbacks:
First, operators p1

·,·, p
2
·,· : arr2 → arr for pullback projections. If u1 and u2 have

a common codomain, then p1
u1,u2

and p2
u1,u2

are the two projections from the
pullback. We also write pu1,u2 for u1 ◦ p1

u1,u2
, the diagonal of the pullback square,

and Pu1,u2 for d(pu1,u2), the pullback object itself.

Next, a pairing operator 〈·, ·〉·,· : arr4 → arr, with 〈v1, v2〉u1,u2
the fillin to the

pullback of u1 and u2 for a cone (v1, v2). It is defined iff the four arrows make
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a commutative square in the obvious way, and it has the expected domain and
codomain and commutativities.

For uniqueness of fillins,

c(w) = Pu1,u2
�w,u1,u2 w =

〈
p1

u1,u2
◦ w, p2

u1,u2
◦ w
〉

u1,u2
.

• We shall also use some derived notation in a self-explanatory way for products
X × Y = P!1

X ,!
1
Y

. For example, the projections are pi
X,Y = pi

!1
X ,!

1
Y

, and the fillins
require no subscripts.

Also, we shall write equ1,u2
: Eu1,u2 → X for the equalizer of u1, u2 : X → Y ,

defined in a canonical way. Specifically,

equ1,u2
, p1

〈id(X),u1〉,〈id(X),u2〉

(The two projections are equal.)

• Ingredients for initial objects and pushouts. They are dual to those for terminal
objects and pullbacks. (We can also express coproducts and coequalizer, by
dualizing the treatment for products and equalizers.)

For initial objects we have a constant 0: obj, an operator !0
· : obj→ arr, and a

conditional equation that if d(u) = 0, then u = !0
c(u) .

Operators q1
·,·, q

2
·,· : arr2 → arr are for pushout injections. If u1 and u2 have a

common domain, then q1
u1,u2

and q2
u1,u2

are the two injections to the pushout. We
also write qu1,u2 for q1

u1,u2
◦ u1 , the diagonal of the pushout square, and Qu1,u2

for c(qu1,u2), the pushout object itself.

Next, a copairing operator [·, ·]·,· : arr4 → arr, with [v1, v2]u1,u2
the fillin from

the pushout of u1 and u2 for a cocone (v1, v2).

For uniqueness of fillins,

d(w) = Qu1,u2
�w,u1,u2 w =

[
w ◦ q1

u1,u2
,w ◦ q2

u1,u2

]
u1,u2

.

• Ingredients for stability of colimits under pullback.

For stability of the initial object, it suffices to say that any morphism with 0 for
codomain is an isomorphism:

c(u) = 0 � u !0
d(u) ◦u = id(d(u))

For stability of pushouts, we have an operator stab·,·(·) : arr3 → arr, with
stabu1,u2(w) defined iff c(w) = Qu1,u2 . To express its equations, we define
notation as shown in this diagram. Here the base diamond is a pushout, and it is
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pulled back along w. The inner top diamond is also a pushout, with fillin e, and
the equations for the operator, when it is defined, are those required to say that
stabu1,u2(w) = e−1 .

(2) Pw,v
u′2 //

u′1

""

��

Pw,v2

v′2

))
##

��

Pw,v1
//

v′1

44

��

Qu′1,u
′
2

e //

w

��

u2 //

v
,,

u1
$$

v2

**
v1

// Qu1,u2

v = qu1,u2

vi = qi
u1,u2

v′i = p1
w,vi

u′i =
〈
p1

w,v, ui ◦ p2
w,v
〉

w,vi

e =
[
v′1, v

′
2
]

u′1,u
′
2

• Ingredients for balance (unique choice).

We have an operator uc : arr → arr, with uc(u) defined if p1
u,u = p2

u,u and
q1

u,u = q2
u,u (ie u is monic and epi). When it is defined we have uc(u) = u−1 .

• Ingredients for exactness.

We have an operator ex : arr5 → arr, with ex(π1, π2, r, s, t) defined if 〈π1, π2〉
describes a binary relation, with r, s, t expressing reflexivity, symmetry and
transitivity.

(3) K

pi
γ,γ (i=1,2)
��

X2

pi
π2,π1

(i=1,2)
//

t
// X1

πi (i=1,2) //

e

66

π=〈π1,π2〉 ((

s

��
X0r

oo γ
// X

X0 × X0

pi
X0,X0

(i=1,2)

OO

We require that π is monic; that X2 = Pπ2,π1 ; that r, s, t compose correctly with
π1 and π2 ; that γ is the canonical coequalizer of π1 and π2 ; that K is the kernel
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pair of γ ; and that e is the fillin. Our characterizing equations for ex are to say

ex(π1, π2, r, s, t) = e−1.

• Ingredients for list objects.

We have total operators ε, cons : obj → arr for the principal structure, and we
also write List(A) for c(ε(A)).

For the fillins we have a partial operator rec·(·, ·) : obj× arr2 → arr .

Let us write, temporarily, the following (see diagram (1)):

φA(y, g) , c(y) = c(g) ∧ d(g) = A× c(g)

ψA
y,g(r) , y = r ◦ 〈B, ε〉

∧ g ◦ (r × A) ◦ ∼= = r ◦ (B× cons(A))

B , d(y)where

〈B, ε〉 ,
〈
id(B), ε(A) ◦ !1

B
〉

∼= ,
〈
p1

A,ListA ◦ p1
A×ListA,B,

〈
p2

A,ListA ◦ p1
A×ListA,B, p

2
A×ListA,B

〉〉
Here φ expresses the domain of definition of the fillin recA(y, g), and ψ is the
condition (on r) that it needs to satisfy. The axioms are now:

> � A
φA(ε(A), cons(A)) ∧ d(ε(A)) = 1

φA(y, g) �
A,y,g

ψA
y,g(recA(y, g))

recA(y, g)↓ � A,y,g φA(y, g)

ψA
y,g(r) �

A,y,g,r
r = recA(y, g)

Definition 4 A strict AU-functor from one AU to another is a homomorphism for the
quasiequational theory of AUs. In other words, it is a functor that preserves terminals,
pullbacks, intials, pushouts and list objects strictly.

An AU-functor is a functor that preserves those constructions (and hence also all finite
limits and finite colimits) up to isomorphism.

In AUs we have a general ability to construct free algebras. For theories given by
finite product (FP) sketches this is described in some detail in Maietti [7]. That paper
also alludes to the ability to generalize to finite limit (FL) sketches, in other words to
Cartesian theories. Palmgren and Vickers [10] give a general account of the Cartesian
construction, and it is valid in AUs.
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3 AU-sketches

We shall be interested in generators and relations for AUs, but we shall generally not
express them directly using the quasiequational algebra. Instead, we borrow the ideas
of sketches.

In their most general form (in this section), they are equivalent in expressive power
to the quasiequational algebra. In one direction we make this explicit by giving the
equations that correspond to ingredients of a sketch. The other direction comes down to
the question of how to express the operators in the quasiequational theory of AUs, and
this is done using the equivalence extensions of Section 5. The operators for pullbacks
and their projections, and analogous operators for other universal constructions, can
be captured using the “universals” in a sketch. The operators for fillins, being the
unique solutions to certain equational constraints on edges, can be captured with edges
constrained by suitable commutativities.

Our main reason for using the sketches is that they give us better control of the important
issue of strictness of models (Section 3.1). In Section 4 we shall restrict our attentions
from general sketches to “contexts”, finite sketches for which non-strict models have
canonical strict isomorphs.

Definition 5 An AU-sketch (or just sketch) is a structure with sorts and operations as
shown in this diagram.

Upb

Γ2
��

Γ1
��

UlistΛ2oo Λ0 //

e
��

c
��

U1

t
��

G2
di (i=0,1,2) // G1

di (i=0,1) // G0
s

oo

Upo

Γ′
1

OO

Γ′
2

OO

U0

i

OO

They are required to satisfy the following equations:

sd0 = sd1 = Id

d0d1 = d2d0 d0d0 = d1d0 d2d1 = d1d1

Γ1d1 = Γ2d1

Γ′1d1 = Γ′2d1

Λ2Γ1d1d1 = Λ0t

ed0 = Λ0t cd0 = Λ2Γ1d0d0

ed1 = cd1 = Λ2Γ2d0d1
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14 S Vickers

If T1 and T2 are sketches, then a homomorphism of sketches from T1 to T2 , written
f : T1 l T2 , is defined in the obvious way: a family of carrier functions, one for each
sort, preserving the operators.

However, we shall consider two sketch homomorphisms to be equal if they agree merely
on G0 and G1 .

We write Skl for the category of sketches and sketch homomorphisms.

The structures are a formalization of the sketches well known from eg Barr and
Wells [1], but adapted for AUs. We shall describe the parts in more detail below, but
as a preliminary let us introduce some language that indicates the connection. The
elements of G0 , G1 and G2 are referred to as nodes, edges and commutativities.

The elements of the other sorts are universals, and specify universal properties of various
kinds for their subjects. For example, an element of Upb is a pullback universal and
corresponds to a cone in a finite limit sketch. Its subjects are the pullback node and
the three projection edges of the pullback cone. Similarly, an element of Ulist is a list
universal. Its subjects are the list object and the two structure maps, for ε and cons.
It will also have indirect subjects, since it needs terminal and pullback universals to
express the domains of the structure maps.

Any sketch can be used as a system of generators (the nodes and edges) and relations to
present an AU. We shall list these implied relations in the general description below.
Note that in each case the equations constraining sketches ensure that all the terms used
in the relations are defined.

G0, s,G1, d0, d1 form the graph (which we take to be reflexive) of nodes and edges, de-
claring some objects and arrows and specifying their identities, domains and codomains.
The elements of G0 and G1 are taken as generators of sorts obj and arr. The implied
relations are:

id(X) = s(X) d(u) = d0(u) c(u) = d1(u)

G2 , with d0 , d2 and d1 , comprises the commutativities, stipulating commutative

triangles
d0

//
•

d1

  
d2

// . Given a triangle of edges X u
//

w

%%Y v
//Z , we shall write

uv ∼XYZ w for the existence of a commutativity with that triangle. (Note the diagram-
matic order.) We shall also write u ∼XY u′ for a unary commutativity, meaning a
commutativity s(X)u ∼XXY u′ . We shall omit the node subscripts where convenient.

Equationally, each commutativity $ corresponds to a relation

d2($) ◦ d0($) = d1($).
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U1 and Upb , using t,Γ1,Γ2 , are universals for finite limits, here terminal objects
or pullbacks. For each pullback universal (in Upb ) we describe the cone by two
commutative triangles (Γ1,Γ2 ), the two halves of the pullback square. For universals
$ ∈ U1 or $ ∈ Upb , the implied relations are:

t($) = 1

d0(Γλ($)) = pλd2(Γ1($)),d2(Γ2($)) (λ = 1, 2)

U0, i,Upo,Γ′1,Γ′2 are similar, and dual, for finite colimits:

i($) = 0

d2(Γ′λ($)) = qλd0(Γ′1($)),d0(Γ′2($)) (λ = 1, 2)

Ulist , for list universals, is novel, but works on similar principles. For a list universal
$ ∈ Ulist , e($) and c($) supply the primary structure morphisms ε and cons for
List(A($)), where A($) = d1(d0(Γ1(Λ2($)))). The domains of the structure morphisms
(1 and A($)× List(A($))) are limits, and Λ0,Λ2 supply universals to stipulate them.
Note that, since we need a terminal anyway, we might as well reuse it as the terminal
needed for a product as special case of pullback. The implied relations, which are in
addition to those already implied for Λ0($) and Λ2($), are:

ε(A($)) = e($) cons(A($)) = c($)

3.1 Models

Definition 6 Let T be a sketch and A an AU.

A strict model of T in A is an interpretation of nodes and edges in T as objects (carriers)
and morphisms (operations) in A, in a way that respects all the implied relations of the
sketch strictly, ie up to equality.

A model of T in A is an interpretation of nodes and edges in T as objects and morphisms
in A, in a way that respects up to equality all the domains, codomains, identities and
commutativities of the sketch, and up to isomorphism all the universals. In other words,
the subjects of each universal have to have the appropriate universal property, but do
not have to be the canonical construction.

A homomorphism between models of T in an AU A comprises a carrier morphism for
each node, together commuting with the operations in the appropriate way. This can be
conveniently expressed as a model of T in the comma category A ↓ A, also an AU.
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16 S Vickers

(See Maietti and Vickers [9] for results concerning these comma categories and their
AU structure, and also for the related pseudopullback A ↓∼= A.)

We write T-Mod(A) for the category of models of T in A, and T-Mods(A) for the
full subcategory of strict models.

If h : A → B is an AU-functor, then we obtain a functor

T-Mod(h) : T-Mod(A)→ T-Mod(B).

If h is a strict AU-functor, then T-Mod(h) preserves strictness of models.

As we remarked earlier, any sketch T can be treated as generators and relations for
presenting an arithmetic universe, using the fact that the theory of AUs is Cartesian (see
Palmgren and Vickers [10]). We shall write this as AU〈T〉. It is the AU version of the
notion of classifying category, and we shall call it the classifying AU for T. It is the
analogue of the classifying topos when geometric logic is replaced by an arithmetic
form.

The injection of generators provides a strict generic model MG of T in AU〈T〉, and
then the universal property is that any strict model M of T in an AU A extends uniquely
to a strict AU-functor h : AU〈T〉 → A for which T-Mod(h) transforms MG to M , up
to equality. (This is analogous to the universal property for classifying toposes, with
strict AU-functors corresponding to the inverse image parts of geometric morphisms,
but note that the AU property is stricter.)

Thus strict models of T are in bijection with strict AU-functors out of AU〈T〉. We have
already seen that a non-strict AU functor out of AU〈T〉 will also give rise to a non-strict
model of T, the non-strict image of the generic model. However, the universal property
does not allow us to recover the non-strict AU-functor from the model. Hence the
universal algebra is less precise for non-strict models and AU-functors. In Section 4 we
restrict the notion of sketch in a way that gives better control over the non-strict models.

Definition 7 Let f : T1 l T0 be a homomorphism of sketches,2 and M a model of T0

in A. Then the f -reduct of M , written M|f , is the model of T1 whose carriers and
operations are got by taking those for M corresponding by f .

It is a model because the sketch homomorphism transforms all the implied relations of
T1 into implied relations of T0 .

2 Why this order of 1 and 0? Because in Section 7 we shall think of f as a map from the
space of models of T0 to that of T1 , acting by model reduction.
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Model reduction is functorial with respect to model homomorphisms, and so the
assignment T 7→ T-Mod(A) is the object part of a contravariant category-valued functor
(−)-Mod(A) on Skl , with sketch homomorphisms assigned to model reduction.

Model reduction preserves strictness.

By taking the f -reduct of the generic model in AU〈T0〉, we get a strict model of T1 in
AU〈T0〉 and hence a strict AU-functor AU〈f 〉 : AU〈T1〉 → AU〈T0〉.

3.2 Examples of sketches

Here are some examples of sketches. Again, the notation is adapted to thinking of the
sketch as prescribing a class of models in each AU.

(1) The empty sketch 11 has a unique model in any AU.

(2) The sketch O has a single node and its identity edge and nothing else. Its models
in A are the objects of A.

(3) Let T and U be two sketches. Their disjoint union is called the product sketch
T×U. Its models are pairs of models of T and U. We also use notation such as
T2 for T× T.

(4) Let T be a sketch. The hom sketch T→ is made as follows. First, take two
disjoint copies of T as in T2 , distinguished by subscripts 0 and 1. These give two
sketch homomorphisms i0, i1 : T → T→ . Next, for each node X of T, adjoin
an edge θX : X0 → X1 ; and, for each edge u : X → Y of T, adjoin an edge
θu : X0 → Y1 together with two commutativities to make a commutative diagram:

X0
θX

•
//

θu

  
u0

��

X1

u1

��
Y0

θY

• // Y1

Then a model of T→ comprises a pair M0,M1 of models of T, together with a
homomorphism θ : M0 → M1 .

The assignment T 7→ T→ extends functorially to sketch homomorphisms, and
then i0 and i1 become natural transformations.

(5) We shall also write T→→ for the theory of composable pairs of homomorphisms
of T-models, and analogously for greater numbers of arrows. In fact, for any
finite category C we can write TC for the theory of C -diagrams of models of
T. (Actually, finiteness is not important here, as we have not set any finiteness
conditions on the sketch T. But it will be important for contexts.)

Journal of Logic & Analysis 11:FT4 (2019)



18 S Vickers

The existence of T→ enables us to define 2-cells in Skl . If f0, f1 : T1lT0 , then a 2-cell
from f0 to f1 is a sketch homomorphism α : T→1 l T0 such that iλα = fλ (λ = 0, 1).
We also say that α is between T0 and T1 .

2-cells cannot yet be composed, either vertically or horizontally, because edges cannot
be composed in sketches. However, we do have whiskering on both sides, using either
αf or f→α , and it has all relevant associativities.

We can also take reducts along 2-cells. If M is a model of T0 in A, then the
homomorphism M|γ : M|f0 → M|f1 uses the carrier functions of T→1 as interpreted in
T0 .

4 Extensions, contexts

In this section we define a class of sketches, the contexts, for which every non-strict
model can be made strict in a canonical way.

What makes this non-trivial is that in general, strictness has the ability to assert equalities
between sorts by making a single node X the subject of two different universals, for
example making it both A × B and ListC . In a non-strict model this just requires
A× B ∼= ListC , whereas strictness would require equality; and in an AU it can easily
happen that the first holds but not the second. Such equalities are not really the concern
of category theory, so better would be to have universals specifying two nodes X1 and
X2 as A × B and ListC respectively, and then to specify an isomorphism X1 ∼= X2 .
Strict models of that are unproblematic.

To enforce the latter kind we shall use each universal with a simple definitional effect,
defining its subjects fresh from some other ingredients (nodes and edges) defined
previously. This leads to our notion of extension of sketches. To prepare for this,
we introduce a notion of protoextension, in which the syntactic notion of freshness is
represented using categorical coproducts.

We say that a set is strongly finite if it is isomorphic to a finite cardinal {1, . . . , n} for
some n ∈ N. Equivalently, it is Kuratowski finite, has decidable equality, and can be
equipped with a decidable total order.

Definition 8 A sketch homomorphism i′ : UlU′ is a protoextension if for each sketch
sort Ξ, we have that U′Ξ can be expressed as a coproduct UΞ + δΞ, with i′Ξ a coproduct
injection and δΞ strongly finite.
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Proposition 9 Let i′ : U l U′ be a sketch homomorphism. Then the following are
equivalent.

(1) i′ is a protoextension.

(2) i′ is a pushout of some strongly finite sketch inclusion, by which we mean a
sketch monomorphism i : T l T′ in which T and T′ are strongly finite (ie their
carriers are).

Proof (2) ⇒ (1): Let i : T l T′ be a strongly finite sketch inclusion. For each sketch
sort Ξ, we can write T′Ξ as a coproduct T′Ξ = TΞ + δΞ. (Informally in such a situation,
we shall often write T′ as T + δT, although this is not a coproduct of sketches. δT is
not a sketch in its own right, as some of its structure may lie in T.)

Now let f : T l U be an arbitrary sketch homomorphism. Then the pushout i′ : UlU′
of i along f can be constructed as follows.

For each sketch sort Ξ, we let U′Ξ = UΞ + δΞ. For elements of UΞ , their structure
is determined as in U. Now suppose $ ∈ δΞ. In T + δT, each structural element
of $ (ie the result of applying a sketch operator) is in either T or δT. If the latter,
then we keep it there in U′ . If the former, then we apply f to get it in U. We obtain a
commutative diagram of sketches that is readily verified to be a pushout:

U + δT T + δT
f +δToo

U

i′

OO

T
f

oo

i

OO

From the construction, i′ is clearly a protoextension.

(1) ⇒ (2): Use the elements of the δΞs as generators for a sketch T′ , with relations to
say that the sketch operations in U′ are preserved insofar as they stay in the δΞs. Then
T′ is strongly finite, and the inclusion of the δΞs in U′ induces a sketch homomorphism
f ′ : T′ lU′ .

Let T be the pullback of i′ and f ′ , with projections i and f . i is monic, because i′

is. Also, in a coproduct the images of the injections are decidable subobjects, and it
follows that the carriers of T are decidable subobjects of those of T′ , and so T too is
strongly finite.

Applying the construction of (2) ⇒ (1), we recover i′ .
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It was already clear from the definition that protoextensions are closed under composition.
From Proposition 9 it is also clear that protoextensions i′ are closed under pushout
along any sketch homomorphism g. The pushout is called the reindexing of i′ along g,
and written g(i′).

4.1 Extensions: the definition

In the following definition, central to the whole paper, we restrict our proto-extensions
by restricting the strongly finite sketch inclusions i of Proposition 9. First we define a
finite family of inclusions i : T l T + δT that are generic for simple extensions, and
then a general extension (written ⊂) is a composite of simple extensions.

For each kind of simple extension, using an inclusion i, the sketch homomorphism
f : T l U that we reindex along can be understood as a data configuration in U, some
tuple of elements satisfying some equations. Thus each kind of simple extension can be
understood as a sketch transformation that takes data (given by f ) and delivers a delta,
according to Proposition 9.

Since any sketch homomorphism will transform extension data to extension data, we
see that reindexing (as sketch pushout) is got by applying the same extension to the
transformed data. For an extension c : T1 ⊂ T′1 , we shall typically write a reindexing
square as:

(4) T′0 T′1
εoo

T0

f (c)

OO

T1

c

OO

f
oo

.

Definition 10 A simple extension is a proto-extension got as a pushout of one of the
following strongly finite sketch inclusions i : Tl T + δT. Where we don’t specify δΞ,
it is empty.

(1) (Adding a new primitive node) No data (ie T is 11). Deltas:

δG0 = {∗}
δG1 = {s(∗)}

(2) (A simple functional extension, by a new primitive edge) Data: (X, Y) ∈ G0×G0 .
Delta:

δG1 = {X //Y }
In other words δG1 = 1 = {∗}, d0(∗) = X , d1(∗) = Y . We shall use similar
informal notation in the other cases. Note that the “delta” edges are shown dotted.
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(3) (Adding a commutativity) Data: u
//
w

((
v
// . Delta:

δG2 = { u
//

w
•

  
v
// } (uv ∼ w)

In other words δG2 = {∗} with d0(∗) = u, d2(∗) = v, d1(∗) = w.

(4) (Adding a terminal) No data. Deltas:

δU1 = {∗}
δG0 = {t(∗)}
δG1 = {s(t(∗))}

Adding an initial object is similar.

(5) (Adding a pullback) Data:
u1 // u2oo . Deltas:

δUpb =


P

p2

•
//

p

��
p1

��

u2

��
u1

• //


δG2 = {p1u1 ∼ p, p2u2 ∼ p}
δG1 = {p1, p, p2, s(P)}
δG0 = {P}

Adding a pushout is similar.

(6) (Adding a list object) Data: A ∈ G0 . Deltas:

δUlist = {∗ = (T ε //L Pconsoo )}
δU1 = {Λ0(∗) = T}

δUpb =

Λ2(∗) =

P
p2

•
//

p

��
p1

��

L

!L
��

A
!A

• // T


δG2 = {p1!A ∼ p, p2!L ∼ p}
δG1 = {ε, cons, p1, p, p2, !A, !L, s(T), s(L), s(P)}
δG0 = {T,L,P}
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An extension of sketches is a proto-extension that can be expressed as a finite composite
of simple extensions. We write T1 ⊂ T2 .

An AU-context is an extension of the empty sketch 11.

Proposition 11 Let c : T ⊂ T′ be an extension of sketches. Then for each node
or edge α in T′ that is not in T, we can construct an expression wα(−→n ,−→e ) in the
quasiequational theory of AUs with the following properties.

(1) Its free variables −→n ,−→e are in bijection with some (finitely many) of the nodes
and edges of T, and the primitive nodes and edges adjoined in the extension.

(2) Its definedness can be deduced from the domains and codomains of edges as
specified in T′ . (Recall that the quasiequational theory has partial operators.)

(3) Let M be a strict model of T′ . Then the interpretation of α in M can be found
by evaluating wα on the interpretations of −→n and −→e .

Proof By inspecting the cases, we see that for a simple extension each fresh node or
edge can be described uniquely in one of the ways listed in the following tables. In each
case we also give the corresponding wα in the third column. The free variables (eg u1

and u2 for the pullback) correspond to the components of the data for that extension,
and the domains and codomains implied by the data suffice to guarantee that wα is
defined. The definition of strict model then tells us that the interpretation of α is got by
evaluating wα .

For nodes: the node is primitive or takes one of the forms

t($) ($ ∈ U1) 1
i($) ($ ∈ U0) 0
d0d1Γ1($) ($ ∈ Upb) Pu1,u2

d1d1Γ′1($) ($ ∈ Upo) Qu1,u2

d1e($) ($ ∈ Ulist) List(A)

For edges: the edge is primitive or takes one of the forms

s(X) (X ∈ G0) id(X)
d1Γ1($) or d0Γi($) ($ ∈ Upb) pu1,u2 or pi

u1,u2

d1Γ′1($) or d2Γ′i($) ($ ∈ Upo) qu1,u2 or qi
u1,u2

e($), c($) ($ ∈ Ulist) ε(A), cons(A)
d2Γ1Λ2($) or d2Γ2Λ2($) ($ ∈ Ulist) !1(A) or !1(List(A))
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These facts are preserved by subsequent simple extensions, since those forms are
only introduced for fresh nodes or edges. It follows that the facts remain true for the
composite extension.

We can now apply an induction on the number of composed simple extensions, and
use the equations for strict models that are imposed by the sketch structure. We look
explicitly at universals for pullbacks and list. Other situations are similar or easier.

First, consider a simple extension in the form of a pullback universal $ , defined on

the configuration
u1 // u2oo . The relations for such a universal tell us that the

fresh edge d0Γ1($) has to be interpreted as p1
u1,u2

, and we use induction to find the
expressions for u1 and u2 . (The base case is if they are primitive or in T.) The
other fresh edges and the fresh node are dealt with in a similar way. Note that if
$ = Λ2($′) for some $′ ∈ Ulist , then the subjects of $ are treated in the same way,
but ui = d2(Γi($)) gets its expression from $′ .

Now consider a simple extension in the form of a list universal $ , on object A. All the
fresh nodes and edges have expressions in terms of A. For e($) and c($) and their
codomain this is clear. Next, from the terminal universal Λ0($) we have t(Λ0($)) = 1.
Because this appears as a vertex in the pullback square Λ2($), it follows from the AU
axioms that d2(Γ1(Λ2($))) = !1

A and d2(Γ2(Λ2($))) = !1
List(A) . Since these are u1 and

u2 in the treatment of the pullback universals, it only remains to deal with the easy case
of the identity morphisms.

Note that a primitive edge can acquire equality with an AU-expression by subsequently
added commutativities. We shall use this later for introducing AU operators that have
not been mentioned so far in extensions.

4.2 Strictness results

The reason for introducing extensions was for an important property that non-strict
interpretations can be reinterpreted strictly in a canonical way. The following definition
and lemma will make this precise, in a generality whose usefulness becomes more
apparent in Vickers [16].

Definition 12 Let T ⊂ T′ be a sketch extension. A model of T′ is strict for the
extension if, for each universal, each subject node or edge α is equal to the result of its
expression wα .
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Note that a model of T′ is strict in its own right iff it is strict for the extension and its
T-reduct is strict.

Lemma 13 Suppose, as in the diagram below, an extension T1 ⊂ T′1 is reindexed
along a sketch homomorphism T1 l T0 . Suppose also that in some AU A we have
models M0 and M′1 of T0 and T′1 , with an isomorphism φ : M0|T1 ∼= M′1|T1 .

M′0 T′0 T′1
εoo M′0|T′1

φ′

∼=
// M′1

M′0|T0 M0 T0

f (⊂)

OO

T1f
oo

⊂

OO

M0|T1
φ

∼=
// M′1|T1

Then there is a unique model M′0 of T′0 and isomorphism φ′ : M′0|T′1 ∼= M′1 such that

(1) M′0|T0 = M0 ,

(2) M′0 is strict for the extension T0 ⊂ T′0 ,

(3) φ′|T1 = φ, and

(4) φ′ is equality on all the primitive nodes for the extension T1 ⊂ T′1 .

Proof It suffices to cover the cases for a simple extension T1 ⊂ T′1 .

If the extension adjoins a primitive node X , then we can and must take its carrier in M′0
to be equal to its carrier in M′1 , and the carrier function in φ′ to be the identity.

Suppose the extension adjoins a primitive edge u : X → Y . Then φ′ must equal φ, and
to preserve the homomorphism property we can and must define the operation for u in
M′0 to be φ(X)M′1(u)φ−1(Y), using the operation in M′1 .

If the extension adjoins a new commutativity, then the morphism equation already holds
in M′1|T1 and hence in M0 , so we can and must take M′0 and φ′ to be given by the same
data as M0 and φ.

It remains only to examine the case where the extension adds a universal. We consider
the case of a list universal, as the others are similar (and easier). M′0 has to interpret the
new nodes and edges in the canonical way. In particular, T , L and P are 1, List(A) and
A× List(A). Then the universal properties (of terminal object, list object and binary
product) give canonical isomorphisms between those canonical interpretations in M′0 and
the corresponding interpretations (possibly non-canonical) in M′1 . The corresponding
carrier morphisms of φ′ can be defined to be those canonical isomorphisms, and indeed
by the homomorphism properties and uniqueness of fillins they must be so defined.
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By considering the case where T0 = T1 = 11, we obtain:

Corollary 14 Let T be a context, A an AU, and M1 a model of T. Then there is
a unique isomorphism φ : M0 ∼= M1 such that M0 is a strict model of T and φ is an
identity on each primitive node.

We call M0 the canonical strict isomorph of M1 .

It follows that if T is a context, and h : A → B is a non-strict AU-functor, then we
get a functor T-Mods(h) : T-Mods(A)→ T-Mods(B). Given a strict model M in A,
composing with h gives a non-strict model in B , and we can then take its canonical
strict isomorph. An important example, developed in Vickers [16], is when h is the
inverse image part of a geometric morphism between two toposes with natural number
objects.

4.3 Examples of contexts

Here are some examples of contexts. (cf. Section 3.2.)

(1) The sketches 11 and O are both contexts.

(2) If T0 and T1 are both contexts, then so is T0 × T1 . To be specific, we shall
adjoin the ingredients of T0 first, so that T0 ⊂ T0 × T1 is an extension and for
T1 we just have a homomorphism T1 l T0 × T1 .

(3) If T is a context, then so is T→ . We take it that i0 : T ⊂ T→ is the extension.

Similarly, T→→ is a context, with extensions T i0
⊂
//T→ i01

⊂
//T→→ , where i01

is the reindexing i1(i0).

More generally, for any strongly finite category C we have that TC can be made
a context. The order of simple extensions for it will depend on a total order given
to each finite set involved.

(4) If T is a context, then it has an extension Tns whose strict models are the
non-strict models of T. For each non-primitive node X , we adjoin a primitive
node X′ together with an isomorphism X′ ∼= X .

Note that we do need T to be a context here, not an arbitrary sketch. A model of
Tns is actually an isomorphic pair of two models, one strict and the other not.
We need Corollary 14 to get this pair from any non-strict model.
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(5) Without going into details, there is a context R for the theory of Dedekind
sections. It is defined as outlined in Maietti and Vickers [9]. First, the natural
numbers N can be defined as List(1). Their (decidable) order and arithmetic can
be defined using the universal property. Then the rationals Q can be defined by
standard techniques, together with their decidable order and arithmetic. Next,
two nodes L and R are adjoined, with edges to Q and conditions to make them
monic. Finally we add axioms to make (L,R) a Dedekind section.

(6) For various kinds of presentation of locales, there are context extensions T0 ⊂ T1

where a model of T0 is a presentation, and one of T1 is a presentation equipped
with a point of the corresponding locale.

The same principle also applies in formal topology, with an inductively generated
formal topology understood as a presentation.

For example, suppose we take the formal topologies as defined in Coquand et
al. [3]. First we declare the base B, a poset. Next, the cover C0 can be adjoined
as a node, with an edge to B. A node C is adjoined for a disjoint union of all the
covering sets, with an edge to C0 . The conditions on these can also be expressed
using AU structure in a context T0 . For T1 we adjoin to T0 a monic into B,
together with conditions to make it a formal point.

Note that we have not attempted here to extract the full cover C.

5 Equivalence extensions

An equivalence extension is an extension, but one in which the simple extension steps
are grouped together in a way that guarantees that the fresh ingredients (nodes, edges,
properties, equations) introduced in the extension are all already known to exist uniquely.
The most intricate parts are for the edges. In an ordinary extension, an unconstrained
fresh edge can subsequently be specified uniquely up to equality by commutativities
(equations). In an equivalence extension when we introduce an edge we must also
document the justification for its existence (as a composite or a fillin; universal structure
edges such as limit projections are introduced along with the universal objects). In
addition, we must also include steps for proving equations between edges; this is to
provide images for commutativities under a sketch morphism. These steps essentially
codify the rules for congruences in universal algebra. (The reason this is not needed
for nodes is that essentially algebraic theories of categories do not normally have any
axioms to imply equations between objects.)
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The game now is to describe simple equivalence extensions sufficient to generate all the
operators of the the theory of AUs and all the arrow equalities generated by the axioms.
(For object equalities see Section 6.)

Definition 15 A simple equivalence extension is a proto-extension of one of the
following forms (or rules). Note that each is in fact an extension.

In each case, every node or edge introduced will, in any strict model, become equal
to a certain AU expression in terms of the data. For nodes, which are all introduced
by simple extensions of universal kind, this has already been covered in Definition 10.
For edges the expressions are given in δG1 . Those expressions do indeed satisfy the
commutativities listed in δG2 . On the other hand, any edges satisfying them will be
equal to the expressions by the AU equations for uniqueness of fillins.

First, there are various rules associated with morphisms and their composition. They
are summarized in this table.

Data Delta

u
//

v
//

u
//
•

v◦u

  
v
// composition

X u
//Y X

s(X)
//

u
• %%X u

//Y left unit law

X u
//Y X u

//

u
• %%Y

s(Y)
//Y right unit law

//
•

==
•

  //
•

  // 66
•

%%// left associativity

//
•

==

•

==//
•

  // //
•

88 (( right associativity

Second, for each kind of universal (terminal, pullback, initial, pushout, list), we have
three rules. The first will be the simple extension that introduces the corresponding
node, the second will introduce fillins by adjoining a primitive edge with the appropriate
equations, and the third will introduce equations for the uniqueness of fillins.

We illustrate this for pullbacks and for list objects. The rules for terminals, initials and
pushouts follow the same principles as for pullbacks.

For pullbacks:

• A simple extension for a pullback universal is also an equivalence extension.
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• Suppose we have a pullback universal $ ∈ Upb , and another cone given as
∆1,∆2 ∈ G2 , with

d2(∆i) = d2(Γi($)) = ui

d1(∆1) = d1(∆2) = v.and

$ is P

p1

��

p

��

p2

•
//

u2

��
u1

• //

∆1,∆2 are
v1

��

v

��

v2

•
//

u2

��
u1

• //

Then our equivalence extension has

δG1 = {w = 〈v1, v2〉u1,u2
}

δG2 = {wp1 ∼ v1,wp2 ∼ v2}.and

• Suppose we have a pullback universal $ ∈ Upb as above, and edges v1, v2,w,w′

with commutativities wp1 ∼ v1,wp2 ∼ v2,w′p1 ∼ v1,w′p2 ∼ v2 . Then our
equivalence extension has

δG2 = {w ∼ w′}.

For list objects:

• A simple extension for a list universal is also an equivalence extension.

• Suppose we have a list universal $ ∈ Ulist with 1
ε //L A× Lconsoo . Suppose

(see diagram (1)) we also have nodes B, Y , pullback universals to specify nodes

for L× B, (A× L)× B, A× (L× B) and A× Y , edges B
y //Y A× Y

goo ,
and edges for

〈
!1
B ε,B

〉
, cons×B and the associativity isomorphism, together

with auxiliary edges and commutativities needed to characterize them.

Using the notation of the following diagrams, our equivalence extension has
δG1 = {r, r′, r′′, g′, g′′}, where r = recA(y, g), and δG2 comprises the seven
commutativities shown. The second diagram is what is needed to specify that
r′ = A× r .
(5)

L× B

r

•

��

(A× L)× B
cons×Boo

g′′

•

��

∼=
��

A× (L× B)
g′

•ww
r′=A×r
��

B

〈!1
B ε,B〉

EE

y
• // Y A× Yg
oo

A× (L× B)
p2

//

r′′

((
r′
��

p1

ww

L× B

r•

��
A A× Y

p1

•oo
p2

• // Y
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• Suppose, given the configuration for the above fillin, we have two solutions with
fillins r1, r2 . Then our equivalence extension has

δG2 = {r1 ∼ r2}.

(Equivalence of the other edges can then be deduced.)

Finally, we have rules for balance, stability and exactness. In each case, the given
configuration contains a particular edge u : X → Y for which the equivalence extension
adjoins an inverse. Hence

δG1 = {u−1}, δG2 = {uu−1 ∼ s(X), u−1u ∼ s(Y)}.

• Rule for balance. Suppose we are given pullback and pushout universals
$ ∈ Upb, $′ ∈ Upo , expressing the kernel pair and cokernel pair for the same
edge u : X → Y :

$ has Pu,u
p2

u,u //

p1
u,u
��

X

u
��

X u
// Y

$′ has X u //

u
��

Y

q2
u,u
��

Y
q1

u,u

// Qu,u

Suppose we also have commutativities p1
u,u ∼ p2

u,u (u is monic) and q1
u,u ∼ q2

u,u
(u is epi). Then our equivalence extension has δG1 = {u−1 = uc(u)}.

• Rule for stability of initial objects. Suppose we are given a universal $ ∈ U0 for
an initial object 0, and an edge u : X → 0. Then δG1 = {u−1 = !0

X}.

• Rule for stability of pushouts. Suppose we have data as outlined in diagram (2).
This will include two pushout universals (bottom square and inner square on
top), three pullback universals for vertical squares (front and right faces, and also
one stretching diagonally over v), the extra edge e, and other diagonal edges
where necessary. Then the equivalence extension inverts e, δG1 = {e−1 =

stabu1,u2(w)}.

• Rule for exactness. Suppose we have data as outlined in diagram (3). This will
include pullback universals to specify that X0×X0 , X2 and K are the appropriate
limits, pushout universals to specify that γ is a coequalizer, and commutativities
to specify that π and e are fillins. Then the equivalence extension inverts e,
δG1 = {e−1 = ex(π1, π2, r, s, t)}.

An equivalence extension, written T b T′ , is a proto-extension that can be expressed
as a composite of finitely many simple equivalence extensions.
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Note also that if T b T′ is an equivalence extension, then so too is its reindexing along
any sketch homomorphism.

Definition 16 If ei : T b Ti (i = 1, 2) are two equivalence extensions of a context
T, then e2 is a refinement of e1 , by ε, if ε : T1 → T2 is a homomorphism such that
e1ε = e2 .

For any two equivalence extensions ei of T, we can reindex e2 along e1 (or vice versa),
compose, and thereby get a common refinement of e1 and e2 .

Equality between morphisms u, u′ : X → Y is expressed using unary commutativities
u ∼ u′ , defined as s(X)u ∼ u′ . Since the rules used in equivalence extensions must be
capable of supplying proofs of equality, we verify that the standard rules for equality
can be derived as composite rules of equivalence extensions. Given these, it will be
clear that all proofs of equality of morphisms in the essentially algebraic theory of
categories can be represented by commutativities in a suitable equivalence extension.

Proposition 17 Let T be a sketch. In the following results we are interested in
properties holding in T, and properties derivable from them in the sense that they hold
in some equivalence extension of T.

(1) For any two nodes X and Y , ∼XY is an equivalence relation on the edges between
them. This is in the sense that for each of the three properties for an equivalence
relation, if the hypothesis holds in some sketch then the conclusion holds in some
equivalence extension.

(2) If u, u′ are two edges from X to Y , then the commutativities s(X)u ∼ u′ and
u′s(Y) ∼ u are mutually derivable.

It follows that we have four mutually derivable characterizations of u ∼ u′ ,
namely s(X)u ∼ u′ , s(X)u′ ∼ u, us(Y) ∼ u′ and u′s(Y) ∼ u.

(3) Suppose we have u ∼XY u′ and v ∼YZ v′ , and also w,w′ : X → Z with uv ∼ w.
Then the commutativities u′v′ ∼ w′ and w ∼ w′ are mutually derivable.

From left to right is congruence. From right to left (with u′ = u and v′ = v)
shows that the set of composites uv is the entire congruence class of w.

Proof (1) Reflexivity is immediate from the left unit law.

For symmetry, suppose u ∼XY u′ . By the left unit law we derive

X
s(X)

•
//

s(X)

99

u
•
::X

s(X) //

u′
•

  
X u //Y
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and then right associativity gives s(X)u′ ∼ u.

For transitivity, suppose u ∼ u′ ∼ u′′ . By the left unit law we get

X
s(X)

• //

s(X)
•

??

u′′

$$X
s(X)
//

u′
• %%X u

//Y

and then s(X)u ∼ u′′ is derived by left associativity.

(2) The two directions follow by applying associative laws to the two diagrams

X
s(X)

• //

u′
•

??

u
$$X u

//
u

• %%X
s(Y)
//Y and X

s(X)
•
//

u′
99

u′
•
::X u′ //

u
•

  
X

s(Y) //Y

(3) First, consider the case when v = v′ , and the diagram

X
s(X) //

u′
•

99X u
//

w
• %%Y v

//Z .

The two associativities give the two directions we want. A similar proof, but dual (using
(2)), deals with the case u = u′ . Putting these together gives the general result.

Proposition 18 Let T b T′ be an equivalence extension, and let M be a strict model
of T in an AU A.

Then there is a unique strict model M′ of T′ in A whose restriction to T is M .

We call this the extension of M to T′ .

Proof Each node or edge introduced in T′ has a canonical description as an AU-
expression in terms of older nodes and edges, and so has a canonical interpretation
already in AU〈T〉. For a node, strictness implies already that we must use this
interpretation. For an edge, the commutativities introduced at the same time are
enough to force equality in A between the interpretations of the edge and the canonical
description.

It remains to show that all the commutativities fg ∼ h in T′ are respected. Let us write
[f ] for the interpretation of the canonical expression for f in M , and similarly for g and
h. We require [h] = [g] ◦ [f ] in A.

We have to examine the rule that introduces the commutativity, and use induction on
the number of simple equational extensions needed.
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For the rules that introduce nodes or edges, the commutativities introduced follow
directly from quasiequational rules for AUs. It is also clear for unit laws and associativity.

There remain the uniqueness rules for fillins. Suppose we have one expressing f ∼ f ′ .
Then in A we have that f and f ′ are both equal to the fillin, and so equal to each
other.

Proposition 19 Let e : T b T′ be an equivalence extension. Then the corresponding
AU-functor AU〈e〉 : AU〈T〉 → AU〈T′〉 is an isomorphism.

Proof In terms of strict AU-functors, Proposition 18 says that for any strict M : AU〈T〉
→ A there is a unique strict M′ : AU〈T′〉 → A such that AU〈e〉M′ = M . Applying
this with IdAU〈T〉 for M gives us an F : AU〈T′〉 → AU〈T〉 for M′ , and then for more
general M we see that M′ = FM . From this we deduce that F is an inverse for
AU〈e〉.

6 Object equalities

The notion of equality between two context homomorphisms (Definition 5) is very
strong, and in essence syntactic. The homomorphisms must act equally on the nodes
and edges as sketch ingredients. In practice we usually want a more semantic notion
that allows us to say when nodes and edges are equal in the sense that they must be
interpreted equally in strict models. This will allow us to get faithfulness for a functor
that takes T to AU〈T〉.

For edges, we already have a machinery for proving equality as morphisms by using
commutativities. For nodes we have deliberately avoided anything analogous, beyond
equality in the graph. However, semantic equality can still arise when two nodes are
declared by universals for two identical constructions from equal data. We define certain
kinds of edges as being “object equalities” between their domains and codomains;
semantically they must be equal to identity morphisms. We then extend the phrase to
apply also to “object equality” between edges or context homomorphisms.

We use the phrase object equality for a situation where a context already has the
required structure, and objectively equal, or objective equality, for a situation where an
equivalence extension can provide it.

Definition 20 Let T be a context, and suppose γ : X → Y is an edge in T. Then γ is
an object equality, written γ : X ⇒ Y , if either X = Y as nodes and γ ∼ s(X) in T, or
γ can be associated with structure in T in one of the following ways.
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(1) If X,Y are subjects of terminal universals: no extra structure needed.

(2) Suppose X and Y are subjects of pullback universals, for the back and front faces
of the following diagram, and we have object equalities γi : Ui ⇒ Vi . Suppose
also that we have sufficient composite edges and commutativities to assert that
uiγ3 ∼ γivi and γqi ∼ piγi , so that γ is characterized as a fillin 〈p1γ1, p2γ2〉v1,v2

.
Then γ : X ⇒ Y is an object equality.

X
p1 //

p2

��

γ

  

U1

u1

��

γ1

�$
Y

q1 //

q2

��

V1

v1

��

U2 u2
//

γ2 �$

U3
γ3

�$
V2 v2

// V3

.

(3) Similarly for initial objects and pushouts.

(4) Suppose we have two list universals for Li = List(Ai) (i = 0, 1) and an object
equality γA : A0 ⇒ A1 , and an edge γL : L0 → L1 with sufficient data to
characterize it as List(γA) (see Remark 1). Then γL is an object equality.

Lemma 21 Let T be a context.

(1) If γ : X ⇒ Y is an object equality, then in AU〈T〉 we have X = Y and γ is the
identity morphism.

(2) If γ : X ⇒ X is an object equality, then there is some equivalence extension
T b T′ in which s(X) ∼ γ .

(3) If γ : X ⇒ Y and γ′ : Y ⇒ Z are object equalities, then there is some T b T′ in
which we have an object equality δ : X ⇒ Z and γγ′ ∼ δ .

(4) If γ : X ⇒ Y is an object equality, then there is some T b T′ in which γ is an
isomorphism, and its inverse is also an object equality.

(5) If γ, γ′ : X ⇒ Y are two object equalities, then there is some T b T′ in which
γ ∼ γ′ .

Proof (1) is immediate from the definition, bearing in mind that for a list universal the
expression for A× L is defined to be that for the pullback of !L and !A .
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(2) and (3) follow from the uniqueness clauses for fillins.

(4) follows because all the cases for object equality are symmetric, and we can then
apply (3) and (2).

(5) again follows from the uniqueness clauses for fillins.

We shall use the phrase “object equality” more generally than just for objects.

Definition 22 Let T be a context.

If ui : Xi → Yi (i = 1, 2) are edges in T, then an object equality from u1 to u2 is the
data of a commutative diagram

X1
u1

•
//

γu

  
γX

��

Y1

γY

��
X2 u2

• // Y2

such that γX and γY are object equalities.

Let f0, f1 : T1 l T0 be two context homomorphisms. Then an object equality from
f0 to f1 is a 2-cell γ from f0 to f1 , for which every carrier edge is an object equality
γX : f0(X)⇒ f1(X). (It follows that for each edge u : X → Y of T1 , we get an object
equality (γX, γu, γY ) from f0(u) to f1(u).)

By taking T1 as either O or O→ , we see that object equality for homomorphisms
subsumes the cases for nodes and edges.

We say that two context homomorphisms are objectively equal in T, symbolized =o , if
there is some equivalence extension of T in which they have an object equality.

Proposition 23 Objective equality of context homomorphisms is an equivalence
relation.

Proof This is a straightforward extension of Lemma 21. For transitivity f0 =o f1 =o f2 ,
note that we may have different equivalence extensions for f0 =o f1 and for f1 =o f2 .
Work in a common refinement.
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7 Context maps

In Section 8 we shall define a 2-category Con whose objects are contexts, and whose
morphisms T0 → T1 are in bijection with strict AU-functors AU〈T0〉 ← AU〈T1〉. In
fact, its 1-cells will be what we shall define here as context maps.

In this section we investigate the 1-category Conbm of contexts and context maps, from
which Con is got by factoring out a congruence based on objective equality. To save
repetition, we shall exploit the fact that object equalities are a special case of 2-cells,
and the present section is really a collection of ad hoc preliminary results about 2-cells
in the not-a-2-category Conbm .

We already have a category Conl of contexts and context homomorphisms (and we shall
also write Conm for its opposite). Recall that we consider two sketch homomorphisms
equal if they agree on the nodes and edges. For the present section, all diagrams of
contexts are in Conl .

Definition 24 Let T0,T1 be contexts. Then a context map from T0 to T1 is an opspan
(e, f ) from T0 to T1 , where e is an equivalence extension:

T0
e
b
//T′0 T1

foo

Using reindexing, we can compose context maps.

Definition 25 Suppose we have context maps as in the bottom two rows of the following
diagram, and we reindex e1 along f0 .

T′′0

T′0

f0(e1)
??

T′1

ε
__

T0

e0

b

??

T1

f0
``

e1

b

>>

T2

f1
``

Then the composite (e0, f0)(e1, f1) is (e0f0(e1), ε ◦ f1).

Contexts and context maps form a category Conbm , with composition as defined and
identity maps (Id, Id). Note that (e, f ) is the composite (e, Id)(Id, f ).
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Definition 26 A 2-cell in Conbm , between T0 and T1 , is a context map (e, α) from
T0 to T→1 . Its domain and codomain are (e, α ◦ iλ) (λ = 0, 1).

An object equality is a 2-cell (e, γ) in which γ is an object equality.

Two context maps (ei, fi), with the same domain and codomain, are objectively equal if
e0 and e1 have a common refinement e such there is an object equality from f0ε0 to
f1ε1 .

(6)
ε0

??
ε1

__

e0

__

e1

??e

OO

f0

jj
f1

__

From Proposition 23 it is easy to see that objective equality is an equivalence relation
on each hom-set of Conbm .

Conbm is not a 2-category; it lacks vertical and horizontal composition. For example,
suppose we have two vertically composable 2-cells between T0 and T1 . To compose
them we need to be able to compose the carrier edges in T0 .

For the time being we examine whiskering, horizontal composition of 2-cells with
1-cells.

Left whiskering3 is done by composition of context maps T0 //T1 //T→2 .

Right whiskering by context maps (Id, f ) is similar, with a composition

T0 //T→1
(id,f→)//T→2 .

For whiskering as defined so far, it is clear that

(1) all possible associativities hold, and

(2) whiskering preserves object equalities.

The remaining case is right whiskering by maps (e, Id). For these we start to need
equivalence extensions.

Lemma 27 Let T1 , T′1 and T0 be contexts. Suppose we have an equivalence extension
e1 : T1 b T′1 , two homomorphisms f0, f1 : T′1 lT0 , and a 2-cell α : e1f0 → e1f1 . Then:

3 It is arguable which is left and which is right. We take it that left whiskering is for when
the 1-cell is on the left in diagrammatic order of context maps.
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(1) There is some equivalence extension e0 : T0 b T′0 and a 2-cell α′ : f0e0 → f1e0

such that αe0 = e→1 α
′ .

T′0 T′→1
α′
oo T′1

iλoo

fλ
vvT0

e0

OO

T→1
e→1

OO

α
oo T1

e1

OO

iλ
oo

(2) For any such e0 and α′ as in (1), suppose we also have (for the same e0 ) α′′

satisfying the same conditions as for α′ . Then α′ =o α
′′ . (This just means that

unary commutativities can be found between the actions of α′ and α′′ on edges,
since their actions on nodes are already constrained up to equality by f0 and f1 .)

Proof It suffices to consider simple equivalence extensions e1 , and the only non-trivial
ones are those that introduce nodes or edges. If e1 introduces only commutativities, then
the action of α′ is already explicit in that of α and e0 just has to introduce the images
under f0 and f1 of those commutativities. This applies to the unit and associativity rules,
and to the rules for the uniqueness of fillins.

We need therefore to find the image under α′ uniquely defined for every node and edge
in T→1 .

For everything in the image of i0 or i1 (and this includes all the nodes), the image under
α′ is already in T0 , and given by f0 or f1 .

It remains only to consider edges θX or θu , and again the α′ image is already in T0 ,
and given by α , for X or u in the image of e1 : so we must consider fresh X and u in
T1 . If u : X → Y then θu is determined as a composite as soon as θX or θY is known.
Then it remains only to adjoin sufficient ingredients to T0 to justify the commutativities
i0(u)θY = θXi1(u).

First, for adjoining a composite w ∼XYZ uv, the commutative square for w is got by
pasting those already known for u and v. Explicitly, we check algebraically that the
appropriate square for w commutes:

f0(w)αZ = f0(u)f0(v)αZ = f0(u)αv = f0(u)αY f1(v)

= αuf1(v) = αXf1(u)f1(v) = αXf1(w).

By Proposition 17 we can find an equivalence extension with sufficient edges and
commutativities to express this.

A similar argument applies to all those equivalence extensions that adjoin an inverse to
a particular edge u : X → Y .
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We now look at pullbacks.

For a pullback universal we have one fresh node P and three fresh edges for three
projections p : P→ X (say) in the pullback cone. For each p, θp is defined from the
known θX , and then the three θp s provide a cone from i0(P) to the i1 -copy of the
diagram opspan. To achieve the commutative squares for the θp s, θP can and must be
defined as the fillin for the cone.

For pullback fillins, suppose in T1 we have a pullback P of some opspan, and suppose
that u : Y → P fills in for a cone that has, for each projection p : P→ X , a morphism
q : Y → X . We need to show f0(u)αP ∼ αY f1(u), and it suffices to show that when
composed with each pullback projection for f1(p).

f0(Y)
αY //

f0(u)
��

f0(q)

$$

f1(Y)

f1(u)
��

f1(q)

zz

f0(P)

f0(p)
��

αP
// f1(P)

f1(p)
��

f0(X) αX
// f1(X)

The bounding quadrangle, the lower small rectangle and the two side-bows all commute,
and so (in some suitable equational extension) we can show f0(u)αPf1(p) ∼ αY f1(u)f1(p).

The same argument applies dually to pushouts, and simpler arguments apply to terminal
and initial universals.

For list universals the ideas are similar, but with some extra intricacies that we shall now
outline. For a list universal the essential task is to implement the functoriality expressed
in Remark 1, for the situation where f : A0 → A1 is θA : f0(A)→ f1(A). Over T0 we
can define the A0 -action on List(A1), and then we can and must define θList(A) as the
fillin. The θs for the other new nodes are determined by the arguments for terminals
and pullbacks.

For list fillins the argument is analogous to that for pullbacks, but more intricate. It is
left to the reader.

Note that if α is an object equality then so is α′ . In other words, we can cancel
equivalence extensions e from objective equalities: if there is an object equality from ef1
to ef2 , then f1 and f2 are objectively equal. A particular special case is for refinements of
equivalence extensions (Definition 16). If e2 = e1ε = e1ε

′ then ε and ε′ are objectively
equal.
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Definition 28 Let α : T→1 l T0 be a 2-cell, with domain and codomain f0 and f1 , and
let e1 : T1 b T′1 be an equivalence extension. Then a right whiskering (Id, α)(e1, Id) is
a map (e0, α

′) where e0 : T0 b T′0 is a common refinement of f0(e1) and f1(e1), and
α′ : T′→ → T′0 has e→1 α

′ = αe0 .

Note that, because of the need to use a common refinement of f0(e1) and f1(e1), the
domain of the whiskering is not strictly equal to what it should be at the 1-cell level.
However, they are objectively equal. The codomain is similar.

Proposition 29 Right whiskering (Id, α)(e1, Id) exists and is unique up to objective
equality.

Proof First, reindex f1(e1) along f0(e1) to obtain a common refinement e′′ : T0 b T′′0 ,
and define f ′λ : T′1 → T′′0 by composing the morphisms introduced for reindexing and
the refinements.

T′′0 oo T′1oo

f ′λ
vv

T0

e′′

``
fλ(e1)

OO

T1fλ
oo

e1

OO

Now apply Lemma 27 to αe′′ and the f ′λ s to get e′ : T′′0 b T′0 and α′ : T′→1 → T′0 . The
required right whiskering is (e0, α

′), where e0 = e′′e′ .

Uniqueness follows from the uniqueness in Lemma 27.

General right whiskering can now be defined by

(e0, α0)(e1, f1) = (e0, Id)((Id, α)(e1, Id))(Id, f1).

Proposition 30

(1) Whiskering obeys the usual associative laws up to objective equality.

(2) Whiskering preserves object equalities.

Proof (1) After what we said earlier, the only remaining issue is the associativity of
(Id, α)(e0, Id)(e1, Id).

((Id, α)(e0, Id))(e1, Id) has the property required for (Id, α)(e0e1, Id), so they are objec-
tively equal.

(2) Clear from the remark after Lemma 27.
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The following lemma has an important application in Lemma 34. Note that if cg is
equal to f , then e can be trivial, with εg′ = g. With object equalities there is a little
more work, and it is embodied in e.

Lemma 31

(1) Suppose we have the solid parts of the following diagram,

T′0
g′

��

T′1
εoo

g

��
T′′0 T0e
oo

f (c)

OO

T1f
oo

c

OO

where c is an extension, the square is the reindexing, and we have an object
equality γ : f ⇒ cg.
Then we can find an equivalence extension e : T0 b T′′0 and a homomorphism
g′ : T′0 → T′′0 such that f (c)g′ is strictly equal to e and there is an object equality
γ′ : εg′ ⇒ ge such that cγ′ = γe.

(2) Suppose, in the situation above, we have an equivalence extension e and two
homomorphisms g′i with the properties described. Then g′1 and g′2 are objectively
equal in T′′0 .

Proof (1) By induction we can assume that c is a simple extension.

If c adjoins a primitive node X , then we define e as trivial, and g′(X) = g(X).

If c adjoins a primitive edge u : X → Y then in T0 we have the solid part of

f (X)
γX +3

g′(u)
��

g(c(X))

g(u)
��

f (Y) γY
+3 g(c(Y))

and in a suitable equivalence extension of T0 we can define g′(u) to make the square
commute.

Suppose c adjoins a commutativity vw ∼XYZ u. We have:

f (X) +3

f (v)

||

f (u)

��

g(c(X))
g(c(v))

yy
g(c(u))

��

f (Y) +3

f (w) ""

g(c(Y))

g(c(w)) %%
f (Z) +3 g(c(Z))

Journal of Logic & Analysis 11:FT4 (2019)



Sketches for AUs 41

The square faces all commute because they are object equalities. Once c has made the
right-hand triangle commute, in a suitable equivalence extension we can deduce that so
does the left-hand one.

If c adjoins a universal, then we let e adjoin the same universal.

(2) Every ingredient of T′0 is in the image of either f (c) or ε. It therefore suffices to
note that f (c)g′1 and f (c)g′2 are strictly equal, while εg′1 and εg′2 are objectively equal
by Proposition 23.

8 The 2-category of contexts

We now define our 2-category Con in which the 0-cells are contexts, and the 1-cells
between T0 and T1 are in bijection with strict AU-functors from AU〈T1〉 to AU〈T0〉.
At the same time, we shall make the reversal of direction by which a strict AU-functor
can be thought of as a transformation of models. Thus we shall think of a 1-cell as a
“map” from the “space of models of T0 ” to the “space of models of T1 ”.

8.1 Con as a 1-category

Proposition 32 Objective equality of context maps is a congruence on Conbm .

Hence contexts and their maps modulo objective equality form a category Con.

Proof It has already been remarked that objective equality is an equivalence relation
on each hom-set. To show that it is a congruence, we show that if two context maps are
objectively equal, then their composites with any (e, f ) are also objectively equal. On
the left, we just reindex everything along f . On the right, we apply right whiskering by
(e, f ), and use the fact that this preserves objective equality.

We now have a functor (Id,−) : Conm → Con given by

(T0 oo
f

T1 ) 7→ (T0 T0 oo
f

T1 ).

Theorem 33 Con is free over Conm subject to object equalities becoming equalities,
and equivalence extensions becoming invertible.
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Proof If e : T0 b T′0 is an equivalence extension, then (Id, e) has inverse (e, Id) in
Con.

We have (e, Id); (Id, e) = (e, e), and this is objectively equal to (Id, Id) using e as a
refinement of Id.

For the other composite we get (e(e), ε) by reindexing. Now by the remark preceding
Lemma 31, with g as an identity, we get a homomorphism g′ with e(e); g′ = ε; g′ = Id,
showing that (e(e), ε) is equal to the identity.

It follows that, in Con, every morphism can be expressed in the form (Id, e)−1; (Id, f ),
where e is an equivalence extension.

Now suppose we have a functor F : Conm → C with those properties. We must show it
factors uniquely via (Id,−), with F′ : Con→ C . Uniqueness is clear: we must have

F′(e, f ) = F′(e, Id); F′(Id, f ) = F(e)−1; F(f ).

For existence, first we show that F′ thus defined transforms objective equality to equality.
Suppose (ei, fi) (i = 0, 1) are objectively equal, as in diagram (6). Then

F(ei)−1; F(fi) = F(e)−1; F(εi); F(fi) = F(e)−1; F(fiεi)

and these are equal for i = 0, 1 because F transforms object equality to equality.

It is obvious that F′ preserves identities, and for composition it suffices to consider the
composite (Id, f ); (e, Id) = (f (e), ε). In C we have

F(f ); F(e)−1 = F(f (e))−1; F(ff (e)); F(e)−1 = F(f (e))−1; F(eε); F(e)−1

= F(f (e))−1; F(ε).

Lemma 34

(1) Any reindexing square (4) for a context extension becomes a pullback square in
Con.

(2) In Con, extension maps (ie those of the form (Id, c) where c is an extension) can
be pulled back along any morphism.

Proof (1) Consider a diagram as on the left here, with the outer square commuting.

U

(e2,g2)
((

(e1,g1) ��

T′0 (Id,ε)
//

(Id,f (c))
��

T′1
(Id,c)
��

T0 (Id,f )
// T1

g′2

��

T′0
ε′oo T′1

εoo

g2

wwUe
oo

g1(f (c))

OO

T0

f (c)

OO

g1
oo T1

c

OO

f
oo
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Taking a common refinement of e1 and e2 , we might as well assume that they are both
trivial and that we have an object equality fg1 ⇒ cg2 . Now consider the diagram on the
right, and apply Lemma 31 with g2 for g. We obtain e and g′2 , with e an equivalence
extension, strict equality g1(f (c)); g′2 = e, and an object equality εε′g′2 ⇒ g2e.

The required fillin is (e, ε′g′2). It has the correct composites with (Id, f (c)) and (Id, ε).
Moreover, uniqueness follows by the same argument as in Lemma 31.

(2) After part (1), it suffices to show that (Id, c) can be pulled back along any map (e, Id)
where e : T0 b T1 is an equivalence extension. This is trivial, because pullbacks along
invertible morphisms always exist.

8.2 Con as 2-category

We now develop the 2-categorical structure.

Lemma 35 Let T be a context. Then (T→)→ has an involution (e, τ ) such that
(Id, iµ)(e, τ ) = (Id, i→µ ).

Proof We shall write iλµ (λ, µ = 0, 1) for the composite

iλiµ = T iλ
//T→ iµ

//(T→)→ .

In (T→)→ we write θ for the first level homomorphism, in T→ , represented in (T→)→

by iµ(θ), and φ for the second level homomorphism.

Note that iλi→µ = iµiλ . It follows that any model of (T→)→ has a square of four models
of T, got from the iλµ s, and four homomorphisms between them, got from the iµ s and
the i→µ s. In fact, the square will commute, because φ is homomorphic with respect to
the iµ s. Conversely, any such commutative square of homomorphisms gives a model of
(T→)→ .

i00(X)
i0(θX) //

φi0(X)=i→0 (θX)
��

i10(X)

φi0(X)=i→1 (θX)
��

i01(X)
i1(θX)

// i11(X)

Reflecting the square about its leading diagonal gives another such square, and that is
the essential action of τ . The only remaining issue is that in the context (T→)→ , we
need an equivalence extension e to introduce some composites and associativities; mere
commutativity of the squares (of carrier edges) does not explicitly have all the data for
a homomorphism between homomorphisms.
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Lemma 36 Let f0, f1 : T1 l T0 have an object equality γ . Then f→0 and f→1 are
objectively equal.

Proof Use (Id, γ→)(e, τ ), where (e, τ ) is as in Lemma 35.

Lemma 37 Let e : T1 b T0 be an equivalence extension. Then e→ is invertible in
Con.

Proof The identity on T→1 gives the generic 2-cell between T→1 and T1 , its domain
and codomain being i0 and i1 . Consider its right whiskering (Definition 28) by (e, Id),
giving the right hand square in the diagram below. Then (e′, α) is the inverse of (Id, e→).
Immediately we have (e′, α)(Id, e→) = (e′, e→α) = (e′, e′). For (Id, e→)(e′, α),
consider the reindexing square on the left here.

Uεoo T→0
αoo

T→0

e→(e′)

OO

T→1e→
oo

e′

OO

T→1

e→
OO

(e→(e′), αε) is a right whiskering of (Id, e→) by (e, Id): for e→ factors via iλ(e),
so e′ and e→(e′) are refinements of, respectively, iλ(e) and iλe→ . But then so is
(e→(e′), e→(e′)), and so they are objectively equal, and the latter is objectively equal to
the identity on T→0 .

Theorem 38 The functor −→ on Conl gives an endofunctor on Con.

Proof Theorem 33 reduces this to Lemmas 36 and 37.

We now define an internal category in the functor category [Con,Con] in which the
object of objects is Id, and the object of morphisms is −→ .

The structure operations will be natural transformations. Note that to prove naturality, it
suffices to prove it with respect to maps of the form (Id, f ), since the rest follows from
invertibility of (e, Id).

The domain and codomain, natural transformations from −→ to Id, are given by the
maps dom = (Id, i0) and cod = (Id, i1).

The identity Id : Id → −→ is given by maps (e, γ) where γ : T→ l T′ takes θ to
the equality homomorphism on the generic model of T. The equivalence extension
e : T b T′ uses instances of the unit laws to provide the necessary commutativities.
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Since i0 is an extension, we can reindex along i1 , and in fact this gives T→→ as a
pullback in Con.

T→→ (Id,ε) //

(Id,i1(i0))
��

T→

dom=(Id,i0)
��

T→
cod=(Id,i1)

// T

i1(i0) maps the ingredients of T→ to the 0- and 1-copies in T→→ , and adjoins the
2-copies with the carrier edges from 1 to 2.

In an equivalence extension of T→→ , the two model homomorphisms can be composed,
and this provides composition as a natural transformation from −→→ to −→ . It is
vertical composition of the two 2-cells T→ l T→→ .

Thus for each T we get an internal category N(T) in Con, on objects T and morphisms
T→ .

Using the category structure of N(T1), this makes Con(T0,T1) into a category, with
objects and morphisms the 1-cells and 2-cells between T0 and T1 .

We already have vertical composition of 2-cells. (We shall compose from top to bottom,
so the codomain of the upper 2-cell must equal the domain of the lower.)

We deal with horizontal composition by whiskering. Using the functor −→ , we can
make Con(−,−→) into a profunctor from Con to Con, and this provides whiskering
on both sides. The proof of Lemma 37 shows that this agrees with the whiskering we
already have.

Horizontal composition can now be defined as:

αβ =
α dom(β)
cod(α)β

The interchange law follows from:

Lemma 39
α dom(β)
cod(α)β

=
dom(α)β
α cod(β)

Proof Suppose we have the following:

T0
))
55�� (e,α) T1

))
55�� (e

′,β) T2
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By whiskering (e, α)(e′, Id) we might as well assume that e and e′ are both identities.
In Conl we now have:

α ◦ β→ : T0 T→1
αoo (T→2 )→

β→
oo

The two vertical composites in the statement are the images in T0 of the two routes
round the square of homomorphisms in (T→2 )→ (see Lemma 35) and so are equal.

Putting together the properties proved so far, we can deduce:

Theorem 40 Con is a 2-category.

8.3 Limits in Con

We have two main results here. The first (Theorem 48) is that Con has finite PIE-limits
(products, inserters and equifiers; Power and Robinson [11]).

This is a large class of finite weighted limits, but a notable lack is equalizers and
pullbacks. Although by universal algebra AUs has all pushouts and AUop

s has all
pullbacks, in general we cannot replicate this in contexts. For example, suppose we
have two context homomorphisms fi : T0 lTi where T0 has just a single node, and the
fi s map it to nodes introduced by two different kinds of universals. Then the pushout
must specify an equality between those two different nodes, and that cannot be done
with a context.

The second main result (Theorem 42) is that, nonetheless, pullbacks of extension maps
do exist, essentially by reindexing. In fact this has already been addressed in Lemma 34.
All that remains here is to show that they are 2-categorical conical limits (in other words,
they take proper account of 2-cells between fillins).

Note that all our weighted limits are strict, with strict cones, as in [11]. We do not
follow the convention in Johnstone [5, page 244] of interpreting them in a “pseudo” or
“bi” sense.

Also note that we do not claim to have constructed the limits in a canonical way, at least
not those – such as pullbacks, inserters and equifiers – that depend on maps. This is
because the construction will depend on the representatives (e, f ) of the maps.
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Pullbacks and products

Lemma 41 Consider a context reindexing square (4). Then the following square in
Conl becomes a pullback in Con.

(7) T′→0 T′→1
ε→oo

T→0

f (c)→
OO

T→1

c→
OO

f→
oo

Proof If c→ were an extension, then we could apply Lemma 34. In fact it is not, but
only for bureaucratic reasons based on the concrete definition of coproduct “+” (see
Section 9). The issue is that the steps constructing T′→1 are applied in an order that does
not start off with all those for T→1 . Those steps can be reordered to give an extension
c′ : T→1 ⊂ T′′1 isomorphic to c→ , and moreover that reordering can be reindexed along
f→ to get a reindexing square isomorphic to (7):

T′→0 T′→1
ε→oo

T′′0

∼=

``

T′′1
ε′oo

∼=

>>

T→0

f (c)→

OO

f→(c′)

>>

T→1

c→

OO

c′

aa

f→
oo

By Lemma 34 the reindexing square is a pullback in Con, and it follows that so too
is (7).

Theorem 42 Con has pullbacks of extension maps along any map.

Proof Lemma 34 has already shown the 1-categorical form of this. It remains to show
that we also have 2-cell fillins, and the ability to do this follows from Lemma 41.

Lemma 43 Con has all finite products.

Proof The empty theory 11 is initial in Conl . After that one easily shows that it is
terminal in Con.

The case for binary products follows from Theorem 42, since the unique homomorphism
11 l T is an extension.
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Inserters

First, we work in Conl (or, dually, in Conm ).

Definition 44 Let fλ : T1 l T0 (λ = 0, 1) be two context homomorphisms. Then we
define an extension c : T0 ⊂ Ins(f0, f1) by adjoining:

• for every node Y in T1 , an edge θY : f0(Y)→ f1(Y); and
• for every edge u : Y → Y ′ in T1 , an edge θu and two commutativities

f0(Y)
θY

•
//

θu

##
f0(u)
��

f1(Y)

f1(u)
��

f0(Y ′)
θY′

• // f1(Y ′)

Obviously this generalizes the construction of T→1 out of T2
1 , and gives f : T→1 →

Ins(f0, f1) with two strictly commutative squares:

Ins(f0, f1) T→1
foo

T0

c

OO

T1fλ
oo

iλ

OO

In fact Ins(f0, f1) is their joint pushout in Conl .

To put this another way, whiskering induces a bijection between

(1) context homomorphisms g′ : Ins(f0, f1) lU, and
(2) pairs (g, θ) where g : T0 lU is a context homomorphism, and θ : f0g→ f1g is a

2-cell.

This very nearly also works at the level of 2-cells. Consider two sketch homomorphisms
g′µ : Ins(f0, f1) lU (µ = 0, 1), corresponding to pairs (gµ = cg′µ, θµ = f g′µ) as above,
and suppose we have a 2-cell α′ : g′0 → g′1 . Considering the nodes and edges of
Ins(f0, f1), we see that the edge data needed for α′ comprises edges of the form α′cX and
α′cu , for nodes and edges in T0 , and α′θY

and α′θv
, for nodes and edges in T1 . The first

two kinds come along with commutativitites that make the whiskered 2-cell g0 → g1 .
The last two kinds have commutativities:

g′0cf0Y
α′

cf0Y

•
//

g′0θY

��

α′
θY

$$

g′1cf0Y

g′1θY

��
g′0cf1Y

α′
cf1Y

• // g′1cf1Y

g′0cf0Y
α′

cf0Y

•
//

g′0θv

��

α′
θv

$$

g′1cf0Y

g′1θv

��
g′0cf1Y ′

α′
cf1Y′

• // g′1cf1Y ′
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The first of these expresses that the α′θY
s give the correct carrier edges for the horizontal

composition of α′ and θ . The second is equivalent to saying that the α′θv
s give the

correct naturality diagonals for this horizontal composition, in other words

g′0cf0Y
α′
θY

•
//

α′
θv

$$
g′0cf0v

��

g′1cf1Y

g′1cf1v
��

g′0cf0Y ′
α′
θY

• // g′1cf1Y ′

but only modulo applications of associativity laws.

Lemma 45 Con has inserters.

Proof Suppose we have two maps from T0 to T1 . We can represent them as
homomorphisms f0 and f1 into a single equivalence extension T′0 of T0 . We shall show
that T0 b T′0 ⊂ Ins(f0, f1) provides the inserter in Con.

In the following diagram we use arrows � �
(e,Id)

,
(Id,f ) // , � �

(e,f ) // for maps of the forms
indicated.

U′ ))// Ins(f0, f1) c
// T′0

fλ // T1

U � � //
?�

T0

?�
e

The map from Ins(f0, f1) to T0 is got by inverting the equivalence extension e : T0 b T′0 .

Suppose we have a map from U to T0 and a 2-cell between its composites with the
fλ s. By replacing U by a suitable equivalence extension U′ , we may assume that the
2-cell, between maps from U′ to T1 , is entirely in Conm as in the above diagram, and
we get a unique factorization U′ → Ins(f0, f1) in Conm . This then gives us a unique
factorization in Con.

The remarks before the lemma now enable us to extend this to 2-cells in the manner
required for a weighted limit. (Now we need an equivalence extension of U′ for the
associativities needed.)

Equifiers

Again, we start off in Conm .
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Definition 46 Suppose we have two homomorphisms α, β : T→1 l T0 that, as 2-cells,
have the same domain and codomain: fλ = iλα = iλβ (λ = 0, 1). (Equality is in the
sense of agreeing on nodes and edges.) Then we define an extension c : T0 ⊂ Eq(α, β)
that adjoins unary commutativities αY ∼ βY and αv ∼ βv for the nodes Y and edges v
in T1 .

A homomorphism g′ : Eq(α, β) lU is equivalent to a homomorphism g : T0 lU such
that αg and βg are equal in the sense that there are unary commutativities in U equating
the images under g of the θY s and the θv s.

We can extend this precisely to 2-cells in Conm . If g′λ are two homomorphisms from
Eq(α, β) to U, then a 2-cell from g′0 to g′1 is equivalent to a 2-cell from cg′0 to cg′1 .

Lemma 47 Con has equifiers.

Proof Suppose in Con we have two 2-cells between T0 and T1 with equal domain
and codomain. Then by taking common refinements, and vertically composing one of
the 2-cells with object equalities, we can suppose without loss of generality that our
2-cells are given by a suitable equivalence extension e : T0 b T′0 and, entirely in Conm ,
two 2-cells between T′0 and T1 with equal domain and codomain. Then Eq(α, β),
mapped through to T0 using (Id, e), provides the equifier we seek.

Eq(α, β) c // T′0

f0
''

⇓α⇓β

f1

77 T1

T0

?�
e

The rest is similar to Lemma 45.

Theorem 48 Con has finite pie limits.

Proof This is the combined content of Lemmas 43, 45 and 47.

We emphasize again that the inserters and equifiers do not have canonical constructions,
because they depend on the representations of 1-cells.
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9 A concrete construction of AU〈T〉

We can define a 2-functor AU〈−〉 : Con → AUop
s , acting on objects as T 7→ AU〈T〉.

(At the 1-category level this is immediate from Theorem 33, using Proposition 19 and
Lemma 21.)

The main result of this section, Theorem 49, is that this 2-functor is representable, with
AU〈T〉 isomorphic to Con(T,O). We also show, Theorem 51, that it is full and faithful:
thus all strict AU-functors between AUs of the form AU〈T〉, with T a context, can be
got by the finitary means of constructions in Con.

Finally we shall show how the construction itself can be conducted entirely within
the logic of AUs. This is in the spirit of the idea that AU constructions should be
internalizable within AUs, the idea that inspired Joyal’s original use of them with regard
to Gödel’s Theorem.

For the 2-cells, first note that AU〈T→〉 is a tensor 2⊗ AU〈T〉 in AUs . This is because
a strict AU-functor AU〈T→〉 → A is equivalent to a strict model of T→ in A, which is
equivalent to a strict model of T in A ↓ A, which is equivalent to a strict AU-functor
AU〈T〉 → A ↓ A, which is equivalent to a 2-cell between AU〈T〉 and A with domain
and codomain both strict.

Hence AU〈T→〉 is a cotensor 2 t AU〈T〉 in AUop
s . Thus we find that 2-cells in Con,

which are 1-cells to some T→ , are mapped to 2-cells in AUop
s , and this preserves

vertical and horizontal composition.

We next investigate the categories Con(T,O). The objects and morphisms of this are
the nodes and edges of equivalence extensions of T, all modulo objective equality.

Theorem 49 Let T be a context. Then Con(T,O) is an AU freely presented by T, in
other words AU〈T〉 ∼= Con(T,O).

Proof All the AU constructions can be captured by equivalence extensions, and have
the necessary properties. The rules of object equalities (for nodes) and fillin uniqueness
(for edges) ensure that the constructions yield equals when applied to equals, and so
have canonical representatives. Thus Con(T,O) is an AU.

To show its freeness property, let M be a strict model of T in A. Then any object or
morphism in Con(T,O) gets a unique interpretation in A by model extension along
the equivalence extension used. This respects objective equality, and so yields a well
defined interpretation of the object or morphism.

Journal of Logic & Analysis 11:FT4 (2019)



52 S Vickers

Proposition 50 Let T,T0 be contexts. If (e, f ) is a context map from T to T0 , then
the nodes and edges of T0 , translated along f , give a strict model of T0 in Con(T,O).
This induces a bijection between

• context maps from T to T0 (modulo objective equality), and

• strict models of T0 in Con(T,O).

Proof Objective equality of the context maps is determined solely by objective
equalities for their nodes and edges, which is equality of the models in Con(T,O).
Hence we have injectivity.

For surjectivity, each piece of data for a strict model of T0 is expressed in an equivalence
extension of T. There are only finitely many of these, so they have a common refinement
e, say, and then the strict model can be expressed as a context map (e, f ).

Theorem 51 The 2-functor AU〈−〉 is full and faithful on 1-cells and 2-cells.

Proof Let T0 and T1 be contexts. Strict AU-functors AU〈T1〉 → AU〈T0〉 are
equivalent to strict models of T1 in AU〈T0〉 ∼= Con(T,O), and these are equivalent to
1-cells in Con.

The result for 2-cells follows by considering maps to arrow contexts T→1 .

We now look at the concrete construction in AU logic.

Each kind σ of simple extension or simple equivalence extension takes some given data,
and produces a delta. The possible data are given by a functor Datσ from sketches to
sets. More carefully, an element of Datσ(T) is some finite tuple of elements of carriers
in T, subject to some equations. Hence Datσ can be understood as an object of the
Cartesian classifying category for the unary theory of sketches, and for any sketch T in
a Cartesian category C , Datσ(T) is an object of C . If the sketch T is in an AU, then,
for each element of Datσ(T), the delta now gives us a proto-extension T l T′ .

Since there are only finitely many kinds of simple extension or simple equivalence
extension, in an AU we can sum over them and get:

Dats⊂ ,
∑
{Datσ | σ a kind of simple extension}

Datsb ,
∑
{Datσ | σ a kind of simple equivalence extension}

Let us now restrict ourselves to strongly finite sketches, in other words, sketches in the
category Fin whose objects are natural numbers and whose morphisms are functions
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between the corresponding finite cardinals. This can be defined internally in any AU.
We obtain an internal graph Sks⊂ whose nodes are strongly finite sketches T, and whose
edges are pairs (T, e ∈ Dats⊂(T)): the source is T, the target is the corresponding
simple extension T′ . Note that we can, and shall, choose the deltas in such a way that,
for every carrier, the corresponding carrier function for the extension is the natural
inclusion for some natural numbers m ≤ n. We write Sk⊂ for the path category of
Sks⊂ , its morphisms being the composable tuples of edges. (Note that two different
paths could still give the same extension.)

We can now take the contexts to be the targets of extensions whose domains are the
empty sketch 11.

Next we do the same with equivalence extensions, to obtain a graph Sksb and its path
category Skb .

Note that if f : T1 l T2 then f extends to a function Dats⊂(T1)→ Dats⊂(T2), and so
transforms any extension c of T1 into one f (c) of T2 . This is the reindexing, and it
applies similarly to equivalence extensions.

From these ingredients we can now, internally in any AU, define the 2-category Con

and also, from any internal context T, define Con(T,O) and hence AU〈T〉.

10 Conclusion

The technical achievement of the present paper, of providing a finitary means for dealing
with arbitrary strict AU-functors between certain finitely presented AUs, was a necessary
first step in pursuing the programme set out in Vickers [12], with its goal of using AUs
to provide a uniform, base-independent setting for geometric reasoning about toposes
as generalized spaces.

That programme is developed further in Vickers [16]. It shows in particular how
extension maps U : T1 ⊃ T0 in Con can be understood as bundles: for each model M
of T0 in an elementary topos S with nno, the fibre over M is a certain bounded S -topos,
the generalized space over S of T1 -models N for which U(N) = M . Hazratpour and
Vickers [4] show furthermore that if U is an (op)fibration in Con then the bounded
geometric morphism for each M is an (op)fibration in the 2-category of elementary
toposes with nno.

Experience with geometric reasoning has shown that many of the constructions can
be conducted within the “arithmetic” AU constraints, so an obvious direction of
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investigation is to attempt to express them within the finitary formalism developed in
the present paper. At the same time, it is also necessary to clarify the connection with
the type theory for AUs as set out in Maietti and Vickers [6].

Another pressing need is for a coherent account of the “geometricity” properties of
point-free hyperspaces and related constructions. Existing accounts such as that of
Vickers [13] prove that the constructions are preserved up to isomorphism by pullback
of bundles, but do not express any coherence properties of those isomorphisms. It is
to be hoped that that will become clearer in the arithmetic account when bundles are
understood as extensions.

A big question, requiring much further work, is that of whether the AU formalization is
capable of providing a satisfactory substitute for Grothendieck toposes as an alternative
account of generalized spaces. Already it seems clear that they can support much of
arithmetic, algebra, real analysis, and logic. The critical question is whether they can
also recapture the invariants, such as cohomology, for which Grothendieck invented
toposes as generalized spaces. Many of the established techniques rely on a classical
ambient set theory that is alien to the spirit of the finitary constructions with AU-contexts.

Many of the technical details in the present paper are open to change. Our axiomatization
of AUs is surely not the final word on the subject. Nonetheless, the broad approach of
sketches, using the novel notions of extensions, contexts, equivalence extensions and
object equalities, would seem to have very general usefulness. They would apply not
only to modified definitions of AU but also to other logics. A simple and important
fragment of the AU theory would be a sketch account of Cartesian logic. Following
the ideas of Palmgren and Vickers [10], we would expect there to be a rich interplay
between that and the AU theory, because the AU logic is what is needed to construct
initial models for Cartesian theories.
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