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Abstract: We consider the behaviour of Schnorr randomness, a randomness notion
weaker than Martin-Löf’s, for left-r.e. reals under Solovay reducibility. Contrasting
with results on Martin-Löf-randomness, we show that Schnorr randomness is not
upward closed in the Solovay degrees. Next, some left-r.e. Schnorr random α is
the sum of two left-r.e. reals that are far from random. We also show that the left-r.e.
reals of effective dimension > r , for some rational r , form a filter in the Solovay
degrees.
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1 Introduction

Randomness notions

The algorithmic theory of randomness defines randomness notions of reals in [0, 1], or
equivalently infinite bit sequences, and studies their properties and interactions with
computational complexity. The notion of Martin-Löf (ML) randomness was for a long
time considered to be the central one. We review the definition. An open set U ⊆ [0, 1]
is r.e. if it is a union of computable sequence of open intervals with rational endpoints,
that is, U =

⋃
i∈N(pi, qi) where 〈pi〉 and 〈qi〉 are computable sequence of rationals. A

ML-test is a sequence 〈Un〉 of uniformly r.e. open sets with µ(Un) ≤ 2−n where µ is
the Lebesgue measure. A real x is ML-random if x 6∈

⋂
n Un for every ML-test 〈Un〉.

A suite of alternative notions has been introduced by modifying this definition, both
stronger and weaker notions than ML-randomness. See eg Nies [13, Chapter 3].
Many of these notions have shown their importance in particular for the interaction of
randomness and analysis such as Nies [14] and Brattka, Miller and Nies [2]. One of
them is the following weakening of ML-randomness, which will be of importance in
the present paper. We say that a real x is Schnorr random if it passes all ML-tests 〈Un〉
such that µ(Un) is computable uniformly in n.
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Solovay reducibility

Our central notion is Solovay reducibility ≤S . Informally, for left-r.e. reals α, β ,
α ≤S β expresses that α is no harder to approximate from the left than β . A formal
definition will be given in the beginning of Section 2. This implies α ≤T β , so β can
compute α . Further, α ≤S β also implies that β is in a particular sense no less random
than α . Then, Solovay reducibility is a measure of both computational complexity and
algorithmic randomness. Background is provided eg in Downey and Hirschfeldt [5,
Chapter 9], and also in Nies [13, Section 3.2].

Main results

For left-r.e. reals, ML-randomness interacts closely with Solovay reducibility: a left-r.e.
real is ML-random iff it is Solovay complete (a result by Calude, Hertling, Khoussainov
and Wang [3] and Kučera and Slaman [9]). As discussed shortly, the complete Solovay
degree is join irreducible.

The supremum of two left-r.e. reals in the degree structure induced by Solovay reducibil-
ity is given by their arithmetic sum. We are guided by the following two facts that
restate some of the results above in terms of the sum. Let α, β be left-r.e. reals.

(1) If α is ML-random, then α+ β is ML-random.

(2) If α+ β is ML-random, then at least one of α and β is ML-random.

A simple direct proof of the first fact can be found in [13, Theorem 3.2.27]. For the
second, see Demuth [4], and as a more recent (and more readable) reference Downey,
Hirschfeldt and Nies [7].

Our first goal is to show that both statements fail for Schnorr randomness (Corollary
3.2 and Theorem 4.1). Thereafter, we prove that in contrast, left-r.e. weakly s-random
reals behave like ML-random reals (Theorem 5.6). The reals that have effective packing
dimension at most s behave like non-ML-random reals (Proposition 5.7).

Preliminaries

Our notation in the algorithmic theory of randomness is standard as in Nies [13]
or Downey and Hirschfeldt [5] (except that we write “r.e." instead of “c.e."). Unless
otherwise stated, reals in this paper are in [0, 1]. A real α is called left-r.e. if there exists
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a computable non-decreasing sequence 〈an〉n∈N of rationals such that limn an = α . We
sometimes identify a real α with its binary expansion X ∈ 2ω and the corresponding
set X = {n ∈ N : X(n) = 1}. By X � n we denote the initial segment of X of length
n. We write f (n) ≤+ g(n) to mean f (n) ≤ g(n) + O(1), that is, there exists a constant c
such that f (n) ≤ g(n) + c for all n.

2 Solovay reducibility

2.1 Definitions and basic facts

The following was first defined by Solovay in unpublished work.

Definition 2.1 (Solovay [15]) For left-r.e. reals α and β , we say that α is Solovay
reducible to β , denoted by α ≤S β , if there exist a constant c and a partial computable
function f : Q → Q such that if q ∈ Q and q < β , then f (q) ↓< α and α − f (q) <
c(β − q).

Solovay’s used the terminology “α is dominated by β”. Recall that this definition
expresses that α is less complex than β by asking that β is harder to approximate from
below. For, let αs, βs be computable nondecreasing sequences of rational converging
to α, β respectively. Then α ≤S β if and only if there are a constant c ∈ N and a
computable function g such that α−αg(n) < c(β−βn) for all n. For a proof, see again
[5, Chapter 9], and also [13, Section 3.2].

There is a useful algebraic characterization of Solovay reducibility: α ≤S β means that
β can be obtained from α by literally “adding" information, in the sense of adding a
left-r.e. real γ . To make this work we also need to scale β . (For the precise version of
the result used here see Nies [13, Theorem 3.2.29].)

Proposition 2.2 (Downey, Hirschfeldt and Nies [7]) For left-r.e. reals α, β we have
α ≤S β if and only if there are d ∈ N and a left-r.e. real γ such that α+ γ = 2dβ .

2.2 Connections to K-reducibility

For any reals α, β one writes

α ≤K β if ∀n K(α � n) ≤+ K(β � n)
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where K denotes prefix-free Kolmogorov complexity. The Levin-Schnorr theorem says
that X is ML-random if and only if K(X � n) ≥+ n. Then α ≤K β says that β is no
less random than α .

For left-r.e. reals α, β , if α ≤S β then α ≤K β (by Solovay [15]). This fact also follows
from Proposition 2.2. We will now obtain an implication in the converse direction under
a hypothesis stronger that α ≤K β . We write α�K β if limn(K(β � n)− K(α � n)) =

∞.

Proposition 2.3 Let α, β be left-r.e. reals. If α�K β then α <S β .

Notice that in this proposition we can replace K(σ) by C(σ), K(σ|n), or C(σ|n) where
n = |σ|. The proof remains almost the same.

Downey, Hirschfeldt and Laforte [6] showed cl-reducibility version, that is �K implies
≤cl . We also note that ∅ �K α implies that α is wtt-complete [5, Theorem 9.12.2].

Proof First note that β ≤S α would imply β ≤K α , contrary to α �K β . Hence it
suffices to show α ≤S β . If β is a rational, α �K β does not hold. So β is not a
rational. If α is a rational, then α ≤S β holds trivially. Hence, we can assume that α is
not a rational.

Let 〈αs〉s∈N, 〈βs〉s∈N be increasing computable sequences of rationals converging to
α, β respectively. Given n ∈ N, let sn be the first stage s such that αs � n = α � n.
There exists a constant c ∈ N such that for each n:

K(βsn � n) ≤ K(αsn � n) + c = K(α � n) + c

If given αsn � n, we can compute the stage sn from the approximation 〈αs〉, which also
computes βsn � n, thus the first inequality follows. Since limn(K(β � n)− K(α � n)) =

∞, we have K(β � n) > K(α � n)+c for sufficiently large n. Thus, βsn � n 6= β � n for
all sufficiently large n. Furthermore, β � n is not equal to the lexicographic successor
of βsn � n, for otherwise K(β � n) would be within a constant of K(βsn � n). Hence,
β − βsn ≥ 2−n .

Define a partial computable function f : Q → Q by f (q) = αs , where s is the first
stage such that q < βs . If n is sufficiently large and sn ≤ s ≤ sn+1 , then

α− αs ≤ α− αsn ≤ 2−n,

β − βs ≥ β − βsn+1 ≥ 2−n−1.while

Then there is a rational q∗ < β such that α− f (q) ≤ 2(β − q) for every rational q with
q∗ ≤ q < β . Modifying f on the rationals ≤ q∗ shows that α ≤S β .
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2.3 Connections to ML-randomness

We restate the two guiding facts from the introduction. They connect Solovay reducibil-
ity and ML-randomness.

Proposition 2.4 Let α, β be left-r.e. reals. If α is ML-random, then α + β is ML-
random.

Here + is the real addition. For a direct proof see Nies [13, Theorem 3.2.27].

By Proposition 2.2, for left-r.e. reals α, γ , if α is ML-random and α ≤S γ , then γ

is ML-random. The implication ≤S⇒≤K is an extension of this result by the Levin-
Schnorr theorem. This explains that Solovay reducibility is a measure of algorithmic
randomness.

Alternatively, recall that a left-r.e. real is ML-random iff it is Solovay complete (a result
by Calude, Hertling, Khoussainov and Wang [3] and Kučera-Slaman [9]). Proposition
2.4 now follows via Proposition 2.2.

The second fact says that the top degree in the Solovay degrees is join irreducible.

Theorem 2.5 (Demuth [4]; Downey, Hirschfeldt and Nies [7]) Let α, β be left-r.e.
reals. If α+ β is ML-random, then at least one of α and β is ML-random.

For left-r.e. reals α, β , the degree of α + β is the least degree above α, β , thus the
degree of α+ β is the join of α and β . The theorem says that the join of two non-ML-
random left-r.e. reals is not ML-random either, and the top degree can not be the join of
two lesser degrees.

3 Schnorr randomness is not upward closed in the Solovay
degrees

The following will be used to show that for Schnorr randomness, the counterpart of
Proposition 2.4 fails.

Theorem 3.1 Let α be a left-r.e. real such that ∀n K(α � n) < n− f (n) for some order
function f . There exists a left-r.e. real β such that α+ β is disjoint from some infinite
computable set.
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Proof Suppose g, h are strictly increasing computable functions such that the range of
h is the complement of the range of g. We define C = A⊕g B by C(g(n)) = B(n) and
C(h(n)) = A(n).

Let α be as in the statement. If g is a sufficiently fast growing computable function,
then γ = Ω⊕g ∅ satisfies K(γ � n) ≥+ n− f (n)

2 . Note that γ is left-r.e. Since α�K γ ,
by Proposition 2.3 we have α ≤S γ . By Prop. 2.2 there exist a natural number d and a
left-r.e. real β such that 2dγ = α+ β . Since γ is disjoint from an infinite computable
set, so is α+ β .

Partial computable randomness is a notion in between Schnorr and ML-randomness.
For the definition see [13, Section 7.4].

Corollary 3.2 The left-r.e. Schnorr random reals are not upward closed in the Solovay
degrees.

Proof By a result of Merkle [12] (also see [13, Remark 7.4.17]) there exists a left-r.e.
Schnorr random real α such that K(α � n) = O(log n). Now take α+β ≥S α as above.
Since α + β is disjoint from some infinite computable set, this can not be Schnorr
random.

Remark 3.3 The constructed α can be even partial computably random as in [13,
Remark 7.4.17]. Furthermore, α+β is not even Kurtz random because of its disjointness
from an infinite computable set. The definitions of partial computable randomness and
Kurtz randomness can be found in [13] and [5].

4 Left-r.e. Schnorr random reals can be split into non-
Schnorr random reals

We show that the counterpart of Theorem 2.5 for Schnorr randomness does not hold
either. Theorem 4.1 below gives a sufficient condition on α so that α is the join of
two far-from-random reals. The condition is given by somewhat slow growing initial
segment complexity of a left-r.e. real α . The condition is weak in the sense that α can
still be Schnorr random using [13, Remark 7.4.17] as in the proof of Corollary 3.2.

We show that α can be written as a sum of left-r.e. reals which are far from random
in various senses. One way to express this is saying that their effective Hausdorff
dimensions are 0.
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We recall the definition here. By Mayordomo [10], for a real X ∈ 2ω , the effective
Hausdorff dimension dim(X) can be characterized by:

(1) dim(X) = lim inf
n

K(X � n)
n

By Athreya, Hitchcock, Lutz and Mayordomo [1] the effective packing dimension
Dim(X) can be characterized by:

(2) Dim(X) = lim sup
n

K(X � n)
n

Let a be a Solovay degree. Recall that Solovay reducibility implies K -reducibility.
For α, β ∈ a we have α ≡K β and hence dim(α) = dim(β). So we may well-define
dim(a) = dim(α) for some real α ∈ a. A survey of effective Hausdorff dimension is
given in Mayordomo [11].

Theorem 4.1 Let α be a left-r.e. real such that C(α � n) ≤ n− g(n) for all n, where
g is a computable function such that

∑
n 2−g(n) is finite and a computable real. There

exist left-r.e. reals β, γ such that α = β + γ , dim(β) = dim(γ) = 0 and both β, γ are
not Borel normal and disjoint from infinite computable sets.

Notice that dim(α) can be 1 in which case α is more random than β and γ .

Proof Let 〈αs〉 be an increasing computable sequence of dyadic rationals converging
to α . We impose additional properties to 〈αs〉. For each k ∈ N, we can compute s
such that Cs(αs � n) < n− g(n) for all n ≤ k . Since αs is a dyadic rational, αs · 2j is
a natural number for some j. By taking a subsequence of such s and considering an
increasing computable function h that maps k to j, we can assume that αs · 2h(s) is a
natural number and C(αs � n) < n− g(n) for all s and all n ≤ h(s).

Let an be the number of s such that the binary representation of αs+1 − αs has a bit 1
at position n. The numbers {an} are uniformly computably approximable from below
and

α =
∑

n

an · 2−n.

Notice that an ≤ 2n−g(n) for each n. For s such that h(s) < n, αs−αs−1 does not have
a bit 1 at position n. For s such that h(s) ≥ n, we have C(αs � n) < n− g(n) and there
are at most 2n−g(n) many different strings αs � n.
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Now we split the natural numbers into intervals I0, I1, . . . such that p(max(In)) >
(min(In))2 for every n where p : N → N is a computable function such that∑

m≥n 2−g(m) ≤ 2−p(n) . For these intervals, the following inequalities hold:∑
m>max(In)

am · 2−m ≤
∑

m>max(In)

2−g(m) ≤ 2−p(max(In)) ≤ 2−(min(In))2

We define left-r.e. reals β and γ by

β =
∑

m

{am · 2−m : ∃n(m ∈ I2n)}

γ =
∑

m

{am · 2−m : ∃n(m ∈ I2n+1)}.and

For β , the bits at the positions from min(In) to (min(In))2 are 0 whenever n is odd.
This is because, for every n, the terms am · 2−m with m < min(In) affect only digits
with positions below min(In) and the terms am · 2−m with m > max(In) only contribute
to a number bounded by 2−p(max(In)) which has non-zero digits only at positions larger
than (min(In))2 . By a similar reason, for γ , the bits at the positions from min(In) to
(min(In))2 are 0 whenever n is even.

This fact implies dim(β) = dim(γ) = 0. To compute (min(In))2 bits of β for odd n,
we only need the information of min(In) bits of β and of n. Thus:

K(β � (min(In))2)
(min(In))2 ≤ K(β � min(In)) + K(n) + O(1)

(min(In))2 → 0

Furthermore, β and γ are not Borel normal, as the limit superior of the frequencies of
subwords of the form 0k goes to 1 for each k . Finally, β is disjoint from the infinite
computable set {min(I2n+1) : n ∈ N}, and γ from {min(I2n) : n ∈ N}.

5 Filters and Ideals related to effective dimension

In this final section, we study the relationship between effective Hausdorff dimension
and Solovay degrees. Recall that a nonempty subset F of a partially ordered set (P,≤)
is a filter if

(1) for every x ∈ F , x ≤ y implies y ∈ F , and

(2) for every x, y ∈ F , there exists z ∈ F such that z ≤ x and z ≤ y.
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A filter is called principal if F = {x : x ≥ y} for some y ∈ P.

The ML-random left-r.e. reals are Solovay complete, and therefore induce the trivial
filter consisting of the largest element. To treat filters related to dimension, we review
the following.

Theorem 5.1 For each rational r ∈ (0, 1), the set of Solovay degrees a such that
dim(a) > r is a filter in the Solovay degrees.

For a proof, we use a generalization of Chaitin’s Omega. Let s ∈ (0, 1]. Tadaki [16,
Theorems 3.1 and 3.2] defined

Ωs =
∑

U(σ)↓
2−
|σ|

s

and showed that s = dim(Ωs) = Dim(Ωs). The former equality was independently
shown by Mayordomo [10, Corollary 3.3].

Lemma 5.2 Let r ∈ (0, 1) be a real. Suppose α, β are left-r.e. reals such that
dim(α) > r and dim(β) > r . There is a left-r.e. real γ such that γ ≤S α , γ ≤S β and
dim(γ) > r .

Notice that r need not be a rational.

Proof Let p, q be rationals such that r < p < q and q < dim(α), dim(β). Then, Ωp

is a left-r.e. real and dim(Ωp) > r . Furthermore, by Tadaki’s results and (1,2) we have
Ωp �K α , and hence Ωp <S α by Proposition 2.3. Similarly, Ωp <S β .

Theorem 5.1 is now immediate from the lemma.

Question 5.3 Let r ∈ (0, 1] be a real. If α, β are left-r.e. reals such that dim(α) ≥ r
and dim(β) ≥ r , does there exist γ ≤S α, β with dim(γ) ≥ r?

Equivalent, is {a : dim(a) ≥ r} a filter? We give a partial answer to it. By the following
result it is not a principal filter.

Proposition 5.4 Let α be a left-r.e. real such that dim(α) = r > 0. There exists a
left-r.e. real β such that dim(β) = r and β <S α .

Notice that r need not be computable. We do not use r in the construction of β .
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Proof Let f (n) be the biggest natural number less than n +
√

n. Note that f : N→ N
is an increasing computable function. Given a left-r.e. α , let β = {f (n) : n ∈ α}.
Notice that β is a left-r.e. real with the approximation βs = {f (n) : n ∈ αs} where αs

is an increasing computable approximation of α .

Now the following equalities hold:

r = lim inf
C(α � n)

n
= lim inf

C(β � f (n))
n

= lim inf
C(β � f (n))

f (n)
· f (n)

n
= lim inf

C(β � n)
n

To describe β � f (n) one only needs to describe the bits in the positions f (k) for k < n.
Since f (n + 1)− f (n) ≤ 2 for every n, C(β � n) = C(β � f (k)) + O(1) for some k .

Clearly β ≤S α . Assume by way of contradiction that the converse also holds. Then
there are constants c, c′ ∈ N such that

C(α � f (n)) ≤ C(β � f (n)) + c′ ≤ C(α � n) + c.

Let k ∈ N. There exists a0 ∈ N such that f (n)− n ≥ k for all n ≥ a0 . Inductively, we
define an+1 = f (an). Then, an ≥ a0 + kn. In contrast:

C(α � an) ≤ C(α � an−1) + c ≤ C(α � a0) + cn

Hence:
lim inf

C(α � an)
an

≤ lim inf
C(α � a0) + cn

a0 + kn
≤ c

k
Since k is arbitrary, we have dim(α) = 0, which is a contradiction.

Next we consider partial randomness.

Definition 5.5 (Tadaki [16]; see also [5, Definition 13.5.1]) A test for weak s-ML ran-
domness is a sequence of uniformly r.e. sets of strings 〈Vk〉 such that

∑
σ∈Vk

2−s|σ| ≤
2−k . A set X ∈ 2ω is weakly s-ML-random if X 6∈

⋂
kJVkK for all tests for weak s-ML

randomness.

The strings can be replaced with open intervals with dyadic rational endpoints [5, after
Definition 13.5.8].

Tadaki [16] showed that X is weakly s-ML-random if and only if K(X � n) > sn−O(1).
Hence, for every weakly s-ML-random real X , we have dim(X) ≥ s. It is known that
the converse fails. This also follows from the construction of Proposition 5.4.

Further, for left-r.e. reals, being weakly s-ML-random is upward closed under ≤S .

Journal of Logic & Analysis 10:3 (2018)
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Theorem 5.6 Let s ∈ (0, 1]∩Q. The set of left-r.e. weakly-s-random Solovay degrees
is a principal filter in Solovay degrees with the degree of Ωs as the bottom element.

Here, we consider only left-r.e. reals, so we restrict s to be a rational.

Proof We follow the argument of Kučera-Slaman theorem [9]. Let α be a left-r.e.
weakly s-random real. The goal is to show Ωs ≤S α .

We construct a test for weak s-ML-randomness 〈Uk〉k∈N . At stage t act as follows. If
αt ∈ Uk[t], then do nothing. Otherwise let t′ be the last stage at which we put anything
into Uk (or t = 0 if there is no such stage), and put the intervals (αt, αt +2−

k
s (Ωs

t−Ωs
t′))

into Uk .

Let t0 = 0, t1, · · · be the stages at which we put numbers into Uk . The total weight is
bounded by: ∑

i

(2−
k
s (Ωs

ti+1
− Ωs

ti))
s ≤

∑
U(σ)↓

(2−
k
s )s(2−

|σ|
s )s ≤ 2−k

Thus, 〈Uk〉 is a test for weak s-ML-randomness.

Since α is weakly s-random, there exists a constant k such that α 6∈ Uk . Then

αti+1 − αti > 2−k/s(Ωs
ti − Ωs

ti−1
)

for each i > 0, so Ωs ≤S α .

Now we turn to ideals, the dual notion of filters. A nonempty subset I of a partially
ordered set (P,≤) is an ideal if

(1) for every x ∈ I , y ≤ x implies x ∈ I , and

(2) for every x, y ∈ I , there exists z ∈ I such that x ≤ z and y ≤ z.

Theorem 2.5 says that the non-ML-random Solovay degrees form an ideal. The follow-
ing is an easy observation.

Proposition 5.7 For each r ∈ [0, 1], the set of left-r.e. degrees a such that Dim(a) < r
is an ideal of left-r.e. Solovay degrees. We can replace Dim(a) < r by Dim(a) ≤ r .

Proof Let α, β be left-r.e. reals such that Dim(α) < r and Dim(β) < r . Then,
γ = α + β satisfies α ≤S γ and β ≤S γ . One can easily check that K(γ � n) =+

Journal of Logic & Analysis 10:3 (2018)



12 K. Miyabe, A. Nies and F. Stephan

max(K(α � n),K(β � n)) (by Downey, Hirschfeldt, Nies and Stephan [8, Theorem 7.4]).
Hence:

Dim(γ) = lim sup
K(γ � n)

n
≤ lim sup

max(K(α � n),K(β � n))
n

< r

The proof in the case that Dim(a) ≤ r is almost the same.

The set of left-r.e. K -trivial degrees is an ideal in the Solovay degrees because the sum
of two K -trivial reals is again K -trivial [8, Theorem 7.2].
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