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Abstract: Hölder–Brascamp–Lieb inequalities provide upper bounds for a class
of multilinear expressions, in terms of Lp norms of the functions involved. They
have been extensively studied for functions defined on Euclidean spaces. Bennett–
Carbery–Christ–Tao have initiated the study of these inequalities for discrete
Abelian groups and, in terms of suitable data, have characterized the set of all tuples
of exponents for which such an inequality holds for specified data, as the convex
polyhedron defined by a particular finite set of affine inequalities.

In this paper we advance the theory of such inequalities for torsion-free discrete
Abelian groups in three respects. The optimal constant in any such inequality is
shown to equal 1 whenever it is finite. An algorithm that computes the admissible
polyhedron of exponents is developed. It is shown that nonetheless, existence of
an algorithm that computes the full list of inequalities in the Bennett–Carbery–
Christ–Tao description of the admissible polyhedron for all data, is equivalent to an
affirmative solution of Hilbert’s Tenth Problem over the rationals. That problem
remains open.

2020 Mathematics Subject Classification 68W40, 26D15 (primary)

Keywords: Holder–Brascamp–Lieb inequalities, communication cost, parallel
computation, Hilbert’s Tenth Problem

1 Main results

By a Hölder–Brascamp–Lieb inequality is typically meant an inequality of the form

(1–1)
∫
Rd

m∏
j=1

fj(Lj(x)) dm(x) ≤ C
m∏

j=1

∥ fj∥Lpj (Rdj )
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where Lj : Rd → Rdj are surjective linear mappings, the functions fj are Lebesgue
measurable and nonnegative, m denotes Lebesgue measure on Rd , the exponents pj

belong to the natural range [1,∞], and C is some finite constant which is independent
of the functions fj but may depend on the dimensions d, dj , the exponents pj , and the
mappings Lj . Fundamental examples include Hölder’s inequality, Young’s convolution
inequality, and the Loomis–Whitney inequality. A substantial literature concerning this
class of inequalities has developed.

In this paper we are concerned with analogous inequalities in which Rd , Rdj are replaced
by discrete Abelian groups G, Gj respectively, where G is torsion-free. Lebesgue
measure is replaced by counting measure. This situation was studied, without the
restriction that G be torsion-free, in Bennett, Carbery, Christ and Tao [3].

We have found these inequalities for G = Zd to be relevant to the analysis of lower
bounds for communication in a class of algorithms that arise, or may potentially arise,
in computer science. The present paper, motivated by this connection, serves to develop
the underlying analytic theory. The connection and its applications will be explored in
a companion paper (Christ, Demmel, Knight, Scanlon and Yelick [7]).

Definition 1.1 An Abelian group HBL datum G is a 3–tuple

G = (G, (Gj), (ϕj)) = (G, (G1, . . . ,Gm), (ϕ1, . . . , ϕm))

where G and each Gj are finitely generated Abelian groups, G is torsion-free, and each
ϕj : G → Gj is a group homomorphism.

When this notation is employed, it is always implicitly assumed that j ∈ {1, 2, . . . ,m}.
By a Hölder–Brascamp–Lieb inequality associated to an Abelian group HBL datum,
we mean one of the form

(1–2)
∑
x∈G

m∏
j=1

fj(ϕj(x)) ≤ C
m∏

j=1

∥ fj∥ℓ1/sj for all functions 0 ≤ fj ∈ ℓ1/sj(Gj)

where each s = (s1, . . . , sm) ∈ [0, 1]m , and where C <∞ may depend on (G, (Gj), (ϕj))
and on s, but is independent of the functions fj . The ℓp norm is ∥ f∥ℓp(G) =

(
∑

x∈G |f (x)|p)1/p for p < ∞, while ∥ f∥ℓ∞(G) = supx∈G |f (x)|. We will often write
∥ · ∥p as shorthand for ∥ · ∥ℓp .

A certain convex polytope P(G, (Gj), (ϕj)) ⊆ [0, 1]m plays a central role in the theory.

Definition 1.2 For any Abelian group HBL datum G = (G, (Gj), (ϕj)), P(G) =

P(G, (Gj), (ϕj)) denotes the set of all s ∈ [0, 1]m that satisfy

(1–3) rank(H) ≤
m∑

j=1

sj rank(ϕj(H)) for every subgroup H ≤ G.

Journal of Logic & Analysis 16:4 (2024)



On Multilinear Inequalities of Hölder–Brascamp–Lieb Type 3

P(G) = P(G, (Gj), (ϕj)) is the set of all s ∈ Rm specified by the inequalities 0 ≤ sj ≤ 1
for all j together with all inequalities

∑m
j=1 sjrj ≥ r , where (r, r1, . . . , rm) ranges over all

elements of {1, 2, . . . , rank(G)}×
∏m

j=1{0, 1, . . . , rank(ϕj(G))} for which there exists a
finitely generated subgroup H ≤ G that satisfies rank(H) = r and rank(ϕj(H)) = rj for
all j. Although infinitely many candidate subgroups H must potentially be considered
in any calculation of P(G), there exists a collection of fewer than (rank(G) + 1)m+1

tuples (r, r1, . . . , rm) that suffices to generate all of the inequalities defining P(G).
Thus P is a convex polytope with finitely many extreme points. It is equal to the convex
hull of this finite set.

The first of our three main results states that the optimal constant C in such an inequality
equals 1.

Theorem 1.3 For any Abelian group HBL datum G = (G, (Gj), (ϕj)) and any s ∈
P(G),

(1–4)
∑
x∈G

m∏
j=1

fj(ϕj(x)) ≤
m∏

j=1

∥ fj∥1/sj for all functions 0 ≤ fj ∈ ℓ1/sj(Gj).

In combination with results previously known, this implies a more comprehensive
statement.

Theorem 1.4 The following conditions are mutually equivalent, for any Abelian group
HBL datum G = (G, (Gj), (ϕj)) and any s ∈ [0, 1]m .

(1) s ∈ P(G).
(2) There exists a constant C <∞ for which the Hölder–Brascamp–Lieb inequality

(1–2) holds.
(3) There exists A <∞ such that

(1–5) |E| ≤ A
m∏

j=1

|ϕj(E)|sj for all nonempty finite sets E ⊆ G.

(4) The Hölder–Brascamp–Lieb inequality (1–2) holds with C = 1.
(5) Inequality (1–5) holds with A = 1.

Indeed, the first three of these conditions are proved to be equivalent in [3], in the
more general setting where G is an arbitrary finitely generated Abelian group, possibly
with torsion. In combination with this equivalence, Theorem 1.3 implies the mutual
equivalence of all five conditions when G is torsion-free.
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If G has torsion then the optimal constant is no longer equal to 1. Its value is determined
for all finite Abelian group HBL data in Christ [5]. In combination with Theorem 1.3,
this allows determination of the optimal constant for all finitely generated Abelian group
HBL data.

That (1–4) cannot hold for any C < 1 may be seen by fixing any point x0 ∈ G and
defining fj to be the indicator function of the singleton set {ϕj(x0)}.

Our second main theorem establishes an algorithm for the computation of P(G). To
have such an algorithm is desirable for applications [7] to computer science. While
P(G) is defined in terms of a finite list of inequalities, its definition refers to each of the
subgroups of G in order to specify this list. Therefore the definition does not directly
provide an effective way to calculate P(G), unless G has rank 0 or 1.

Theorem 1.5 There exists an algorithm that takes as input any Abelian group HBL
datum G = (G, (Gj), (ϕj)) and returns as output both a list of finitely many linear
inequalities over Z that jointly specify the associated polytope P(G), and a list of all
extreme points of P(G).

This algorithm is specified, and proved to be correct, in §3.

Garg, Gurvits, Oliveira and Wigderson [8] have devised a quite different algorithm for
determining optimal constants for Hölder–Brascamp–Lieb inequalities over R. In the
discrete torsion-free setting of this paper, the optimal constant is equal to 1 whenever it
is finite, and as the discussion of the connection with Hilbert’s Tenth Problem below
makes clear, the question of when this constant is finite has a different character in the
discrete setting than it does over R.

The polytope P(G) is specified in Definition 1.2 by finitely many inequalities, all of
which lie in a finite set that can be read off directly from the datum; for any subgroup
H ≤ G, (r, r1, . . . , rm) = (rank(H), rank(ϕ1(H)), . . . , rank(ϕm(H))) is an element of
{0, 1, . . . , rank(G)}m+1 . But only some tuples (r, r1, . . . , rm) ∈ {0, 1, . . . , rank(G)}m+1

are actually realized in this way by some subgroup. An algorithm that determines for
each (r, r1, . . . , rm) whether there exists a subgroup H ≤ G satisfying rank(H) = r
and rank(ϕj(H)) = rj for each j ∈ {1, 2, . . . ,m}, would accomplish the first task of the
algorithm of Theorem 1.5. The algorithm of Theorem 1.5 does not do this. Instead, it
produces a finite sublist of certain (H, r, r1, . . . , rm) satisfying these conditions, along
with a proof that the polytope specified by all the inequalities (1–3) specified by this
sublist coincides with P . Any inequalities (1–3) missing from the computed sublist are
guaranteed to be redundant for the definition of P(G).

Journal of Logic & Analysis 16:4 (2024)
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We have not succeeded in devising an algorithm that computes the entire list of
constraints (1–3) in the definition of P(G). Our third main theorem asserts that the
existence of such an algorithm is equivalent to an affirmative answer to a longstanding
open question, Hilbert’s Tenth Problem over the rationals.

Theorem 1.6 There exists an effective algorithm for computing the set of constraints
(1–3) defining P(G) for any arbitrary Abelian group HBL datum G, if and only if
there exists an effective algorithm to decide whether any given system of polynomial
equations with rational coefficients has a rational solution.

A simply computable alternative description of P(G) is given by Carlen, Lieb and Loss
[4] for the case in which each target group Gj has rank equal to one.1 Theorem 1.6
makes it clear that the theory is more complex in the general situation of arbitrary rank.

In a subsequent paper (Christ, Demmel and Knight [6]), the results obtained here will
be refined. Consider any Abelian group HBL datum G = (G, (Gj), (ϕj)). Define L(G)
to be the smallest collection of subgroups of G that contains ker(ϕj) for all indices j
and is closed with respect to intersections and formation of sums. Define the polytope
P∗ = P∗(G) to be the set of all s ∈ [0, 1]m that satisfy (1–3) for every subgroup H ∈ L.
Then P∗(G) = P(G). Moreover, whereas the algorithm promised by Theorem 1.5 and
specified in its proof below requires searching a list of all subgroups of G until halting,
it suffices to search only a list of subspaces belonging to L. These can be generated
iteratively from the subspaces ker(ϕj) by repeated formation of intersections and sums.

2 Upper bounds

In this section we prove Theorem 1.3. This entails the development of some auxiliary
material. We have found it more convenient to work with vector spaces G ⊗Q than
with general torsion-free Abelian groups. Therefore we formulate a version of the HBL
inequalities in terms of vector spaces, and reduce Theorem 1.3 to its analogue in the
vector space context.

Notation 2.1 Let X be any set. For p ∈ [1,∞), ℓp(X) denotes the space of all p–power
summable functions f : X → C, equipped with the norm:

∥ f∥p =

(∑
x∈X

|f (x)|p
)1/p

1[4] is concerned with continuum inequalities (1–1), but the description of P(G) obtained
carries over to the Abelian group context.

Journal of Logic & Analysis 16:4 (2024)
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ℓ∞(X) is the space of all bounded functions f : X → C, equipped with the norm
∥ f∥∞ = supx∈X |f (x)|.

These definitions apply even when X is uncountable: If p ∈ [1,∞), any function in
ℓp(X) vanishes at all but countably many points in X ; and the ℓ∞–norm is still the
supremum of |f |. In the discussion below, X will always be either a finitely generated
Abelian group, or a finite-dimensional vector space over a field F. If sj = 0 then 1/sj

is interpreted as ∞.

2.1 Preliminaries

The following result demonstrates there is no loss of generality in restricting attention
to exponent tuples s ∈ [0, 1]m , rather than s ∈ [0,∞)m , in Theorem 1.3. Its proof is
simple, but is deferred to §2.4, where it is discussed in conjunction with a parallel result
in which Abelian groups are replaced by vector spaces.

Proposition 2.2 Let s ∈ [0,∞)m . Define t ∈ [0, 1]m by tj = min(sj, 1) for each index
j. If (1–3) holds for s then it holds for t . Likewise, if (1–4) holds for s then (1–4)
holds for t .

If X is a measure space equipped with counting measure then whenever 0 < α ≤ β ≤ ∞,
ℓα(X) ⊆ ℓβ(X), and the inclusion mapping is a contraction. Therefore when s, t are
related as above, inequality (1–4) for the exponent tuple t subsumes the inequality for s.

Proof of necessity of the hypothesis (1–3) for validity of the inequality (1–4) This
necessity is proved in [3, Theorem 2.4]; the simple proof is included here for the sake of
completeness. Indeed, consider any subgroup H ≤ G. Let r = rank(H). By definition
of rank, there exists a set {ei}r

i=1 of elements of H such that for any coefficients
mi, ni ∈ Z,

∑r
i=1 miei =

∑r
i=1 niei only if mi = ni for all i. For any positive integer N

define EN to be the set of all elements of the form
∑r

i=1 niei , where each ni ranges
freely over {1, 2, . . . ,N}. Then |EN | = Nr .

On the other hand, for j ∈ {1, . . . ,m},

(2–1) |ϕj(EN)| ≤ AjNrank(ϕj(H))

where Aj is a finite constant which depends on ϕj , on the structure of Hj , and on the
choice of {ei}, but not on N . Indeed, it follows from the definition of rank that for
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each j it is possible to permute the indices i so that for each i > rank(ϕj(H)) there exist
integers ki and κi,l such that:

kiϕj(ei) =
rank(ϕj(H))∑

l=1

κi,lϕj(el)

The upper bound (2–1) follows from these relations.

Consider any large positive integer N . Define fj to be the indicator function of ϕj(EN).
Then

∏
j fj ◦ ϕj ≡ 1 on EN . Therefore inequality (1–4), applied to these functions fj ,

asserts that

Nrank(H) ≤
m∏

j=1

Asj
j Nsj rank(ϕj(H)) = AN

∑m
j=1 sj rank(ϕj(H))

where A < ∞ is independent of N . By letting N tend to infinity, we conclude that
rank(H) ≤

∑m
j=1 sj rank(ϕj(H)), as was to be shown.

We show that Theorem 1.3 is a consequence of the special case in which all of the
groups Gj are torsion-free.

Reduction of Theorem 1.3 to the case of torsion-free codomains Let G= (G, (Gj),
(ϕj)) be an Abelian group HBL datum and let s ∈ P(G). According to the structure
theorem of finitely generated Abelian groups, each Gj is isomorphic to G̃j ⊕Tj where Tj

is a finite group and G̃j is torsion-free. Here ⊕ denotes the direct sum of Abelian groups;
G′ ⊕ G′′ is the Cartesian product G′ × G′′ equipped with the natural componentwise
group law. Define πj : G̃j ⊕ Tj → G̃j to be the natural projection; thus πj(x, t) = x for
(x, t) ∈ G̃j × Tj . Define ϕ̃j = πj ◦ ϕj : G → G̃j .

If K is a subgroup of Gj , then rank(πj(K)) = rank(K) since the kernel Tj of πj is a finite
group. Therefore for any subgroup H ≤ G, rank(ϕ̃j(H)) = rank(ϕj(H)). Therefore
whenever (G, (Gj), (ϕj)) and s together satisfy the hypothesis (1–3), so do (G, (G̃j), (ϕ̃j))
and s.

Under this hypothesis, consider any m–tuple f = (fj) of nonnegative functions with
fj ∈ ℓ1/sj(Gj), and for each j, define f̃j ∈ ℓ1/sj(G̃j) by:

f̃j(y) = max
t∈Tj

fj(y, t), for y ∈ G̃j

For any x ∈ G, fj(ϕj(x)) ≤ f̃j(ϕ̃j(x)). Consequently
∏m

j=1 fj(ϕj(x)) ≤
∏m

j=1 f̃j(ϕ̃j(x)).

Journal of Logic & Analysis 16:4 (2024)
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We are assuming validity of Theorem 1.3 in the torsion-free case. Its conclusion asserts
that: ∑

x∈G

m∏
j=1

f̃j(ϕ̃j(x)) ≤
m∏

j=1

∥ f̃j∥1/sj

For each j, ∥ f̃j∥1/sj ≤ ∥ fj∥1/sj . This is obvious when sj = 0. If sj ̸= 0 then:

∥ f̃j∥
1/sj

1/sj
=
∑
y∈G̃j

f̃j(y)1/sj =
∑
y∈G̃j

max
t∈Tj

fj(y, t)1/sj ≤
∑
y∈G̃j

∑
t∈Tj

fj(y, t)1/sj = ∥ fj∥
1/sj

1/sj

Combining these inequalities gives the HBL inequality (1–4).

2.2 Vector space HBL inequalities

In this subsection we formulate HBL inequalities for vector spaces over arbitrary
fields. This vector space framework is more convenient for our method of proof, which
involves quotients; these are awkward in the Abelian group context since quotients of
torsion-free groups need not be torsion-free, while quotients of vector spaces suffer
no such calamity. We continue to endow all measure spaces with counting measure,
even vector spaces over R or C. Theorem 2.5, below, is the analogue of Theorem 1.3
for vector spaces. We will show how Theorem 2.5 for F = Q implies Theorem 1.3,
and then prove Theorem 2.5. The case of fields other than Q is not the real thrust of
our investigation, but since it is treated by our analysis with no extra effort we have
formulated the results for general fields.

All vector spaces considered in this paper are assumed to be finite-dimensional.

Notation 2.3 dim(V) will denote the dimension of a vector space V over a field F.
The notation W ≤ V indicates that W is a subspace of V , and W < V indicates that W
is a proper subspace.

Definition 2.4 A vector space HBL datum is a 3–tuple

V = (V, (Vj), (ϕj)) = (V, (V1, . . . ,Vm), (ϕ1, . . . , ϕm))

where V and Vj are finite-dimensional vector spaces over a field F and ϕj : V → Vj is
an F–linear map.

It will always be understood that j ∈ {1, 2, . . . ,m}, although the quantity m will not
usually be indicated.

Journal of Logic & Analysis 16:4 (2024)
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To any Abelian group HBL datum (G, (Gj), (ϕj)) with all Gj (as well as G) torsion-free
we associate a vector space HBL datum, as follows. Firstly, Gj is isomorphic to
Zdj where dj = rank(Gj). Likewise G is isomorphic to Zd where d = rank(G).
Define homomorphisms ϕ̃j : Zd → Zdj by composing ϕj with these isomorphisms.
(G, (Gj), (ϕj)) is thereby identified with (Zd, (Zdj), (ϕ̃j)). Defining scalar multiplication
in the natural way (ie, treating Zd and Zdj as Z–modules), represent each Z–linear map
ϕ̃j by a matrix with integer entries. Secondly, let F = Q. Regard Zd and Zdj as subsets
of Qd and of Qdj , respectively, via the inclusion of Z into Q. Define the vector space
HBL datum (V, (Vj), (ψj)) by setting V = Qd , Vj = Qdj , and letting ψj : Qd → Qdj be
the Q–linear map represented by the same integer matrix as ϕ̃j .

This construction requires certain arbitrary choices, so (V, (Vj), (ψj)) is properly referred
to as an associated vector space HBL datum.

Theorem 2.5 Let (V, (Vj), (ϕj)) be a vector space HBL datum, and let s ∈ [0, 1]m . If

(2–2) dim(W) ≤
m∑

j=1

sj dim(ϕj(W)) for all subspaces W ≤ V

then

(2–3)
∑
x∈V

m∏
j=1

fj(ϕj(x)) ≤
m∏

j=1

∥ fj∥1/sj for all functions 0 ≤ fj ∈ ℓ1/sj(Vj).

In particular,

(2–4) |E| ≤
m∏

j=1

|ϕj(E)|sj for all nonempty finite sets E ⊆ V.

Conversely, if (2–4) holds for s ∈ [0, 1]m , and if F = Q or if F is finite, then s satisfies
(2–2).

The conclusions (1–4) and (2–3) remain valid for functions fj without the requirement
that the ℓ1/sj norms are finite, under the convention that the product 0 · ∞ is interpreted
as zero whenever it arises. For then if any fj has infinite norm, then either the right-hand
side is infinite, or both sides are zero; in either case, the inequality holds.

Reduction of Theorem 1.3 in the case of torsion-free codomains toTheorem 2.5
Let G = (G, (Gj), (ϕj)) be an Abelian group HBL datum, and let s ∈ P(G); further-
more suppose that each group Gj is torsion-free. Let V = (V, (Vj), (ψj)) be a vector
space HBL datum associated to G by the construction specified above. We claim that

Journal of Logic & Analysis 16:4 (2024)



10 Michael Christ, James Demmel, Nicholas Knight, Thomas Scanlon and Katherine Yelick

s ∈ P(V). Indeed, given any subspace W ≤ V , there exists a basis S for W over Q
which consists of elements of Zd . Define H ≤ Zd to be the subgroup generated by S
(over Z). Then rank(H) = dim(W). Moreover, ψj(W) equals the span over Q of ϕ̃j(H),
and dim(ψj(W)) = rank(ϕ̃j(H)). The hypothesis rank(H) ≤

∑m
j=1 sj rank(ϕ̃j(H)) is

therefore equivalently written as dim(W) ≤
∑m

j=1 sj dim(ψj(W)), which is (2–2) for W .
Since this holds for every subspace W , s ∈ P(V).

Consider the m–tuple f = ( fj) corresponding to any inequality in (1–4) for (Zd , (Zdj),
(ϕ̃j)) and s, and for each j define Fj by Fj(y) = fj(y) if y ∈ Zdj ⊆ Qdj , and Fj(y) = 0
otherwise. By Theorem 2.5:∑

x∈Zd

m∏
j=1

fj(ϕ̃j(x)) =
∑
x∈Qd

m∏
j=1

Fj(ψj(x)) ≤
m∏

j=1

∥Fj∥1/sj =
m∏

j=1

∥ fj∥1/sj

Thus the conclusion (1–4) of Theorem 1.3 is satisfied.

Conversely, it is possible to derive Theorem 2.5 for F = Q from the special case of
Theorem 1.3 in which G = Zd and Gj = Zdj by similar reasoning, using multiplication
by large integers to clear denominators.

This reasoning in this reduction establishes the following lemma.

Lemma 2.6 Let (G, (Gj), (ϕj)) be an Abelian group HBL datum with torsion-free
codomains Gj , let (Zd, (Zdj), (ϕ̃j)) be the associated datum specified above, and let
(Qd, (Qdj), (ψj)) be an associated vector space HBL datum. Then:

P(G, (Gj), (ϕj)) = P(Zd, (Zdj), (ϕ̃j)) = P(Qd, (Qdj), (ψj))

2.3 On groups G with torsion

In this subsection we temporarily relax the requirement in the definition of an Abelian
group HBL datum that the finitely generated Abelian group G be torsion-free. We call
such a more general (G, (Gj), (ϕj)) an HBL datum with torsion.

It was shown in [3, Theorem 2.4] that for an HBL datum with torsion, the rank conditions
(1–3) are necessary and sufficient for the existence of some finite constant C such that
(1–2) holds. A consequence of Theorem 1.3 is a concrete upper bound for the constant
C in these inequalities. The torsion subgroup T(G) of G is the (finite) set of all elements
x ∈ G for which there exists 0 ̸= n ∈ Z such that nx = 0.

Journal of Logic & Analysis 16:4 (2024)
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Theorem 2.7 Consider (G, (Gj), (ϕj)), an HBL datum with torsion, and s ∈ [0, 1]m . If
(1–3) holds, then (1–2) holds with C = |T(G)|. In particular,

(2–5) |E| ≤ |T(G)| ·
m∏

j=1

|ϕj(E)|sj for all nonempty finite sets E ⊆ G.

Conversely, if (2–5) holds for s ∈ [0, 1]m , then s satisfies (1–3).

Proof To prove (1–2), express G isomorphically as G̃ ⊕ T(G) where G̃ ≤ G is
torsion-free. Thus arbitrary elements x ∈ G are expressed as x = (x̃, t) with x̃ ∈ G̃ and
t ∈ T(G). Then (G̃, (Gj), (ϕj|G̃)) is an Abelian group HBL datum (with G̃ torsion-free)
to which Theorem 1.3 can be applied. Consider any t ∈ T(G). Define gj : Gj → [0,∞)
by gj(xj) = fj(xj + ϕj(0, t)). Then fj(ϕj(y, t)) = fj(ϕj(y, 0) + ϕj(0, t)) = gj(ϕj(y, 0)), so:∑

y∈G̃

m∏
j=1

fj(ϕj(y, t)) =
∑
y∈G̃

m∏
j=1

gj(ϕj(y, 0)) ≤
m∏

j=1

∥gj|ϕj(G̃)∥1/sj ≤
m∏

j=1

∥ fj∥1/sj

The first inequality is an application of Theorem 1.3. Summation with respect to
t ∈ T(G) gives the required bound.

To show necessity, we consider just the inequalities (2–5) corresponding to the subsets
E ⊆ G̃ and follow the proof of the converse of Theorem 1.3, except substituting A|T(G)|
for A.

The factor |T(G)| cannot be improved if the groups Gj are torsion free, or more generally
if T(G) is contained in the intersection of the kernels of all the homomorphisms ϕj ;
this is seen by considering E = T(G). However, it is not optimal, in general. The
optimal bound, for arbitrary finitely generated Abelian groups, is determined in a paper
(Christ [5]) that builds on the present one.

2.4 Polytopes P for vector space HBL data

Definition 2.8 For any vector space HBL datum V = (V, (Vj), (ϕj)), P(V) denotes
the set of all s ∈ [0, 1]m that satisfy (2–2).

Now we prove Proposition 2.2, which asserts that there is no loss of information in
restricting the discussion to exponents sj ≤ 1.
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Proof of Proposition 2.2 Proposition 2.2 was formulated in terms of Abelian group
HBL data and inequalities. Here we show the corresponding result for vector space HBL
data and inequalities, obtaining the version for Abelian groups as a direct consequence.

Suppose that a vector space HBL datum (V, (Vj), (ϕj)) and s ∈ [0,∞)m satisfy (2–2),
and suppose that sk > 1 for some k . Define t ∈ [0,∞)m by tj = sj for j ̸= k , and
tk = 1. We claim that t continues to satisfy (2–2).

Consider any subspace W ≤ V . In order to verify (2–2) for W and t , define
W ′ = W ∩ ker(ϕk). Choose a supplement U for W ′ in W ; that is, W = W ′ + U and
W ′ ∩ U = {0}. Then by (2–2) for s:

dim(W ′) ≤
m∑

j=1

sj dim(ϕj(W ′)) = sk · 0 +
∑
j ̸=k

sj dim(ϕj(W ′)) =
∑
j ̸=k

tj dim(ϕj(W ′))

Since ϕk is injective on U and tk = 1, dim(U) = tk dim(ϕk(U)). Therefore:

dim(W) = dim(U) + dim(W ′)

= tk dim(ϕk(U)) + dim(W ′)

≤ tk dim(ϕk(U)) +
∑
j ̸=k

tj dim(ϕj(W ′))

≤ tk dim(ϕk(W)) +
∑
j̸=k

tj dim(ϕj(W))

=
m∑

j=1

tj dim(ϕj(W))

Given an m–tuple s with multiple components sk > 1, we argue by induction on the
number of such indices k , with the result just proved serving as the induction step.

Our desired conclusion concerning (1–3) follows from Lemma 2.6, by considering the
associated vector space HBL datum (Qd, (Qdj), (ψj)) and noting that the lemma was
established without assuming sj ≤ 1.

Next, we show the result concerning (1–4): If (1–4) holds for some s ∈ [0,∞)m , then it
also holds for t , where tj = min(sj, 1) for all j ∈ {1, 2, . . . ,m}. To prove this, consider
the following less structured situation. Let X,X1, . . . ,Xm be sets and ϕj : X → Xj be
functions for j ∈ {1, . . . ,m}. Let s ∈ [0,∞)m with some sk > 1, and suppose that
|E| ≤

∏m
j=1 |ϕj(E)|sj for any finite nonempty subset E ⊆ X . Consider any such set E .

Define s̄j = sj for j ̸= k , and s̄k = min(sk, 1).

For each y ∈ ϕk(E), let Ey = ϕ−1
k (y) ∩ E , the preimage of y under ϕk|E ; thus

|ϕk(Ey)| = 1. By assumption, |Ey| ≤
∏m

j=1 |ϕj(Ey)|sj . Since |ϕk(Ey)| = 1, it follows
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that:
|Ey| ≤

∏
j ̸=k

|ϕj(Ey)|sj
∏
j ̸=k

|ϕj(Ey)|s̄j ≤
∏
j ̸=k

|ϕj(E)|s̄j

Since E can be written as the union over y ∈ ϕk(E) of the disjoint sets y ∈ ϕk(E)Ey ,
we obtain:

|E| =
∑

y∈ϕk(E)

|Ey| ≤
∑

y∈ϕk(E)

∏
j ̸=k

|ϕj(E)|s̄j = |ϕk(E)| ·
∏
j ̸=k

|ϕj(E)|s̄j =
m∏

j=1

|ϕj(E)|s̄j

Thus if (1–5) holds for s then it holds for s̄. By iterating this reasoning we
may successively replace each sk by min(sk, 1). By applying this reasoning to
(X, (Xj), (ϕj)) := (Zd, (Zdj), (ϕj)), we conclude that (1–5) holds for t . By Theorem 1.4,
(1–5) implies (1–4); the proof of Theorem 1.4 given below is independent of Proposi-
tion 2.2. Therefore the proof of Proposition 2.2 is complete.

Similarly, if the inequality |E| ≤ A
∏

j |ϕj(E)|sj of (1–5) holds for some s ∈ [0,∞)m

and all finite subsets E of G, then it holds with each sj replaced by tj = min(sj, 1),
with the same constant factor A. This is a consequence of the same reasoning as above.
Likewise, the corresponding statement holds for the inequality (2–4) for vector space
HBL data: If |E| ≤ A

∏
j |ϕj(E)|sj for all nonempty finite sets E then the same inequality

holds with each exponent sj replaced by min(sj, 1), with the same constant factor A.

2.5 Interpolation between extreme points of P

To complete the proof of Theorem 2.5, we must show that (2–3) holds for every s ∈ P .
We next prove that if (2–3) holds at each extreme point s of P , then it holds for all s ∈ P .
In Section 2.6, we will show that for any extreme point s of P , the hypothesis (2–2)
can be restated in a special form. Finally, in Section 2.8 we will use this reformulation
to prove (2–3) for extreme points.

Let (Xj,Aj, µj) be measure spaces for j ∈ {1, 2, . . . ,m}, where each µj is a nonnegative
measure on the σ–algebra Aj . Let Sj be the set of all simple functions fj : Xj → C.
Thus Sj is the set of all fj : Xj → C that can be expressed in the form

∑
i ci1Ei where

ci ∈ C, Ei ∈ Aj , µj(Ei) <∞, and the sum extends over finitely many indices i.

Let T :
∏m

j=1 CXj → C be a multilinear map; ie, for any m–tuple f ∈
∏m

j=1 CXj where
fk = c0fk,0 + c1fk,1 for c0, c1 ∈ C and fk,0, fk,1 ∈ CXk ,

T( f ) = c0T(f1, . . . , fk−1, fk,0, fk+1, . . . , fm) + c1T(f1, . . . , fk−1, fk,1, fk+1, . . . , fm).
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One multilinear extension of the Riesz–Thorin theorem states the following (see, eg,
Bennett and Sharpley [1]).

Proposition 2.9 (Multilinear Riesz–Thorin theorem) Suppose that p0 = (pj,0), p1 =

(pj,1) ∈ [1,∞]m . Suppose that there exist A0,A1 ∈ [0,∞) such that

|T( f )| ≤ A0

m∏
j=1

∥ fj∥pj,0 and |T( f )| ≤ A1

m∏
j=1

∥ fj∥pj,1 for all f ∈
m∏

j=1

Sj.

For each θ ∈ (0, 1) define exponents pj,θ by:
1

pj,θ
:=

θ

pj,0
+

1 − θ

pj,1

Then for each θ ∈ (0, 1),

|T( f )| ≤ Aθ
0A1−θ

1

m∏
j=1

∥ fj∥pj,θ for all f ∈
m∏

j=1

Sj.

Here ∥ fj∥p = ∥ fj∥Lp(Xj,Aj,µj) .

In the context of Theorem 2.5 with vector space HBL datum (V, (Vj), (ϕj)), we consider
the multilinear map

T( f ) :=
∑
x∈V

m∏
j=1

fj(ϕj(x))

representing the left-hand side in (2–3).

Lemma 2.10 If (2–3) holds for every extreme point of P , then it holds for every
s ∈ P .

Proof For any f̃ ∈
∏m

j=1 Sj , we define another m–tuple f where for each j, fj = | f̃j| is
a nonnegative simple function. By hypothesis, the inequality in (2–3) corresponding to
f holds at every extreme point s of P , giving:∣∣T( f̃ )

∣∣ ≤∑
x∈V

m∏
j=1

∣∣ f̃j(ϕj(x))
∣∣ =∑

x∈V

m∏
j=1

fj(ϕj(x)) ≤
m∏

j=1

∥ fj∥1/sj =

m∏
j=1

∥ f̃j∥1/sj

As a consequence of Proposition 2.9 (with constants Ai = 1), and the fact that any
s ∈ P is a finite convex combination of the extreme points, this expression holds for
any s ∈ P . For any nonnegative function Fj (eg, in ℓ1/sj(Vj)), there is an increasing
sequence of nonnegative simple functions fj whose (pointwise) limit is Fj . Consider the
m–tuple F = (Fj) corresponding to any inequality in (2–3), and consider a sequence
of m–tuples f which converge to F ; then

∏m
j=1 fj also converges to

∏m
j=1 Fj . So by

the monotone convergence theorem, the summations on both sides of the inequality
converge as well.
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2.6 Critical subspaces and extreme points

Let V = (V, (Vj), (ϕj)) be an arbitrary vector space HBL datum. Let P = P(V)
continue to denote the set of all s ∈ [0, 1]m that satisfy (2–2). The following key
definitions of criticality, subcriticality, and supercriticality appear in Bennett, Carbery,
Christ and Tao [2, 3].

Definition 2.11 Consider any s ∈ [0, 1]m . A subspace W ≤ V satisfying dim(W) =∑m
j=1 sj dim(ϕj(W)) is said to be a critical subspace with respect to s; one satisfying

dim(W) ≤
∑m

j=1 sj dim(ϕj(W)) is said to be subcritical with respect to s; and a subspace
satisfying dim(W) >

∑m
j=1 sj dim(ϕj(W)) is said to be supercritical with respect to s.

W is said to be strictly subcritical with respect to s if W is subcritical but not critical;
dim(W) <

∑m
j=1 sj dim(ϕj(W)).

In this language, the conditions (2–2) assert that every subspace W of V , including {0}
and V itself, is subcritical; equivalently, there are no supercritical subspaces. We may
sometimes omit the phrase “with respect to s”, but these notions are always relative to
some implicitly or explicitly specified tuple s of exponents.

The goal of Section 2.6 is to establish the following:

Proposition 2.12 Let s be an extreme point of P(V). Then some subspace {0} <
W < V is critical with respect to s, or s ∈ {0, 1}m .

These two possibilities are not mutually exclusive.

Lemma 2.13 If s is an extreme point of P(V), and if i is an index for which si /∈ {0, 1},
then dim(ϕi(V)) ̸= 0.

Proof Suppose dim(ϕi(V)) = 0. If t ∈ [0, 1]m satisfies tj = sj for all j ̸= i, then∑m
j=1 tj dim(ϕj(W)) =

∑m
j=1 sj dim(ϕj(W)) for all subspaces W ≤ V , so t ∈ P(V) as

well. If si /∈ {0, 1}, then this contradicts the assumption that s is an extreme point of
P(V).

Lemma 2.14 Let s be an extreme point of P(V). Suppose that no subspace {0} <
W ≤ V is critical with respect to s. Then s ∈ {0, 1}m .

Proof Membership in P(V) is decided by finitely many affine inequalities. The
hypothesis of the lemma means that s satisfies each of these with strict inequality,
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except for the inequality 0 ≤
∑

j sj · 0 that arises from W = {0}. Consequently any
t ∈ [0, 1]m that is sufficiently close to s also belongs to P(V). If si /∈ {0, 1} for some
index i, then any t ∈ [0, 1]m with tj = sj for all j ̸= i and ti sufficiently close to si

belongs to t ∈ P(V). This contradicts the assumption that s is an extreme point.

Lemma 2.15 Let s be an extreme point of P(V). Suppose that no subspace {0} <
W < V is critical with respect to s. Then there exists at most one index i for which
si /∈ {0, 1}.

Proof Suppose to the contrary that there were to exist distinct indices k, l such that
neither of sk, sl belongs to {0, 1}. By Lemma 2.13, both ϕk(V) and ϕl(V) have positive
dimensions. For ε ∈ R define t by tj = sj for all j /∈ {k, l},

tk = sk + ε dim(ϕl(V)) and tl = sl − ε dim(ϕk(V)).

Whenever |ε| is sufficiently small, t ∈ [0, 1]m . Moreover, V remains subcritical
with respect to t . If |ε| is sufficiently small, then every subspace {0} < W <

V remains strictly subcritical with respect to t , because the set of all parameters
(dim(W), dim(ϕ1(W)), . . . , dim(ϕm(W))) which arise, is finite. Thus t ∈ P(V) for all
sufficiently small |ε|. Therefore s is not an extreme point of P(V).

Lemma 2.16 Let s ∈ [0, 1]m be an extreme point of P(V). Suppose that V is critical
with respect to s. Suppose that there exists exactly one index i ∈ {1, 2, . . . ,m} for
which si /∈ {0, 1}. Then V has a subspace that is supercritical with respect to s.

Proof By Lemma 2.13, dim(ϕi(V)) > 0. Let K be the set of all indices k for which
sk = 1. The hypothesis that V is critical means that

dim(V) = si dim(ϕi(V)) +
∑
k∈K

sk dim(ϕk(V)).

Since si > 0 and dim(ϕi(V)) > 0,∑
k∈K

dim(ϕk(V)) =
∑
k∈K

sk dim(ϕk(V)) = dim(V) − si dim(ϕi(V)) < dim(V).

Consider the subspace W ≤ V defined by:

W =
⋂
k∈K

ker(ϕk)

This intersection is interpreted to be W = V if the index set K is empty. W necessarily
has positive dimension. Indeed, W is the kernel of the map ψ : V →

⊕
k∈K ϕk(V),

defined by ψ(x) = (ϕk(x) : k ∈ K), where
⊕

denotes the direct sum of vector spaces.

Journal of Logic & Analysis 16:4 (2024)



On Multilinear Inequalities of Hölder–Brascamp–Lieb Type 17

The image of ψ is a subspace of
⊕

k∈K ϕk(V), a vector space whose dimension∑
k∈K dim(ϕk(V)) is strictly less than dim(V). Therefore ker(ψ) = W has dimension

greater than or equal to dim(V) −
∑

k∈K dim(ϕk(V)) > 0. Since ϕk(W) = {0} for all
k ∈ K :

m∑
j=1

sj dim(ϕj(W)) = si dim(ϕi(W)) +
∑
k∈K

dim(ϕk(W))

= si dim(ϕi(W))

≤ si dim(W)

Since si < 1 and dim(W) > 0, si dim(ϕi(W)) is strictly less than dim(W), whence W
is supercritical.

Proof of Proposition 2.12 Suppose that there exists no critical subspace {0} < W <

V . By Lemma 2.14, either s ∈ {0, 1}m — in which case the proof is complete — or V
is critical. By Lemma 2.15, there can be at most one index i for which si /∈ {0, 1}. By
Lemma 2.16, for critical V , the existence of one single such index i implies the presence
of some supercritical subspace, contradicting the main hypothesis of Proposition 2.12.
Thus again, s ∈ {0, 1}m .

2.7 Factorization of HBL data

Notation 2.17 Suppose V,V ′ are finite-dimensional vector spaces over a field F, and
ϕ : V → V ′ is an F–linear map. For any subspace W ≤ V , ϕ|W : W → ϕ(W) denotes
the restriction of ϕ to W , also a F–linear map. V/W denotes the quotient of V by W ,
a finite-dimensional vector space. Thus x + W = x′ + W if and only if x − x′ ∈ W .
Every subspace of V/W can be written as U/W for some W ≤ U ≤ V .

The quotient space V ′/ϕ(W), and the quotient linear map [ϕ] : V/W ∋ x + W 7→
ϕ(x) + ϕ(W) ∈ V ′/ϕ(W), are likewise defined.

In this quotient situation, it is elementary that for any U/W ≤ V/W , [ϕ](U/W) =
ϕ(U)/ϕ(W).

Definition 2.18 Let (V, (Vj), (ϕj)) be a vector space HBL datum. To any subspace
W ≤ V are associated the two vector space HBL data:

(2–6)

{
VW = (W, (ϕj(W)), (ϕj|W))

VV/W = (V/W, (Vj/ϕj(W)), ([ϕj]))
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Lemma 2.19 Let V = (V, (Vj), (ϕj)) be a vector space HBL datum. For any subspace
W ≤ V ,

(2–7) P(VW) ∩ P(VV/W) ⊆ P(V).

Proof Consider any subspace U ≤ V and any s ∈ P(VW) ∩ P(VV/W). Then:

dim(U) = dim((U + W)/W) + dim(U ∩ W)

≤
m∑

j=1

sj dim([ϕj]((U + W)/W))) +
m∑

j=1

sj dim(ϕj(U ∩ W))

=
m∑

j=1

sj dim(ϕj(U + W)/ϕj(W)) +
m∑

j=1

sj dim(ϕj(U ∩ W))

=

m∑
j=1

sj
(
dim(ϕj(U + W)) − dim(ϕj(W))

)
+

m∑
j=1

sj dim(ϕj(U ∩ W))

=
m∑

j=1

sj
(
dim(ϕj(U) + ϕj(W)) + dim(ϕj(U ∩ W)) − dim(ϕj(W))

)
≤

m∑
j=1

sj
(
dim(ϕj(U) + ϕj(W)) + dim(ϕj(U) ∩ ϕj(W)) − dim(ϕj(W))

)
=

m∑
j=1

sj dim(ϕj(U))

The last inequality is a consequence of the inclusions ϕj(U ∩W) ⊆ ϕj(U)∩ϕj(W). The
last equality uses the relation dim(A) + dim(B) = dim(A + B) + dim(A ∩ B), which
holds for any subspaces A,B of a vector space. Thus U is subcritical with respect to s,
so s ∈ P(V).

Lemma 2.20 Let V = (V, (Vj), (ϕj)) be a vector space HBL datum. Let s ∈ [0, 1]m

and let W ≤ V be a subspace of V . If W is critical with respect to s then

(2–8) s ∈ P(V) ⇐⇒ s ∈ P(VW) ∩ P(VV/W).

Proof With Lemma 2.19 in hand, it remains to show that if s ∈ P(V) then s ∈
P(VW) ∩ P(VV/W). Any subspace U ≤ W is also a subspace of V . U is subcritical
with respect to s when regarded as a subspace of W , if and only if U is subcritical
when regarded as a subspace of V . So s ∈ P(VW).
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Next consider any subspace U/W ≤ V/W . We have W ≤ U ≤ V and dim(U/W) =
dim(U) − dim(W). Moreover,

dim([ϕj](U/W)) = dim(ϕj(U)/ϕj(W)) = dim(ϕj(U)) − dim(ϕj(W)).

Therefore since dim(W) =
∑m

j=1 sj dim(ϕj(W)),

dim(U/W) = dim(U) − dim(W) ≤
m∑

j=1

sj dim(ϕj(U)) −
m∑

j=1

sj dim(ϕj(W))

=

m∑
j=1

sj
(
dim(ϕj(U)) − dim(ϕj(W))

)
=

m∑
j=1

sj dim([ϕj](U/W))

by the subcriticality of U , which holds because s ∈ P(V). Thus any subspace
U/W ≤ V/W is subcritical with respect to s, so s ∈ P(VV/W), as well.

2.8 Conclusion of proof of Theorem 2.5

In order to prove Theorem 2.5 for a vector space HBL datum (V, (Vj), (ϕj)), we argue
by induction on the dimension of the ambient vector space V . If dim(V) = 0 then V
has a single element, and the inequality (2–3) is trivially valid.

To establish the inductive step, consider any extreme point s of P . According to
Proposition 2.12, there are two cases which must be analyzed. We begin with the case
in which there exists a critical subspace {0} < W < V . We assume that Theorem 2.5
holds for all HBL data for which the ambient vector space has strictly smaller dimension
than is the case for the given datum.

Lemma 2.21 Let V = (V, (Vj), (ϕj)) be a vector space HBL datum, and let s ∈ P(V).
Suppose that there exists a subspace {0} < W < V that is critical with respect to s.
Then the inequality (2–3) holds for this s.

Proof Consider the inequality (2–3) for some s ∈ [0, 1]m . We may assume that none
of the exponents sj equals zero. For if sk = 0, then fk(ϕk(x)) ≤ ∥ fk∥1/sk for all x , and
therefore: ∑

x∈V

m∏
j=1

fj(ϕj(x)) ≤ ∥ fk∥1/sk ·
∑
x∈V

∏
j̸=k

fj(ϕj(x))

If ∥ fk∥1/sk = 0, then (2–3) holds with both sides 0. Otherwise we divide by ∥ fk∥1/sk

to conclude that s ∈ P(V) if and only if (sj)j ̸=k belongs to the polytope associated to
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the vector space HBL datum (V, (Vj)j ̸=k, (ϕj)j̸=k). Thus the index k can be eliminated.
This reduction can be repeated to remove all indices that equal zero.

Let Wj := ϕj(W). By Lemma 2.20, s ∈ P(W, (Wj), (ϕj|W)). Therefore by the inductive
hypothesis, one of the inequalities in (2–3) is:

(2–9)
∑
x∈W

m∏
j=1

fj(ϕj(x)) ≤
m∏

j=1

∥fj|Wj
∥1/sj

Define Fj : Vj/Wj → [0,∞) to be the function:

Fj(x + Wj) =
(∑

y∈Wj

fj(y + x)1/sj
)sj

This quantity is a function of the coset x + Wj alone, rather than of x itself, because for
any z ∈ Wj , ∑

y∈Wj

fj(y + (x + z))1/sj =
∑
y∈Wj

fj(y + x)1/sj

by virtue of the substitution y + z 7→ y. Moreover:

(2–10) ∥Fj∥1/sj = ∥ fj∥1/sj

To prove this, choose one element x ∈ Vj for each coset x + Wj ∈ Vj/Wj . Denoting by
X the set of all these representatives,

∥Fj∥
1/sj

1/sj
=
∑
x∈X

∑
y∈Wj

fj(y + x)1/sj =
∑
z∈Vj

fj(z)1/sj

because the map X × Wj ∋ (x, y) 7→ x + y ∈ Vj is a bijection.

The inductive bound (2–9) can be equivalently written in the more general form

(2–11)
∑
x∈W

m∏
j=1

fj(ϕj(x + y)) ≤
m∏

j=1

Fj([ϕj](y + W))

for any y ∈ V , by applying (2–9) to ( f̂j) where f̂j(z) = fj(z + ϕj(y)).

Denote by Y ⊆ V a set of representatives of the cosets y + W ∈ V/W , and identify
V/W with Y . Then∑

x∈V

m∏
j=1

fj(ϕj(x)) =
∑
y∈Y

∑
x∈W

m∏
j=1

fj(ϕj(y + x)) ≤
∑
y∈Y

m∏
j=1

Fj([ϕj](y + W))

by (2–11).
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By (2–10), it suffices to show that

(2–12)
∑
y∈Y

∏
j

Fj([ϕj](y + W)) ≤
∏

j

∥Fj∥1/sj

for all functions 0 ≤ Fj ∈ ℓ1/sj(Vj/Wj).

This is a set of inequalities of exactly the form (2–3), with V replaced by VV/W =

(V/W, (Vj/Wj), ([ϕj])). By Lemma 2.20, s ∈ P(VV/W), and since dim(V/W) <
dim(V), we conclude directly from the inductive hypothesis that (2–12) holds, conclud-
ing the proof of Lemma 2.21.

According to Proposition 2.12, in order to complete the proof of Theorem 2.5, it remains
only to analyze the case in which the extreme point s is an element of {0, 1}m . Let
K = {k : sk = 1}. Consider W =

⋂
k∈K ker(ϕk). Since W is subcritical by hypothesis,

dim(W) ≤
m∑

j=1

sj dim(ϕj(W)) =
∑
k∈K

dim(ϕk(W)) = 0

so dim(W) = 0, that is, W = {0}. Therefore the map x 7→ (ϕk(x))k∈K from V to the
Cartesian product

∏
k∈K Vk is injective.

For any x ∈ V ,
m∏

j=1

fj(ϕj(x)) ≤
∏
k∈K

fk(ϕk(x))
∏
i/∈K

∥ fi∥∞ =
∏
k∈K

fk(ϕk(x))
∏
i/∈K

∥ fi∥1/si

since si = 0 for all i /∈ K . Thus it suffices to prove that:∑
x∈V

∏
k∈K

fk(ϕk(x)) ≤
∏
k∈K

∥ fk∥1

This is a special case of the following result.

Lemma 2.22 Let V be any finite-dimensional vector space over F. Let K be a finite
index set, and for each k ∈ K , let ϕk be an F–linear map from V to a finite-dimensional
vector space Vk . If

⋂
k∈K ker(ϕk) = {0}, then for all functions fk : Vk → [0,∞):∑

x∈V

∏
k∈K

fk(ϕk(x)) ≤
∏
k∈K

∥ fk∥1

Proof Define Φ : V →
∏

k∈K Vk by Φ(x) = (ϕk(x))k∈K . The hypothesis
⋂

k∈K ker(ϕk)
= {0} is equivalent to Φ being injective. The product

∏
k∈K ∥ fk∥1 can be expanded as

the sum of products ∑
y

∏
k∈K

fk(yk)
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where the sum is taken over all y = (yk)k∈K belonging to the Cartesian product
∏

k∈K Vk .
The quantity of interest, ∑

x∈V

∏
k∈K

fk(ϕk(x))

is likewise a sum of such products. Each term of the latter sum appears as a term
of the former sum, and by virtue of the injectivity of Φ, appears only once. Since
all summands are nonnegative, the former sum is greater than or equal to the latter.
Therefore: ∏

k∈K

∥ fk∥1 =
∑

y

∏
k∈K

fk(yk) ≥
∑
x∈V

∏
k∈K

fk(ϕk(x))

As mentioned above, necessity of the condition (2–2) for the inequality (2–3) in the case
F = Q can be deduced from the corresponding necessity in Theorem 1.3, by clearing
denominators. First, we identify V and Vj with Qd and Qdj and let E be any nonempty
finite subset of Qd . Let ϕ̂j : Qd → Qdj be the linear map represented by the matrix of
ϕj multiplied by the lowest common denominator of its entries, ie, an integer matrix.
Likewise, let Ê be the set obtained from E by multiplying each point by the lowest
common denominator of the coordinates of all points in E . Then by linearity:

|Ê| = |E| ≤
m∏

j=1

|ϕj(E)|sj =
m∏

j=1

|ϕ̂j(Ê)|sj

Recognizing (Zd, (Zdj), (ϕ̂j|Zd )) as an Abelian group HBL datum, we conclude (1–3)
for this datum from the implication (1–4) ⇒ (1–3) of Theorem 1.3. According
to Lemma 2.6, (2–2) holds for the vector space HBL datum (Qd, (Qdj), (ϕ̂j)); our
conclusion follows since dim(ϕ̂j(W)) = dim(ϕj(W)) for any W ≤ Qd .

It remains to show that (2–2) is necessary for (2–3) in the case of a finite field F.
Whereas the above reasoning required only the validity of (2–4) in the weakened form
|E| ≤ C

∏m
j=1 |ϕj(E)|sj for some constant C < ∞ independent of E (see proof of

necessity for Theorem 1.3), now the assumption that this holds with C = 1 becomes
essential. Let W be any subspace of V . Since |F| < ∞ and W has finite dimension
over F, W is a finite set and the hypothesis (2–4) can be applied with E = W . Therefore
|W| ≤

∏m
j=1 |ϕj(W)|sj . This is equivalent to

|F|dim(W) ≤
m∏

j=1

|F|sj dim(ϕj(W))

so, since |F| ≥ 2, by taking base–|F| logarithms of both sides we obtain dim(W) ≤∑m
j=1 sj dim(ϕj(W)), as was to be shown.
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3 An algorithm that computes the polytope P

From the perspective of potential applications to communication bounds and the analysis
of algorithms, it is desirable to compute the convex polytope P = P(G) associated to
an Abelian group HBL datum.

We have already shown in Lemma 2.6 that P is unchanged when the groups Zd and
Zdj are embedded in the natural way into the vector spaces Qd and Qdj over Q and the
homomorphisms ϕj are viewed as Q–linear maps. Thus P is identical to the polytope
defined by the inequalities

(3–1) dim(V) ≤
m∑

j=1

sj dim(ϕj(V)) for all subspaces V ≤ Qd

and 0 ≤ sj ≤ 1 for all indices j. Indeed, (3–1) is the hypothesis (2–2) of Theorem 2.5
in the case F = Q.

We will show how to compute P in the case F = Q. Throughout the remainder of
this section, V and Vj denote finite-dimensional vector spaces over Q, and ϕj denotes
a Q–linear map. The reasoning presented below applies to any countable field F,
provided that elements of F and the field operations are computable.

Remark 3.1 The algorithm described below relies on a search of a list of all subspaces of
V . A similar algorithm was sketched, less formally, in Valdimarsson [12] for computing
the corresponding polytope in Bennett, Carbery, Christ and Tao [3, Theorem 2.1]. That
algorithm searches a smaller collection of subspaces, namely the lattice generated by
the kernels of ϕ1, . . . , ϕm under the operations of intersection and pairwise sum of
subspaces. In a forthcoming sequel to this work, we will show that it suffices to search
a corresponding lattice in our situation. Searching this lattice would make the algorithm
below more efficient, in principle. But our goal here is to prove decidability, leaving
issues of efficiency for future work. A minor point is that this modification also allows
relaxation of the requirement that F be countable.

The proof of Theorem 1.5 is built upon several smaller results.

Lemma 3.2 There exists an algorithm that takes as input a finite-dimensional vector
space V over Q, and returns a list of its subspaces. More precisely, this algorithm takes
as input a finite-dimensional vector space V and a positive integer N , and returns as
output the first N elements Wi of a list (W1,W2, . . .) of all subspaces of V . This list is
independent of N . Each subspace W is expressed as a finite sequence (d; w1, . . . ,wd)
where d = dim(W) and {wi} is a basis for W .
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Proof Generate a list of all nonempty subsets of V having at most dim(V) elements.
Test each subset for linear independence, and discard all that fail to be independent.
Output a list of those that remain.

We do not require this list to be free of redundancies.

Lemma 3.3 For any positive integer m, there exists an algorithm that takes as input a
finite set of linear inequalities over Z for s ∈ [0, 1]m , and returns as output a list of all
the extreme points of the convex subset P ⊆ [0, 1]m specified by these inequalities.

Proof To the given family of inequalities, adjoin the 2m inequalities sj ≥ 0 and
−sj ≥ −1. P is the convex polytope defined by all inequalities in the resulting enlarged
family. Express these inequalities as ⟨s, vα⟩ ≥ cα for all α ∈ A, where A is a finite
nonempty index set.

An arbitrary point τ ∈ Rm is an extreme point of P if and only if (i) there exists a set B
of indices α having cardinality m, such that (vβ : β ∈ B) is linearly independent and
⟨τ, vβ⟩ = cβ for all β ∈ B, and (ii) τ satisfies ⟨τ, vα⟩ ≥ cα for all α ∈ A.

Create a list of all subsets B ⊂ A with cardinality equal to m. There are finitely many
such sets, since A itself is finite. Delete each one for which (vβ : β ∈ B) is not linearly
independent. For each subset B not deleted, compute the unique solution τ of the
system of equations ⟨τ, vβ⟩ = cβ for all β ∈ B. Include τ in the list of all extreme
points, if and only if τ satisfies ⟨τ, vα⟩ ≥ cα for all α ∈ A \ B.

Proposition 3.4 There exists an algorithm that takes as input a vector space HBL
datum V = (V, (Vj), (ϕj)), an element t ∈ [0, 1]m , and a subspace {0} < W < V which
is critical with respect to t , and determines whether t ∈ P(V).

Theorem 1.5 and Proposition 3.4 will be proved inductively in tandem, according to the
following induction scheme. The proof of Proposition 3.4 for HBL data in which V has
dimension n, will rely on Theorem 1.5 for HBL data in which V has dimension strictly
less than n. The proof of Theorem 1.5 for HBL data in which V has dimension n and
there are m subspaces Vj , will rely on Proposition 3.4 for dimension at most n, and on
Theorem 1.5 for dimension n and with the number of subspaces strictly less than m.
Thus there is no circularity in the reasoning.

Proof of Proposition 3.4 Let (V, (Vj), (ϕj)) and t,W be given. Following Nota-
tion 2.17, consider the two HBL data VW = (W, (ϕj(W)), (ϕj|W)) and VV/W =
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(V/W, (Vj/ϕj(W)), ([ϕj])), where [ϕj] : V/W → Vj/ϕj(W) are the quotient maps. From
a basis for V , bases for Vj , a basis for W , and corresponding matrix representations
of ϕj , it is possible to compute the dimensions of, and bases for, V/W and Vj/ϕj(W),
via row operations on matrices. According to Lemma 2.20, t ∈ P(V) if and only if
t ∈ P(VW) ∩ P(VV/W).

Because {0} < W < V , both W,V/W have dimensions strictly less than the dimension
of V . Therefore by Theorem 1.5 and the induction scheme, there exists an algorithm
which computes both a finite list of inequalities characterizing P(VW ), and a finite list of
inequalities characterizing P(VV/W ). Testing each of these inequalities on t determines
whether t belongs to these two polytopes, hence whether t belongs to P(V).

Lemma 3.5 Let an HBL datum V = (V, (Vj), (ϕj)) be given. Let i ∈ {1, 2, . . . ,m}.
Let s ∈ [0, 1]m and suppose that si = 1. Let V ′ = ker(ϕi). Define ŝ ∈ [0, 1]m−1 to
be (s1, . . . , sm) with the ith coordinate deleted. Then s ∈ P(V, (Vj), (ϕj)) if and only if
ŝ ∈ P(V ′, (Vj)j ̸=i, (ϕj|V′)j ̸=i).

Proof Write V′ = (V ′, (Vj)j ̸=i, (ϕj|V′)j ̸=i). For any subspace W ≤ V ′ , since
dim(ϕi(W)) = 0, ∑

j

sj dim(ϕj(W)) =
∑
j ̸=i

sj dim(ϕj(W)).

So if s ∈ P(V) then ŝ ∈ P(V′).

Conversely, suppose that ŝ ∈ P(V′). Let W be any subspace of V . Write W =

W ′′ + (W ∩ V ′) where the subspace W ′′ ≤ V is a supplement to W ∩ V ′ in W , so that
dim(W) = dim(W ′′) + dim(W ∩ V ′). Then:∑

j

sj dim(ϕj(W)) = dim(ϕi(W)) +
∑
j ̸=i

sj dim(ϕj(W))

≥ dim(ϕi(W ′′)) +
∑
j̸=i

sj dim(ϕj(W ∩ V ′))

≥ dim(W ′′) + dim(W ∩ V ′)

dim(ϕi(W ′′)) = dim(W ′′) because ϕi is injective on W ′′ . So s ∈ P(V).

To prepare for the proof of Theorem 1.5, let P(V) = P(V, (Vj), (ϕj)) be given. Let
(W1,W2,W3, . . .) be the list of subspaces of V produced by the algorithm of Lemma 3.2.
Let N ≥ 1. To each index α ∈ {1, 2, . . . ,N} is associated a linear inequality∑m

j=1 sj dim(ϕj(Wα)) ≥ dim(Wα) for elements s ∈ [0, 1]m , which we encode by
an (m + 1)–tuple (v(Wα), c(Wα)); the inequality is ⟨s, v(Wα)⟩ ≥ c(Wα). Define
PN ⊆ [0, 1]m to be the polytope defined by this set of inequalities.
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Lemma 3.6

(3–2) PN ⊇ P(V) for all N .

Moreover, there exists a positive integer N such that PM = P(V) for all M ≥ N .

Proof The inclusion holds for every N , because the set of inequalities defining PN is
a subset of the set defining P(V).

P(V) is specified by some finite set of inequalities, each specified by some subspace of
V . Choose one such subspace for each of these inequalities. Since (Wα) is a list of all
subspaces of V , there exists M such that each of these chosen subspaces belongs to
(Wα : α ≤ M).

Lemma 3.7 Let m ≥ 2. If s is an extreme point of PN , then either sj ∈ {0, 1} for
some j ∈ {1, 2, . . . ,m}, or there exists α ∈ {1, 2, . . . ,N} for which Wα is critical with
respect to s and 0 < dim(Wα) < dim(V).

In the following argument, we say that two inequalities ⟨s, v(Wα)⟩ ≥ c(Wα), ⟨s, v(Wβ)⟩
≥ c(Wβ) are distinct if they specify different subsets of Rm .

Proof For any extreme point s, equality must hold in at least m distinct inequalities
among those defining PN . These inequalities are of three kinds: ⟨s, v(Wα)⟩ ≥ c(Wα)
for α ∈ {1, 2, . . . ,N}, sj ≥ 0, and −sj ≥ −1, with j ∈ {1, 2, . . . ,m}. If Wβ = {0}
then Wβ specifies the tautologous inequality

∑
j sj · 0 = 0, so that index β can be

disregarded.

If none of the coordinates sj are equal to 0 or 1, there must exist β such that equality
holds in at least two distinct inequalities ⟨s, v(Wβ)⟩ ≥ c(Wβ) associated to subspaces
Wα among those which are used to define PN . We have already discarded the subspace
{0}, so there must exist β such that Wβ and V specify distinct inequalities. Thus
0 < dim(Wβ) < dim(V).

Proof of Theorem 1.5 Set P = P(V, (Vj), (ϕj)), with V of dimension n and with
m subspaces Vj . Consider first the base case m = 1. The datum is a pair of finite-
dimensional vector spaces V,V1 with a Q–linear map ϕ : V → V1 . The polytope
P is the set of all s ∈ [0, 1] for which s dim(ϕ(W)) ≥ dim(W) for every subspace
W ≤ V . If dim(V) = 0 then P(V, (Vj), (ϕj)) = [0, 1]. If dim(V) > 0 then since
dim(ϕ(W)) ≤ dim(W) for every subspace, the inequality can only hold if the kernel of
ϕ has dimension 0, and then only for s = 1. The kernel of ϕ can be computed. So P
can be computed when m = 1.
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Suppose that m ≥ 2. Let (V, (Vj), (ϕj)) be given. Let N = 0. Recursively apply the
following procedure.

Replace N by N + 1. Consider PN . Apply Lemma 3.3 to obtain a list of all extreme
points τ of PN , and for each such τ which belongs to (0, 1)m , a nonzero proper
subspace W(τ ) ≤ V which is critical with respect to τ .

Examine each of these extreme points τ , to determine whether τ ∈ P(V, (Vj), (ϕj)).
There are three cases. Firstly, if τ ∈ (0, 1)m , then Proposition 3.4 may be invoked,
using the critical subspace W(τ ), to determine whether τ ∈ P .

Secondly, if some component τi of τ equals 1, let V ′ be the kernel of ϕi . Set:

P ′ = P(V ′, (Vj)j̸=i, (ϕj|V′)j̸=i)

According to Lemma 3.5, τ ∈ P if and only if τ̂ = (τj)j̸=i ∈ P ′ . According to
Theorem 1.5 and the induction hypothesis, this polytope P ′ can be computed, since the
dimension n has not increased and the number of indices j has been reduced by one.

Thirdly, if some component τi of τ equals 0, then because the term si dim(ϕi(W)) = 0
contributes nothing to sums

∑m
j=1 sj dim(ϕj(W)), τ ∈ P if and only if τ̂ belongs

to P(V, (Vj)j̸=i, (ϕj)j ̸=i). To determine whether τ̂ belongs to this polytope requires
again only an application of the induction hypothesis, since n is unchanged and m has
decreased.

It has now been determined which extreme points τ of PN belong to P . If every one
of these points τ belongs to P , then because PN is the convex hull of its extreme
points, PN ⊆ P . The converse inclusion holds for every N , so in this case PN = P .
The algorithm halts, and returns the conclusion that P = PN , along with information
already computed: a list of the inequalities specified by all the subspaces W1, . . . ,WN ,
and a list of extreme points of PN = P .

On the other hand, if at least one extreme point of PN fails to belong to P , then
PN ̸= P . Then increment N by one, and repeat the above steps.

Lemma 3.6 guarantees that this procedure will halt after finitely many steps.

4 On (un)computability of the list of constraints defining P

We have discussed the computation of P . Now we turn to the problem of computing the
set of inequalities (1–3). There may be many sets of inequalities which specify P ; thus
in order to compute P , it suffices to compute any such set of inequalities, rather than
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the specific set (1–3). This distinction accounts for the coexistence of Theorems 1.5
and 1.6.

In order to compute the set of inequalities (1–3), we must compute the answer
to the question: Given any group homomorphisms ϕ1, . . . , ϕm and integers 0 ≤
r, r1, . . . , rm ≤ d , does there exist a subgroup H ≤ Zd such that

rank(H) = r, and rank(ϕj(H)) = rj for all 1 ≤ j ≤ m?

Notation 4.1 For a natural number d and ring R, Md(R) denotes the ring of d–by–d
matrices with entries from R. We identify Md(R) with the endomorphism ring of the
R–module Rd (or R-vector space, if R is a field) and thus may write elements of Md(R)
as R–linear maps rather than as matrices. Via the usual coordinates, we may identify
Md(R) with Rd2

. We write R[x1, . . . , xq] to denote the ring of polynomials over R in
variables x1, . . . , xq .

Recall that there are given d, dj ∈ N and Z–linear maps ϕj : Zd → Zdj , for j ∈
{1, 2, . . . ,m} for some positive integer m. Each ϕj can also be interpreted as a
Q–linear map (from Qd to Qdj ), represented by the same integer matrix. It is no loss
of generality to assume that each dj = d , so that each ϕj is an endomorphism of Zd .

Definition 4.2 Given m, d ∈ N, and a finite sequence r, r1, . . . , rm of natural numbers
each bounded by d , we define the sets:

Ed;r,r1,...,rm := {(ϕ1, . . . , ϕm) ∈ (Md(Z))m :

(∃H ≤ Zd) rank(H) = r and rank(ϕj(H)) = rj, 1 ≤ j ≤ m}

EQ
d;r,r1,...,rm

:= {(ϕ1, . . . , ϕm) ∈ (Md(Q))m :

(∃V ≤ Qd) dim(V) = r and dim(ϕj(V)) = rj, 1 ≤ j ≤ m}

Remark 4.3 The question of whether a given m–tuple (ϕ1, . . . , ϕm) ∈ (Md(R))m is a
member of Ed;r,r1,...,rm (when R = Z) or EQ

d;r,r1,...,rm
(when R = Q) is an instance of the

problem of whether some system of polynomial equations has a solution over the ring
R. We let B be a d–by–r matrix of variables, and construct a system of polynomial
equations in the dr unknown entries of B and md2 known entries of ϕ1, . . . , ϕm that
has a solution if and only if the aforementioned rank (or dimension) conditions are
met. The condition rank(M) = s for a matrix M is equivalent to all (s + 1)–by–(s + 1)
minors of M equaling zero (ie, the sum of their squares equaling zero), and at least
one s–by–s minor being nonzero (ie, the sum of their squares not equaling zero — see
Remark 4.6). We construct two polynomial equations in this manner for M = B (with
s = r) and for each matrix M = ϕjB (with s = rj ).
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Lemma 4.4 With the notation as in Definition 4.2, Ed;r,r1,...,rm = EQ
d;r,r1,...,rm

∩(Md(Z))m .

Proof This result was already established in Lemma 2.6; we restate it here using the
present notation. For the left-to-right inclusion, observe that if H ≤ Zd witnesses that
(ϕ1, . . . , ϕm) ∈ Ed;s,r1,...,rm , then HQ witnesses that (ϕ1, . . . , ϕm) ∈ EQ

d;r,r1,...,rm
. For

the other inclusion, if (ϕ1, . . . , ϕm) ∈ EQ
d;r,r1,...,rm

∩ (Md(Z))m witnessed by V ≤ Qd ,
then we may find a submodule H = V ∩ Zd of Zd , with rank(H) = dim(V). Then
dim(ϕj(V)) = rank(ϕj(H)) = rj showing that (ϕ1, . . . , ϕm) ∈ Ed;r,r1,...,rm .

Definition 4.5 Hilbert’s Tenth Problem for Q is the question of whether there is an
algorithm which given a finite set of polynomials f1(x1, . . . , xq), . . . , fp(x1, . . . , xq) ∈
Q[x1, . . . , xq] (correctly) determines whether or not there is some a ∈ Qq for which
f1(a) = · · · = fp(a) = 0.

Remark 4.6 One may modify the presentation of Hilbert’s Tenth Problem for Q in
various ways without affecting its truth value. For example, one may allow a condition
of the form g(a) ̸= 0 as this is equivalent to (∃b)(g(a)b − 1 = 0). On the other hand,
using the fact that x2 + y2 = 0 ⇐⇒ x = 0 = y, one may replace the finite sequence of
polynomial equations with a single equality.

Remark 4.7 Hilbert’s Tenth Problem, proper, asks for an algorithm to determine
solvability in integers of finite systems of equations over Z. From such an algorithm
one could positively resolve Hilbert’s Tenth Problem for Q. However, by the celebrated
theorem of Matiyasevich–Davis–Putnam–Robinson [10], no such algorithm exists. The
problem for the rationals remains open. The most natural approach would be to reduce
from the problem over Q to the problem over Z, say, by showing that Z may be defined
by an expression of the form

a ∈ Z ⇐⇒ (∃y1) · · · (∃yq)P(a; y1, . . . , yq) = 0

for some fixed polynomial P. Koenigsmann [9] has shown that there is in fact a
universal definition of Z in Q, that is, a formula of the form

a ∈ Z ⇐⇒ (∀y1) · · · (∀yq)θ(a; y1, . . . , yq) = 0

where θ is a finite Boolean combination of polynomial equations, but he also demon-
strated that the existence of an existential definition of Z would violate the Bombieri–
Lang conjecture. Koenigsmann’s result shows that it is unlikely that Hilbert’s Tenth
Problem for Q can be resolved by reducing to the problem over Z using an existential
definition of Z in Q. However, it is conceivable that this problem could be resolved
without such a definition.
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Proof of Theorem 1.6 (necessity) Evidently, if Hilbert’s Tenth Problem for Q has
a positive solution, then there is an algorithm to (correctly) determine for d ∈ N,
r, r1, . . . , rm ≤ d also in N, and (ϕ1, . . . , ϕm) ∈ (Md(Z))m whether (ϕ1, . . . , ϕm) ∈
Ed;r,r1,...,rm . By Lemma 4.4, (ϕ1, . . . , ϕm) ∈ Ed;r,r1,...,rm just in case (ϕ1, . . . , ϕm) ∈
EQ

d;r,r1,...,rm
. This last condition leads to an instance of Hilbert’s Tenth Problem (for Q)

for the set of rational polynomial equations given in Remark 4.3.

Notation 4.8 Given a set S ⊆ Q[x1, . . . , xq] of polynomials, we denote the set of
rational solutions to the equations f = 0 as f ranges through S by:

V(S)(Q) := {a ∈ Qq : (∀f ∈ S)f (a) = 0}

Definition 4.9 For any natural number t , we say that the set D ⊆ Qt is Diophantine if
there is some q − t ∈ N and a set S ⊆ Q[x1, . . . , xt; y1, . . . , yq−t] for which

D = {a ∈ Qt : (∃b ∈ Qq−t)(a; b) ∈ V(S)(Q)}.

We will show sufficiency in Theorem 1.6 by establishing a stronger result: namely, that
an algorithm to decide membership in sets of the form Ed;r,r1,...,rm could also be used to
decide membership in any Diophantine set. (Hilbert’s Tenth Problem for Q concerns
membership in the specific Diophantine set V(S)(Q).)

With the next lemma, we use a standard trick of replacing composite terms with single
applications of the basic operations to put a general Diophantine set in a standard form
(see, eg, Vakil [11]).

Lemma 4.10 Given any finite set of polynomials S ⊂ Q[x1, . . . , xq], let d :=
maxf∈S maxq

i=1 degxi
( f ) and D := {0, 1, . . . , d}q . There is another set of variables

{uα}α∈D and another finite set S′ ⊂ Q[{uα}α∈D] consisting entirely of affine polynomi-
als (polynomials of the form c+

∑
cαuα where not all c and cα are zero) and polynomials

of the form uαuβ − uγ with α , β , and γ distinct, so that V(S)(Q) = π(V(S′)(Q)) where
π : QD → Qq is given by:

(uα)α∈D 7→ (u(1,0,...,0), u(0,1,0,...,0), . . . , u(0,...,0,1))

Proof Denote by 0 the element (0, 0, . . . , 0) of D = {0, 1, . . . , d}q . Let T ⊂
Q[{uα}α∈D] consist of

• u(0,...,0) − 1, and
• uα+β − uαuβ for (α+ β) ∈ D , α ̸= 0 and β ̸= 0.
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Define χ : Qq → QD by
(x1, . . . , xq) 7→ (xα)α∈D

where xα :=
∏q

j=1 xαj
j . One sees immediately that χ induces a bijection χ : Qq →

V(T)(Q) with inverse π|V(T)(Q) .

Let S′ be the set containing T and the polynomials
∑
α∈D

cαuα for which
∑
α∈D

cαxα ∈ S .

One checks that if a ∈ Qq , then χ(a) ∈ V(S′)(Q) if and only if a ∈ V(S)(Q). Applying
π , and noting that π is the inverse to χ on V(T)(Q), the result follows.

Notation 4.11 For the remainder of this argument, we call a set enjoying the properties
identified for S′ (namely that each polynomial is either affine or of the form uαuβ − uγ )
a basic set.

Proof of Theorem 1.6 (sufficiency) It follows from Lemma 4.10 that the membership
problem for a general finite Diophantine set may be reduced to the membership problem
for a Diophantine set defined by a finite basic set of equations. Let S ⊆ Q[x1, . . . , xq]
be a finite basic set of equations and let t ≤ q be some natural number, We now
show that there are natural numbers µ, ν, ρ, ρ1, . . . , ρµ and a computable function
f : Qt → (Mν(Z))µ so that for a ∈ Qt one has that there is some b ∈ Qq−t with
(a, b) ∈ V(S)(Q) if and only if f (a) ∈ Eν;ρ,ρ1,...,ρµ .

List the ℓ affine polynomials in S as

λ0,1 +

q∑
i=1

λi,1xi, . . . , λ0,ℓ +

q∑
i=1

λi,ℓxi

and the k polynomials expressing multiplicative relations in S as

xi1,1xi2,1 − xi3,1 , . . . , xi1,k xi2,k − xi3,k .

Note that by scaling, we may assume that all of the coefficients λi,j are integers.

We shall take µ := 4 + q + t + |S|, ν := 2q + 2, ρ := 2 and the sequence ρ1, . . . , ρµ
to consist of 4 + q + k ones followed by t + ℓ zeros. Let us describe the map
f : Qt → (Mν(Z))µ by expressing each coordinate. For the sake of notation, our
coordinates on Qν are (u; v) := (u0, u1 . . . , uq; v0, v1, . . . , vq).

A. The map f1 is constant taking the value (u; v) 7→ (u0, 0, . . . , 0).
B. The map f2 is constant taking the value (u; v) 7→ (v0, 0, . . . , 0).
C. The map f3 is constant taking the value (u; v) 7→ (u0, . . . , uq; 0, . . . , 0).
D. The map f4 is constant taking the value (u; v) 7→ (v0, . . . , vq; 0, . . . , 0).
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E. The map f4+j (for 0 < j ≤ q) is constant taking the value (u; v) 7→ (u0 − v0, uj −
vj, 0, . . . , 0).

F. The map f4+q+j (for 0 < j ≤ k) is constant taking the value (u; v) 7→ (ui1,j +

v0, ui3,j + vi2,j , 0, . . . , 0).
G. The map f4+q+k+j (for 0 < j ≤ t) takes a = ( p1

q1
, . . . , pt

qt
) (written in lowest terms)

to the linear map (u; v) 7→ (pju0 − qjuj, 0, . . . , 0).

H. The map f4+q+k+t+j (for 0 < j ≤ ℓ) takes the value (u; v) 7→
( q∑

i=0
λi,jui, 0, . . . , 0

)
.

Note that only the components f4+q+k+j for 0 < j ≤ t actually depend on (a1, . . . , at) ∈
Qt .

Let us check that this construction works. First, suppose that a ∈ Qt and that there
is some b ∈ Qq−t for which (a, b) ∈ V(S)(Q). For the sake of notation, we write
c = (c1, . . . , cq) := (a1, . . . , at, b1, . . . , bq−t).

Let V := Q(1, c1, . . . , cq, 0, . . . , 0) + Q(0, . . . , 0, 1, c1, . . . , cq). We will check now
that V witnesses that f (a) ∈ Eν,ρ,ρ1,...,ρµ . Note that a general element of V takes the
form (α, αc1, . . . , αcq, β, βc1, . . . , βcq) for (α, β) ∈ Q2 . Throughout the rest of this
proof, when we speak of a general element of some image of V , we shall write α and
β as variables over Q.

Visibly, dim(V) = 2 = ρ.

Clearly, f1(a)(V) = Q(1, 0, . . . , 0) = f2(a)(V), so that ρ1 = dim(f1(a)(V)) = 1 =

dim(f2(a)(V)) = ρ2 as required.

Likewise, f3(a)(V) = Q(1, c1, . . . , cq, 0, . . . , 0) = f4(a)(V), so that ρ3 = dim(f3(a)(V))
= 1 = dim(f4(a)(V)) = ρ4 .

For 0 < j ≤ q the general element of f4+j(a)(V) has the form (α − β, αcj −
βcj, 0, . . . , 0) = (α − β)(1, cj, 0, . . . , 0). Thus, f4+j(a)(V) = Q(1, cj, 0, . . . , 0) has
dimension ρ4+j = 1.

For 0 < j ≤ k we have ci3,j = ci1,jci2,j , the general element of f4+q+j(a)(V) has the
form (αci1,j + β, αci3,j + βci2,j , 0, . . . , 0) = (αci1,j + β, αci1,jci2,j + βci2,j , 0, . . . , 0) =
(αci1,j + β)(1, ci2,j , 0, . . . , 0) so we have that ρ4+q+j = dim(f4+q+j(a)(V)) = 1.

For 0 < j ≤ t , the general element of f4+q+k+j(a)(V) has the form (pjα−qjαaj, 0, . . . , 0)
= 0. That is, ρ4+q+k+j = dim(f4+q+k+j(a)(V)) = 0.

Finally, if 0 < j ≤ ℓ, then the general element of f4+q+k+t+j(a)(V) has the form
(λ0,jα +

∑q
i=1 λi,jαci, 0, . . . , 0) = 0 since λ0,j +

∑q
i=1 λi,jci = 0. So ρ4+q+k+t+j =

dim(f4+q+k+t+j(a)(V)) = 0.
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Thus, we have verified that if a ∈ Qt and there is some b ∈ Qd−t with (a, b) ∈ V(S)(Q),
then f (a) ∈ Eν;ρ,ρ1,...,ρµ .

Conversely, suppose that a = ( p1
q1
, . . . , pt

qt
) ∈ Qt and that f (a) ∈ Eν;ρ,ρ1,...,ρµ , with

the same µ, ν, ρ, ρ1, . . . , ρµ . Let V ≤ Qν have dim(V) = ρ witnessing that f (a) ∈
Eν;ρ,ρ1,...,ρµ .

Lemma 4.12 There are elements g and h in V for which g = (0, . . . , 0; g0, . . . , gq),
h = (h0, . . . , hq; 0, . . . , 0), g0 = h0 = 1, and Qg +Qh = V .

Proof The following is an implementation of row reduction. Let the elements
d = (d0, . . . , dq; d′

0, . . . , d
′
q) and e = (e0, . . . , eq; e′0, . . . , e

′
q) be a basis for V . Since

dim(f1(a)(V)) = 1, at the cost of reversing d and e and multiplying by a scalar, we
may assume that d0 = 1. Since dim(f3(a)(V)) = 1, we may find a scalar γ for which
(γd0, . . . , γdq) = (e0, . . . , eq). Set g̃ := e − γd . Write g̃ = (0, . . . , 0, g̃0, . . . , g̃q).
Since g̃ is linearly independent from e and dim(f4(a)(V)) = 1, we see that there is
some scalar δ for which (δg̃0, . . . , δg̃q) = (d′

0, . . . , d
′
q). Set h := d − δg̃. Using the

fact that dim(f2(a)(V)) = 1 we see that g̃0 ̸= 0. Set g := g̃−1
0 g̃.

Lemma 4.13 For 0 ≤ j ≤ q we have gj = hj .

Proof We arranged g0 = 1 = h0 in Lemma 4.12. The general element of V has the form
αh + βg for some (α, β) ∈ Q2 . For 0 < j ≤ q, the general element of f4+j(a)(V) has
the form (αh0−βh0, αhj−βgj, 0, . . . , 0) = ((α−β)h0, (α−β)hj+β(hj−gj), 0, . . . , 0).
Since h0 ̸= 0, if hj ̸= gj , then this vector space would have dimension two, contrary to
the requirement that f (a) ∈ Eν;ρ,ρ1,...,ρµ .

Lemma 4.14 For 0 < j ≤ t we have hj = aj .

Proof The image of αh + βg under f4+q+k+j(a) is (pjα − qjαhj, 0, . . . , 0) where
aj =

pj
qj

in lowest terms. Since dim(f4+q+k+j(a)(V)) = 0, we have qjhj = pj . That is,
hj = aj .

Lemma 4.15 For any F ∈ S , we have F(h1, . . . , hq) = 0.

Proof If F is an affine polynomial, that is, if F = λ0,j+
∑q

i=1 λi,jxi for some 0 < j ≤ ℓ,
then because dim(f4+q+k+t+j(a)(V)) = 0, we have λ0,j +

∑q
i=1 λi,jhi = 0. On the other

hand, if F is a multiplicative relation, that is, if F = xi1,jxi2,j − xi3,j for some 0 < j ≤ k ,
then because dim(f4+q+j(a)(V)) = 1 we see that there is some scalar γ so that for any
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pair (α, β) we have γ(αhi1,j + β) = αhi3,j + βhi2,j . Specializing to β = 0 and α = 1,
we have γ = hi3,j/hi1,j (unless both are zero, in which case the equality hi1,jhi2,j = hi3,j
holds anyway), which we substitute to obtain hi3,j/hi1,j = hi2,j , or hi2,jhi1,j = hi3,j .

Taking b := (ht+1, . . . , hq) we see that (a, b) ∈ V(S)(Q).
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