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Abstract: We show the theory of pointed R-trees with radius at most r is axiomati-
zable in a suitable continuous signature. We identify the model companion rbRTr

of this theory and study its properties. In particular, the model companion is com-
plete and has quantifier elimination; it is stable but not superstable. We identify
its independence relation and find built-in canonical bases for non-algebraic types.
Among the models of rbRTr are R-trees that arise naturally in geometric group
theory. In every infinite cardinal, we construct the maximum possible number of
pairwise non-isomorphic models of rbRTr ; indeed, the models we construct are
pairwise non-homeomorphic. We give detailed information about the type spaces
of rbRTr . Among other things, we show that the space of 2-types over the empty
set is nonseparable. Also, we characterize the principal types of finite tuples (over
the empty set) and use this information to conclude that rbRTr has no atomic
model.
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1 Introduction

Continuous logic is an extension of classical first order logic used to study the model
theory of structures based on metric spaces. In this paper, we use continuous logic as
presented in Ben Yaacov, Berenstein, Henson and Usvyatsov [4] and Ben Yaacov and
Usvyatsov [6] to study the model theory of R-trees.

An R-tree is a metric space T such that for any two points a, b ∈ T there is a unique
arc in T from a to b, and that arc is a geodesic segment (ie, an isometric copy of
some closed interval in R). These spaces arise naturally in geometric group theory, for
example: the asymptotic cone of a hyperbolic finitely generated group is an R-tree.
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An R-tree may be unbounded, while the existing full treatments of continuous model
theory are restricted to bounded structures. With this in mind, we consider pointed
trees, choose a real number r > 0, and axiomatize the theory RTr of pointed R-trees
of radius at most r in a suitable continuous signature.

We then define the notion of richly branching and axiomatize the theory rbRTr of the
class of richly branching pointed R-trees with radius r . We prove that the models of
rbRTr are exactly the existentially closed models of RTr ; thus rbRTr is the model
companion of RTr . Next, we investigate some model theoretic properties of rbRTr ,
showing that it is complete and has quantifier elimination. In particular, that means
rbRTr is the model completion of RTr . Further, we prove that rbRTr is stable but not
superstable and identify its model-theoretic independence relation. We characterize
the principal types of rbRTr , and show that this theory has no atomic model. Finally,
we show that rbRTr is highly non-categorical. In fact, for any density character this
theory has the maximum possible number of pairwise non-isomorphic models; indeed,
the models we construct are pairwise non-homeomorphic. We also give examples of
richly branching R-trees which come from the literature, including some that will be
familiar to geometric group theorists.

In the remainder of this introduction we detail the contents of each section of this paper.

In Sections 2 and 3 we provide background concerning R-trees and continuous logic,
respectively. In Section 4 we specify a continuous signature L suitable for the class
of pointed R-trees of radius at most r , and axiomatize this class of L-structures; the
theory of the class is denoted RTr .

In Section 5 we discuss definability of certain sets and functions in RTr . In Section 6
we show RTr has amalgamation over substructures. This plays an important role in
many of the primary results in this paper.

In Section 7 we introduce the class of richly branching pointed R-trees with radius r
and axiomatize this class. The associated theory is denoted rbRTr . We then show that
rbRTr is the model companion of RTr . The theory rbRTr is the main object of study
in this paper.

In Sections 8 and 9 we verify the main model-theoretic properties of rbRTr . We show
that this theory is complete and admits quantifier elimination. We characterize its
types over sets of parameters and use this to show rbRTr is κ-stable if and only if
κ = κω ; hence this theory is strictly stable (stable but not superstable). We also show
that rbRTr is not a small theory; indeed, its space of 2-types over ∅ has metric density
character 2ω . (The space of 1-types over ∅ is isometric to the real interval [0, r]
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Model theory of R-trees 3

with the usual absolute value metric.) We give a simple geometric characterization of
the independence relation of rbRTr . Finally, we show that non-algebraic types have
built-in canonical bases (ie, these bases are sets of ordinary elements in models of
rbRTr and do not require the introduction of imaginaries).

In Section 10 we discuss some models of rbRTr that have been constructed within the
theory of R-trees by Dyubina and Polterovich [12, 13] and some other models that
arise in geometric group theory.

In Section 11 we use amalgamation constructions to build large families of models
of rbRTr and to characterize its isolated types over ∅. For each infinite cardinal κ,
we show there are 2κ -many pairwise non-isomorphic models of rbRTr of density
character κ. This is the maximum possible number of models, and the models we
construct are, in fact, pairwise non-homeomorphic. We show that rbRTr has very few
isolated n-types over ∅ and conclude that it has no atomic model (equivalently, it has
no prime model).

In Section 12 we briefly discuss how the results in this paper could be obtained for the
full class of pointed R-trees (ie, without imposing a boundedness requirement).

Research for this paper was supported by Simons Foundation grants (#202251 and
#422088) to the second author.

2 R-trees

In this section we give some background concerning R-trees.

2.1 Definition An arc in a metric space M is the image of a homeomorphism γ from
an interval [0, r] ⊆ R into M for some r ≥ 0. A geodesic segment in a metric space
M is the image of an isometric embedding γ : [0, r] → M . We say that such an arc
or geodesic segment is from γ(0) to γ(r). A metric space M is called geodesic if for
every a, b ∈ M there is at least one geodesic segment in M from a to b.

2.2 Fact A complete metric space M is a geodesic space if and only if for any x, y ∈ M
there exists a midpoint z between x and y. That is, there exists z such that:

d(x, z) =
d(x, y)

2
and d(y, z) =

d(x, y)
2

Proof See Bridson and Haefliger [7, I.1.4, page 4].
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2.3 Definition An R-tree is a metric space M such that for any two points a, b ∈ M
there is a unique arc from a to b, and that arc is a geodesic segment.

In an R-tree, [a, b] denotes the unique geodesic segment from a to b. Since metric
structures are required to be based on complete metric spaces, it is a helpful fact that
the completion of an R-tree is an R-tree (see Chiswell [8, Lemma 2.4.14]).

Let M be an R-tree and a ∈ M . Call the connected components of M \ {a} branches
at a. Let the degree of a point a ∈ M be the cardinal number of branches at a. If there
are three or more branches at a ∈ M , then we call a a branch point. The height of a
branch β at a is sup{d(a, x)|x ∈ β} if that supremum exists, and is ∞ otherwise. A
subtree of M is any subspace of M that is itself an R-tree. A ray in an R-tree is an
isometric copy of R≥0 . If a ∈ M , a ray at a is a ray so that the image of 0 under the
isometric embedding of R≥0 into M is a.

The following lemmas and definitions collect some straightforward facts about R-trees
used in this paper. For helpful pictures and more facts about R-trees see [8].

2.4 Lemma If M is an R-tree and a, b, c ∈ M , then:
(1) d(a, b) + d(b, c) = d(a, c) + 2 dist(b, [a, c]).
(2) b ∈ [a, c] if and only if d(a, c) = d(a, b) + d(b, c).
(3) For b distinct from a and c, we have b ∈ [a, c] if and only if a and c are in

different branches at b.

Proof Statement (1) follows from [8, Lemma 2.1.2], (2) is proved in [8, Lemma 1.2.2]
and (3) comes from [8, Lemma 2.2.2].

2.5 Lemma If M is an R-tree and E1 , E2 are disjoint, closed, non-empty subtrees of
M , then there exists a unique shortest geodesic segment [u, v] with u ∈ E1 and v ∈ E2 .
Moreover, for all b ∈ E1 and c ∈ E2 , the geodesic segment from b to c must contain
[u, v].

Proof This is [8, Lemma 2.1.9].

The preceding lemma directly implies the following fact, used often in this paper:
Given an R-tree M , a closed subtree E and a point a ∈ M , there is a unique point
e in E closest to a. In that situation, one has that dist(a,E) = d(a, e) and also that
e is on the segment [a, b] for every point b ∈ E . Equivalently, given any b ∈ E , if
γ : [0, d(a, b)] → M is an isometry and has the geodesic segment [a, b] as its image,
then e = γ(s), where s = d(a, e) is the least value of t ∈ [0, d(a, b)] for which
γ(t) ∈ E .
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2.6 Definition Let x0, x1, x2, . . . , xn be points in an R-tree M and γ : [0, d(x0, xn)]→
M the isometric embedding with γ(0) = x0 and γ(d(x0, xn)) = xn that has image equal
to the geodesic segment [x0, xn]. If for each i = 0, . . . , n we have xi = γ(ai) where
0 = a0 ≤ a1 ≤ · · · ≤ an = d(x0, xn), then we write [x0, xn] = [x0, x1, . . . , xn], and call
[x0, x1, . . . , xn] a piecewise segment.

In other words, if x0, x1, . . . , xn are elements of [x0, xn] listed in increasing order of
distance from x0 , then we write [x0, xn] = [x0, x1, . . . , xn] for this piecewise segment.
Note that we also know [x1, xn] =

⋃n−1
i=1 [xi, xi+1], and by Lemma 2.1.4 in Chiswell [8]

we have that [x1, xn] = [x1, x2, . . . , xn] if and only if d(x1, xn) =
∑n−1

i=1 d(xi, xi+1).

2.7 Lemma Let E be a closed subtree of an R-tree M and let a, b ∈ M . Let ea ∈ E
be the unique closest point to a, and let eb ∈ E be the unique closest point to b. If
ea 6= eb , then

d(a, b) = d(a, ea) + d(ea, eb) + d(b, eb).

That is, [a, ea, eb, b] is a piecewise segment.

Proof Follows from Lemmas 2.4 and 2.5.

Recall that (X, d) is a pseudometric space if d : X2 → R≥0 is symmetric, satisfies the
triangle inequality, and has d(x, x) = 0 for all x ∈ X . Its quotient metric space is
obtained by identifying x, y ∈ X iff d(x, y) = 0.

2.8 Definition (Gromov product) For a pseudometric space (X, d) and x, y,w ∈ X ,
define:

(x · y)w =
1
2

[d(x,w) + d(y,w)− d(x, y)]

It follows easily from Lemmas 2.4 and 2.5 that in an R-tree, the Gromov product
(x · y)w computes the distance from w to the geodesic segment [x, y].

2.9 Definition Let δ ≥ 0. A pseudometric space (X, d) is δ -hyperbolic if, for all
x, y, z,w ∈ X :

min{(x · z)w, (y · z)w} − δ ≤ (x · y)w

Note that if (X, d) is a pseudometric space, then the quotient metric space of (X, d) is
δ -hyperbolic if and only if (X, d) is δ -hyperbolic.

In this paper we are nearly always interested in 0-hyperbolic spaces, and it is sometimes
useful to have the following alternate characterization:
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2.10 Lemma A pseudometric space (X, d) is 0-hyperbolic if and only if it satisfies
the following 4-point condition: for all x, y, z, t ∈ X ,

d(x, y) + d(z, t) ≤ max{d(x, z) + d(y, t), d(y, z) + d(x, t)}.

Proof See Chiswell [8, Lemma 1.2.6] with δ = 0.

2.11 Lemma If M is a geodesic metric space, then M is 0-hyperbolic if and only
if, given any a, b, c ∈ M and geodesic segments [a, b], [b, c], and [c, a], the segment
[a, b] is contained in [b, c] ∪ [c, a].

Proof See the proof of Proposition III.H.1.22 in Bridson and Haefliger [7].

2.12 Definition If A ⊆ M is a subset of the R-tree M , let EA denote the smallest
subtree containing A. We call this the R-tree spanned by A. Note that

EA =
⋃
{[a1, a2] | a1, a2 ∈ A}.

The closure EA of EA is the smallest closed subtree containing A.

Note that if A is finite, then EA = EA and EA is complete and has finite diameter.

2.13 Definition An R-tree M is finitely spanned if there exists a finite subset A ⊆ M
such that M = EA .

2.14 Lemma (1) A metric space is an R-tree if and only if it is 0-hyperbolic and
geodesic.

(2) Any 0-hyperbolic metric space embeds isometrically in an R-tree.
(3) Let (X, d) be a 0-hyperbolic metric space. For i = 1, 2, suppose fi : (X, d) →

(Mi, di) are isometric embeddings into R-trees, and let Ei be the smallest subtree
of Mi containing fi(X). Then there is a unique isometry g from E1 onto E2 such
that g ◦ f1 = f2 .

Proof (1), (2) These are from Roe [15, Proposition 6.12].

(3) Let (M, d) be any R-tree extending (X, d) and let E be the smallest subtree of M
containing X .

For any points u, u′ ∈ E there exist x, y, x′, y′ ∈ X such that u ∈ [x, y], u′ ∈ [x′, y′].
(See Definition 2.12.) The main point is to show that d(u, u′) is determined by

Journal of Logic & Analysis 12:3 (2020)



Model theory of R-trees 7

the distances d(x, u), d(x′, u′) together with the pairwise distances between points in
{x, y, x′, y′}.

Fix u, u′, x, y, x′, y′ as above. By Lemma 2.5 there exist Y ∈ [x, y] and Y ′ ∈ [x′, y′]
such that for any v ∈ [x, y], v′ ∈ [x′, y′] we have:

d(v, v′) = d(v,Y) + d(Y,Y ′) + d(Y ′, v′)(D)

(In particular, [Y,Y ′] is the shortest geodesic segment among those between a point in
[x, y] and a point in [x′, y′].)

Applying (D) to x, x′ and to y, y′ yields

d(x, x′) = d(x,Y) + d(Y,Y ′) + d(Y ′, x′)

d(y, y′) = d(y,Y) + d(Y,Y ′) + d(Y ′, y′),and

from which follows

2d(Y,Y ′) = d(x, x′) + d(y, y′)− d(x, y)− d(x′, y′)

which shows that d(Y,Y ′) is determined by the values of d on x, y, x′, y′ .

Similarly, applying (D) to x, y′ and to x, x′ yields that d(x,Y) is determined by the
values of d on x, y, x′, y′ . Likewise, applying (D) to x′, y and to x′, x yields the same
conclusion for d(x′,Y ′).

Finally, applying (D) to the original pair u, u′ yields

d(u, u′) = d(u,Y) + d(Y,Y ′) + d(Y ′, u′)

= |d(x,Y)− d(x, u)|+ d(Y,Y ′) + |d(x′,Y ′)− d(x′, u′)|

which gives the desired conclusion.

To construct the needed isometry g, there is an obvious definition from a segment of
the form [ f1(x), f1(y)] in M1 into M2 , for each x, y ∈ X , by taking g to be the unique
isometry from [ f1(x), f1(y)] in M1 onto [ f2(x), f2(y)] in M2 that takes f1(x) to f2(x) and
f1(y) to f2(y). What is proved above shows that the union of all such maps is a well
defined isometry from E1 onto E2 that satisfies g ◦ f1 = f2 . Every isometry from E1

to E2 that satisfies g ◦ f1 = f2 must agree with this map g.

Given a, b, c in an R-tree, there is a unique point Y so that [a, b] ∩ [a, c] = [a,Y].
In Chiswell [8] after Lemma 2.1.2, it is shown that this Y is also the unique point
so that [b, a] ∩ [b, c] = [b,Y] and [c, a] ∩ [c, b] = [c,Y], and that in fact {Y} =

[a, b] ∩ [b, c] ∩ [a, c].

Journal of Logic & Analysis 12:3 (2020)



8 S Carlisle and C W Henson

2.15 Notation If a, b, c are points in an R-tree, we denote by Y(a, b, c) the unique
point such that {Y} = [a, b] ∩ [b, c] ∩ [a, c]. This point will be denoted simply by Y
when a, b, c are understood.

That an R-tree is 0-hyperbolic tells us that for any 3 points a, b, c the segment [a, b]
is contained in [b, c]∪ [c, a], by 2.11 and 2.14. Thus, the subtree E spanned by a, b, c
is comprised of the segments [a,Y], [b,Y] and [c,Y], which share only the point
Y = Y(a, b, c). Therefore we have two possibilities: either Y is one of a, b, c and
E is the segment connecting the other two; or Y 6∈ {a, b, c} and E is “Y-shaped",
explaining the notation introduced in 2.15 above. (See Chiswell [8, 2.1.2].)

2.16 Definition Let M be an R-tree. If c ∈ M is such that there do not exist a, b ∈
M \ {c} with c ∈ [a, b], then c is called an endpoint of M . Equivalently, an endpoint
is a point with degree at most one.

2.17 Lemma If an R-tree M is finitely spanned and C is the set of endpoints of M ,
then:

(1) If B spans M then C ⊆ B.
(2) The set C spans M .

Thus, C is finite, and it is the unique smallest set that spans M .

Proof Let M be a finitely spanned R-tree. Let D be the diameter of M . Let B be a
set that spans M .

Proof of (1): Assume there is an endpoint c ∈ M not contained in B. Then there must
exist a, b ∈ B such that c ∈ [a, b] and c 6= a, b. But, this is a contradiction because c
is an endpoint.

Proof of (2): Let a ∈ M . Let Sa be the set of all segments [b, c] ⊆ M such
that a ∈ [b, c] and order Sa by inclusion. This is a partial ordering on Sa . Let
{[bi, ci] | i ∈ α} be a chain in this partial ordering, where α is a cardinal. Let I be the
closure of

⋃
i∈α[bi, ci]. Then I is a geodesic segment in M . Clearly a ∈ I , and the

length of I is at most D. Therefore I ∈ Sa , and I is an upper bound for the chain. The
chain was arbitrary, so any chain has an upper bound. Therefore, by Zorn’s Lemma
there exists a maximal element of Sa . Let [ba, ca] denote such a maximal element.
The elements ba and ca must be endpoints of M . Say, for instance, that ba is not an
endpoint. Then there exist e, f ∈ M such that ba ∈ [e, f ] and ba 6= e, f , and then
either [e, ca] or [ f , ca] will properly contain [ba, ca]. This would mean [ba, ca] was
not maximal in Sa . Therefore, for each a ∈ M , there exist endpoints ba and ca so that
a ∈ [ba, ca]. So, M is spanned by the set of its endpoints, and this spanning set is as
small as possible by (1).
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As noted above, if (X, d) is a R-tree, then so is its completion (X, d). The next result
gives information about the structure of X .

2.18 Lemma Let (X, d, p) be a pointed R-tree and (X, d, p) its completion, and
suppose x ∈ X \ X . Then:

(1) there exist (xn) in X converging to x such that [p, x1, . . . , xn, x] is a piecewise
segment in X for all n ≥ 1; and

(2) x is an endpoint in X .

Proof (1) Given x ∈ X \X , let (yn) be a Cauchy sequence in X that converges to x in
the R-tree X . Without loss of generality we may assume that (d(yn, x)) is decreasing
toward 0. For each n, let xn be the closest point in X on the segment [p, x] to yn . By
Lemma 2.5, xn is on the segment [p, yn] in X and thus xn ∈ X . Further, from the same
Lemma and the assumptions on (yn) we conclude that [p, x1, . . . , xn, x] is a piecewise
segment in X for each n and (xn) converges to x .

(2) If x were not an endpoint in X , there would be y ∈ X such that p and y were
in different branches in X at x . By part (1), there must exist z ∈ X on the segment
[p, y] in X such that z is closer to y than x . That is, [p, x, z, y] would be a piecewise
segment in X . But then x would be on the segment [p, z], which lies entirely in X .
This contradiction completes the proof.

3 Some continuous model theory

We investigate the model theory of R-trees using continuous logic for metric structures
as presented in Ben Yaacov, Berenstein, Henson and Usvyatsov [4] and Ben Yaacov
and Usvyatsov [6]. In this section we remind the reader of a few key concepts and
results from those papers, and then we present a few facts about existentially closed
models and model companions that are not discussed there. For the rest of this section
we fix a continuous first order language L .

As explained in [4, Section 3], in continuous model theory it is required that structures
and models are metrically complete. However, formulas and conditions are evaluated
more generally in pre-structures, as explained in [4, Definition 3.3]. Further, it is shown
in [4, Theorem 3.7] that the completion of a prestructure is an elementary extension.
In this paper we use notation of the formM |= θ only whenM is a structure; in other
words, M must be metrically complete.
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Next, some reminders about saturation in continuous logic. A set Σ(x1, . . . , xn) of L-
conditions (with free variables among x1, . . . , xn ) is called satisfiable inM if there exist
a1, . . . , an in M such that M |= E[a1, . . . , an] for every E(x1, . . . , xn) ∈ Σ. Let κ be
a cardinal. A modelM of T is called κ-saturated if for any set of parameters A ⊆ M
with cardinality < κ and any set Σ(x1, . . . , xn) of L(A)-conditions, if every finite
subset of Σ(x1, . . . , xn) is satisfiable in (M, a)a∈A , then the entire set Σ(x1, . . . , xn) is
satisfiable in (M, a)a∈A .

3.1 Proposition For any countably incomplete ultrafilter U on I , the U -ultraproduct
of a family of L-structures (Mi | i ∈ I) is ω1 -saturated.

Proof See Ben Yaacov, Berenstein, Henson and Usvyatsov [4, Proposition 7.6].

Note that any non-principal ultrafilter on N is countably incomplete.

3.2 Proposition For any cardinal κ, any L-structureM has a κ-saturated elementary
extension.

Proof See [4, Proposition 7.10].

3.3 Definition An inf -formula of L is a formula of the form

inf
y1
. . . inf

yn
ϕ(x1, . . . , xk, y1, . . . , yn)

where ϕ(x1, . . . , xk, y1, . . . , yn) is quantifier-free.

A sup-formula of L is defined similarly. These sup-formulas are the universal formulas
in continuous logic. For an L-theory T , we use the notation T∀ for the set of universal
sentences σ (sup-formulas with no free variables) such that the condition σ = 0 is
implied by the theory T . Note that, as in classical first order logic, T∀ is the theory of
the class of L-substructures of models of T .

3.4 Definition Let T be an L-theory and suppose M |= T . We say M is an
existentially closed (e.c.) model of T if, for any inf -formula ψ(x1, . . . , xm), any
a1, . . . , ak ∈ M , and anyN |= T that is an extension ofM, we have ψN (a1, . . . , am) =

ψM(a1, . . . , am).

An L-theory T is model complete if any embedding between models of T is an
elementary embedding.
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3.5 Proposition The L-theory T is model complete if and only if every model of T
is an existentially closed model of T .

Proof This is Robinson’s Criterion for model completeness. The proof given by
Hodges [14, Theorem 8.3.1] for classical first order logic can easily be adapted to the
continuous setting.

In Ben Yaacov [2, Appendix A] there is some further discussion of inf - and sup-
formulas and of model completeness.

3.6 Definition Let T be an L-theory. A model companion of T is an L-theory S such
that:

• Every model of S embeds in a model of T .
• Every model of T embeds in a model of S .
• S is model complete.

Note that the first two criteria in this definition together are equivalent to the statement
S∀ = T∀ . As in classical first order logic, if a theory has a model companion, then that
model companion is unique (up to equivalence of theories).

Recall that a theory T is inductive if whenever Λ is a linearly ordered set and (Mλ |
λ ∈ Λ) is a chain of models of T , then the completion of the union of (Mλ | λ ∈ Λ)
is a model of T .

3.7 Proposition Let T be an inductive L-theory and let K be the class of existentially
closed models of T . If there exists an L-theory S so that K = Mod(S), then S is the
model companion of T .

Proof The proof of [14, Theorem 8.3.6] can be adapted to the continuous setting.

We say the L-theory T has amalgamation over substructures if for any substructures
M0 , M1 and M2 of models of T and embeddings f1 : M0 →M1 , f2 : M0 →M2 ,
there exists a model N of T and embeddings gi : Mi → N such that g1 ◦ f1 = g2 ◦ f2 .

3.8 Proposition Let T1 and T2 be L-theories such that T2 is the model companion
of T1 . Assume T1 has amalgamation over substructures. Then T2 has quantifier
elimination.

Proof The corresponding result in classical first order logic is the equivalence of (a)
and (d) in [14, Theorem 8.4.1]. The proof given there can be adapted to the continuous
setting.
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4 The theory of pointed R-trees with radius at most r

By the radius of a pointed metric space (M, p) we mean the supremum of the distance
d(p, x) as x varies over M , and when using the term we always require that this
expression is finite.

In this section we first present the continuous signature used in this paper to study
R-trees. We then give axioms for the theory RTr of R-trees with radius ≤ r .

Let r > 0 be a real number. Define the signature Lr := {p} where p is a constant
symbol and specify that the metric symbol d has values which lie in the interval
[0, 2r]. Any pointed metric space (M, p) with radius ≤ r naturally gives rise to an
Lr -prestructure M = (M, d, p), in which d is a metric; M is an Lr -structure if the
metric space involved is metrically complete.

4.1 Remark For future reference, we note: if M is a pointed R-tree of radius at most
r and if x ∈ M satisfies d(p, x) = r , then x is an endpoint in M . (See Definition 2.16.)
Indeed, if x is not an endpoint then we can let y ∈ M be an element of a branch at x
that does not contain p. But then we would have d(p, y) = d(p, x) + d(x, y) > r .

Next we define a set of axioms RTr for the class of complete, pointed R-trees of
radius ≤ r . Recall the connective −· : [0,∞) × [0,∞) → [0,∞) defined by x −· y =

max{x− y, 0}.

4.2 Definition Let RTr be the Lr -theory consisting of the following conditions:

sup
x

d(x, p) ≤ r(1)

sup
x

sup
y

inf
z

max{|d(x, z)− 1
2

d(x, y)|, |d(y, z)− 1
2

d(x, y)|} = 0(2)

sup
x

sup
y

sup
z

sup
w

(
min{(x · z)w, (y · z)w} −· (x · y)w

)
= 0(3)

Condition (2) formalizes the approximate midpoint property. In reading (3), recall that
(x · y)w denotes the Gromov product (see Definition 2.8), which is given by an explicit
formula ϕ(x, y,w) in the signature Lr .

The next lemma shows that the class of complete pointed R-trees of radius ≤ r is
axiomatized by RTr .

4.3 Lemma The models of RTr are exactly the complete, pointed R-trees of radius
≤ r .
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Proof First we assume M |= RTr . Then (M, d, p) is a complete, pointed metric
space. Axiom (1) guarantees that M has radius ≤ r . Axiom 3 implies that M is
0-hyperbolic.

Axiom (2) implies that for any x, y ∈ M and any ε > 0 there is z ∈ M such that
d(x, z) and d(y, z) are within ε of d(x, y)/2. We show that in a complete metric space
that is 0-hyperbolic, this implies the exact midpoint property. (See Fact 2.2.) Given
x, y ∈ M , for each n let zn ∈ M be such that d(x, z) and d(y, z) are within 1/n of
d(x, y)/2. Applying the 4-point condition (see Lemma 2.10) we have

d(zm, zn) + d(x, y) ≤ max
[
d(zm, x) + d(zn, y), d(zm, y) + d(zn, x)

]
≤ max

[
d(x, y) +

1
m

+
1
n
, d(x, y) +

1
m

+
1
n

] = d(x, y) +
1
m

+
1
n

from which we get d(zm, zn) ≤ 1/m + 1/n for all m, n. Therefore (zn) converges in M
to an exact midpoint between x and y.

Therefore, by Lemma 2.14(1), M is a pointed R-tree with radius ≤ r .

That a complete, pointed R-tree with radius ≤ r is a model of RTr is clear.

4.4 Remark Structures in continuous logic are required to be metrically complete,
while in general, R-trees are not complete. A pointed R-tree M with radius ≤ r can
naturally be viewed as an Lr -prestructure, which is an Lr -structure iff it is complete
(since the pseudometric on the prestructure is actually a metric). If M is not complete,
then its metric completion is known to be an R-tree (see Chiswell [8, Lemma 2.4.14]).
Further, the completion of a prestructure is known to be an elementary extension, and
therefore the prestructure and its completion are completely equivalent from a model-
theoretic perspective. (See Ben Yaacov, Berenstein, Henson and Usvyatsov [4, pages
15–17].) Note that this also means any two pointed R-trees of radius ≤ r that have the
same metric completion are indistinguishable from a model-theoretic perspective, and
that a metrically complete R-tree can be identified model-theoretically with any of its
dense sub-prestructures. (However, those metric sub-prestructures are not necessarily
R-trees. In particular, they are not necessarily geodesic spaces.)

We close this section by noting a property of RTr that will be used later.

4.5 Lemma The theory RTr is inductive. That is, the completion of the union of an
arbitrary chain of models of RTr is a model of RTr .

Proof The proof of Chiswell [8, Lemma 2.1.14] can be modified to show that the
union of an arbitrary chain of pointed R-trees is again a pointed R-tree. Also, the
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completion of an R-tree is an R-tree. (See [8, Lemma 2.4.14].) Since base points are
preserved by embeddings of models, the radius of the underlying pointed R-tree for
the union of a chain is most r .

Alternatively, note that RTr is an ∀∃-theory, and therefore the class of its models is
closed under completions of unions of chains.

5 Some definability in RTr

We now discuss the notion of definability for subsets of and functions on the underlying
R-tree M of a model M of RTr . For background on definable predicates, sets and
functions see Ben Yaacov, Berenstein, Henson and Usvyatsov [4]. The first result
shows that every closed ball centered at the base point is uniformly quantifier-free
0-definable in models of RTr .

5.1 Lemma Let s ∈ [0, r]. Let ϕ(x) be the quantifier-free formula d(x, p) −· s.
Suppose M |= RTr and (M, d, p) is the underlying R-tree of M. Evidently the
zeroset of ϕ(x)M is equal to the closed ball Bs(p) of radius s centered at p in M . Then
for all x ∈ M we have dist(x,Bs(p)) = ϕ(x)M .

Therefore, the closed ball Bs(p) ⊆ M is uniformly 0-definable with respect to the
theory RTr .

Proof It suffices to show that ϕM(x) is equal to the distance function dist(x,Bs(p)).
For x ∈ M we know ϕM(x) = 0 if and only if d(x, p) ≤ s, ie, if and only if x ∈ Bs(p).
Now, let x /∈ Bs(p). Then ϕM(x) = d(x, p)− s. Let γ be a geodesic segment from p
to x with γ(0) = p. Then:

dist(x,Bs(p)) ≤ d(x, γ(s)) = d(x, p)− d(p, γ(s)) = d(x, p)− s = ϕM(x)

Now toward a contradiction, assume d(x, p) − s > dist(x,Bs(p)). Then there exists a
point in c ∈ Bs(p) with d(c, x) < d(x, p)− s. This implies

d(x, p) ≤ d(p, c) + d(c, x) ≤ s + d(c, x) < s + d(x, p)− s = d(x, p)

so d(x, p) < d(x, p), which is a contradiction. Therefore, dist(x,Bs(p)) = ϕ(x)M.

Note that the preceding argument only needs that the underlying metric space M is a
geodesic space.
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Next, we present a short discussion of some specific definable functions, points and
sets in models of RTr .

Let M be an R-tree and for s ∈ [0, 1] define the function νs : M × M → M by:
νs(x1, x2) = the point in [x1, x2] with distance sd(x1, x2) from x1 and distance (1 −
s)d(x1, x2) from x2 .

5.2 Lemma Let s ∈ [0, 1]. The function νs : M ×M → M is uniformly 0-definable
in models M of RTr via a quantifier-free formula.

Proof Let ψ be the formula:

max{d(x1, y)−· sd(x1, x2), d(x2, y)−· (1− s)d(x1, x2)}

Let M |= RTr. In M, the distance d(νs(x1, x2), y) is equal to ψM(x1, x2, y). So the
function νs is 0-definable via this quantifier-free formula in any model of RTr .

In Definition 2.15 we defined Y = Y(a, b, c), the unique point so that {Y} = [a, b] ∩
[b, c] ∩ [a, c]. Next we show that Y is a definable function.

5.3 Theorem The function Y : M3 → M that for inputs x1, x2, x3 ∈ M returns
Y(x1, x2, x3) is uniformly 0-definable in models M of RTr via a quantifier-free for-
mula.

Proof Recall that in an R-tree, the Gromov product (a · b)x is equal to the distance
from x to the segment [a, b], and this distance is realized by a unique closest point on
[a, b]. Let

ϕ(x1, x2, x3, x) = max {(x1 · x2)x, (x1 · x3)x, (x2 · x3)x} .

Let M |= RTr and x1, x2, x3 ∈ M . We will show that in M,

d(x,Y(x1, x2, x3)) = ϕM(x1, x2, x3, x).

Let E be the closed subtree of M spanned by x1, x2 and x3 . Abbreviate Y(x1, x2, x3)
by Y . For x ∈ M , let z be the unique point closest to x in E . Then we have
d(x,Y) = d(x, z) + d(z,Y). The point z must lie on at least one of [x1,Y], [x2,Y] or
[x3,Y]. Without loss of generality, assume z ∈ [x1,Y] = [x1, x3] ∩ [x1, x2].

Since z is closest in E to x and z ∈ [x1, x3] ∩ [x1, x2] we know d(x, z) = (x1 · x2)x =

(x1 · x3)x . That z is closest in E to x also implies (x2 · x3)x ≥ d(x, z). This makes
(x2 · x3)x ≥ (x1 · x2)x = (x1 · x3)x . Thus, ϕM(x1, x2, x3, x) = (x2 · x3)x .

Since z ∈ [x1,Y], the point Y is the closest point to z on [x2, x3], and therefore Y is
the closest point to x on [x2, x3]. It follows that, d(x,Y) = (x2 · x3)x . We conclude that
ϕM(x1, x2, x3, x) = d(x,Y).
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6 Amalgamation

Next, we discuss amalgamation for the Lr -theory RTr . The following result from
Chiswell [8] discussing amalgamating over points in R-trees is then extended to
amalgamation of R-trees over subtrees. This leads to a proof of amalgamation over
substructures for RTr .

6.1 Lemma Let (X, d) be an R-tree and let {(Xi, di) | i ∈ I} be a family of R-trees
such that Xi ∩ X = {xi} for all i ∈ I . Xi ∩ Xj = {xi} if xi = xj and Xi ∩ Xj = ∅
otherwise. Define N = (

⋃
i∈I Xi) ∪ X , and define d̂ : N × N → R by:

• On X × X , d̂ = d , and on Xi × Xi , d̂ = di .
• If x ∈ Xi and x′ ∈ Xj , with i 6= j, then

d̂(x, x′) = d̂(x′, x) = di(x, xi) + d(xi, xj) + dj(xj, x′).

• If x ∈ Xi and x′ ∈ X then d̂(x, x′) = d̂(x′, x) = di(x, xi) + d(xi, x′).

Then (N, d̂) is an R-tree.

Proof See [8, Lemma 2.1.13]

We next apply this lemma to prove R-trees can be amalgamated over subtrees.

6.2 Lemma Given R-trees M0 , M1 and M2 and isometric embeddings fi : M0 → Mi

for i = 1, 2, there exists an R-tree N and isometric embeddings gi : Mi → N such that
g1 ◦ f1 = g2 ◦ f2 .

Proof Without loss of generality, we may assume that M0 is nonempty, that M0 ⊆ M1

and M0 ⊆ M2 , that M1 ∩M2 = M0 , and that the fi are inclusion maps. Further, we
may assume that Mi is complete for i = 0, 1, 2, since the maps f1, f2 are isometric, and
can thus be extended as needed. (Recall that the completion of an R-tree is again an
R-tree.) Let {xk | k ∈ |M0|} be a 1− 1 list of the elements of M0 . For each k ∈ |M0|
let Bk be the set of branches β at xk in M2 such that β ∩ M0 = ∅. Let αk be the
cardinality of Bk (which we may assume is nonempty, by extending M2 if needed),
and let Ak = {βkv | v ∈ αk} be a 1 − 1 list of the distinct elements of Bk . Then let
I = {(k, v) | k ∈ |M0|, v ∈ αk}, and define Xi = βkv ∪ {xk} for each i = (k, v) ∈ I .
For each i = (k, v) ∈ I , let xi = xk . For each i ∈ I we consider Xi as a subtree of M2 .

We claim that X = M1 and the family (Xi | i ∈ I) satisfy the hypotheses of Lemma 6.1.
By construction, every point in M0 is contained in some Xi . For each i = (k, v) ∈ I
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we see that Xi ∩ M1 = {xk} = {xi} since xk is the only point in Xi ∩ M0 and
Xi ∩M1 ⊆ M2 ∩M1 = M0 . Further, given any point y ∈ M2 \M0 , we may let x be the
closest point to y in M0 and take k so that xk = x; then we may take β to be a branch
in M2 at xk that contains y. It follows that β ∩M0 = ∅; indeed, if x′ ∈ β ∩M0 , then
Y(x, x′, y) would be an element of M0 that was closer to y than x . Thus there exists
i = (k, v) ∈ I for which β = βi and hence y ∈ Xi . Thus we have M2 =

⋃
i∈I Xi .

Applying Lemma 6.1, we get that N = (
⋃

i∈I Xi) ∪M1 with the metric d̂ is an R-tree,
and clearly N = M2 ∪M1 as metric spaces. Define gi to be the inclusion of Mi in N .
Then g1 ◦ f1 = g2 ◦ f2 is clear.

To apply these results to models of RTr , we begin by proving any subset of a model
of RTr gives rise to a unique model of RTr . In particular, any substructure extends to
a unique model.

6.3 Lemma Let N |= RTr . Any subset A ⊆ N extends to a model M |= RTr such
that whenever f is an embedding of A ∪ {p} into W |= RTr that satisfies f (p) = p,
there is a unique extension of f that embeds M into W .

Proof Let (N, d, p) be the underlying R-tree of the model N , and let A ⊆ N . Define
the structure M = (M, d, p) by M = EA∪{p} with the metric and base point from
(N, d, p). Then M is the smallest closed subtree of N containing A ∪ {p}. Obviously
M |= RTr ; Lemma 2.14(3) yields a unique extension of f to embed EA∪{p} into W .
Further, since f is an isometry, it extends further (also uniquely) to embed M into
W .

6.4 Theorem The Lr -theory RTr has amalgamation over substructures. That is,
if M0 , M1 and M2 are substructures of models of RTr and f1 : M0 → M1 ,
f2 : M0 →M2 are embeddings, then there exists a model N of RTr and embeddings
gi : Mi → N such that g1 ◦ f1 = g2 ◦ f2 .

Proof First, by Lemma 6.3 we may assume that M0 , M1 and M2 are models of
RTr with underlying complete, pointed R-trees (Mi, di, pi). Further, we may assume
that M0 ⊆ Mi and p0 = pi for i = 1, 2 and that the fi are inclusion maps.

We use Lemma 6.2 to construct the R-tree (N, d) and isometric embeddings gi : Mi →
N such that g1 ◦ f1 = g2 ◦ f2 . Recall that in this construction, N = M1 ∪M2 . Define
the base point of N to be q = p1 = p2 = p0 . Since every point in each Mi has
distance ≤ r from pi = q, we conclude that the pointed R-tree (N, d, q) has radius
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≤ r . Let N = (N, d, q) be the corresponding Lr -structure. Then N is a model of
RTr , and since gi are isometric embeddings preserving the base point, they give rise
to embeddings of Lr -structures as required.

7 The model companion of RTr

In this section we define what it means for a pointed R-tree of radius ≤ r to be richly
branching. We then show that the theory of richly branching pointed R-trees with
radius r is the model companion of RTr . Throughout the rest of this paper we assume
r > 0.

7.1 Definition A pointed R-tree (M, d, p) of radius ≤ r is richly branching if the set

B = {b ∈ M | at b there are at least 3 branches of height ≥ r − d(p, b)}
is dense in M .

7.2 Remark The preceding definition and arguments below apply specifically to
pointed R-trees with radius ≤ r . For general R-trees we define: an R-tree M is
richly branching if the set of points at which there are at least 3 branches of infinite
height is dense in M. Note that an R-tree that is richly branching in this sense must be
unbounded.

7.3 Lemma Let (X, d) be an R-tree in which the set of branch points is dense. Then
for any distinct x, y ∈ X , the set of branch points on [x, y] is dense in [x, y].

Proof Let z be on the segment [x, y] and suppose 0 < δ < min[d(x, z), d(y, z)]. By
assumption there is a branch point w in X with d(w, z) < δ . If w lies on [x, y] we are
done. Otherwise, let u be the point on [x, y] that is closest to w. By Lemma 2.5 we have
that x, y,w are in distinct branches at u, and d(z, u) ≤ d(w, u) + d(z, u) = d(w, z) < δ .
That is, u is a branch point on [x, y] that is arbitrarily close to an arbitrary point on
[x, y] that is distinct from x, y.

If we start with an unbounded richly branching R-tree M , assign an arbitrary base
point p and select r > 0, we can make a richly branching R-tree with radius ≤ r as in
Definition 7.1 by taking the closed ball of radius r with center p in M . Note that this
yields an Lr -prestructure and the completion is an Lr -structure.

Conversely, suppose M is an R-tree and p is any point in M . If the closed ball of
radius r with center p in M is richly branching in the sense of 7.1 for an unbounded
set of r > 0, then M is richly branching as a general R-tree. (See Lemma 7.7 below.)

Journal of Logic & Analysis 12:3 (2020)



Model theory of R-trees 19

Next we give axioms for the class of complete, richly branching, pointed R-trees with
radius r .

7.4 Definition Define ψ(x) to be the Lr -formula

inf
y1y2y3

max
{

max
i=1,2,3

{|d(x, yi)− (r − d(p, x))|}, max
1≤i<j≤3

{d(x, yi) + d(x, yj)− d(yi, yj)}
}

and let ϕ = sup
x
ψ(x).

7.5 Definition Let rbRTr = RTr ∪ {ϕ = 0}.

To help parse these axioms and picture what they mean, note that in an R-tree:

d(x, yi) + d(x, yj)− d(yi, yj) = 2(yi · yj)x = 2 dist(x, [yi, yj])

Consider the case when the infima are realized exactly inM (eg, ifM is an ω -saturated
model.) In this setting, ϕ = 0 means that for any element a ∈ M with d(p, a) < r ,
there exist b1, b2, b3 each on a separate branch at a and each with distance r− d(p, a)
from a. We know b1, b2, b3 are on distinct branches at a because d(a, bi) > 0 for
every 1 ≤ i ≤ 3 and 2 dist(a, [bi, bj]) = 0 for every 1 ≤ i < j ≤ 3. In particular,
this makes a a branch point. In a general model where the infima are not necessarily
realized, an approximate version of this is true; given an element a there must be a
branch point within ε of a, as we now show.

7.6 Lemma LetM |= rbRTr with underlying pointed R-tree (M, d, p) and let a ∈ M .
Let h ∈ R be such that 0 < h < r− d(p, a). For any ε > 0 there exists a point b ∈ M
so that d(a, b) < ε and there are 3 branches at b, each with height at least h.

Proof Let s = r − d(p, a), and assume 0 < 4ε < s − h. Since ϕM = 0, we know
ψ(a)M = 0. Thus there exist points c1, c2, c3 ∈ M so that

|d(a, ci)− s| < ε and d(a, ci) + d(a, cj)− d(ci, cj) < ε.

It follows that for i 6= j

d(ci, cj) > d(a, ci) + d(a, cj)− ε > 2s− 3ε > 0

meaning c1, c2, c3 must be distinct. Moreover, c1, c2 and c3 cannot lie along a single
piecewise segment. To see this assume [ci, ck] = [ci, cj, ck] for i, j, k ∈ {1, 2, 3}. Then
d(ci, ck) = d(ci, cj) + d(cj, ck), implying d(ci, ck) = d(ci, cj) + d(cj, ck) > 4s − 6ε.
However, d(ci, ck) ≤ d(a, ci) + d(a, ck) < 2s + 2ε. These inequalities imply 4ε > s >
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s− h, a contradiction. So, each of c1, c2, c3 lies on a different branch at Y(c1, c2, c3).
Thus, there are at least 3 branches at Y(c1, c2, c3).

Next, let u = Y(a, c1, c2), v = Y(a, c2, c3) and w = Y(a, c1, c3). Without loss of
generality, we assume d(a, u) ≤ d(a, v) ≤ d(a,w); in other words, dist(a, [c1, c2]) ≤
dist(a, [c2, c3]) ≤ dist(a, [c1, c3]). Then dist(a, [c1, c2]) = dist(a, [c2, c3]), since M
is 0-hyperbolic. Lemma 2.1.6 in Chiswell [8] and the subsequent discussion yield
that u = v, so the point closest to a on [c1, c2] and the point closest to a on [c2, c3]
are the same and w = Y(c1, c2, c3). By Lemma 2.4, we have 2 dist(a, [c1, c3]) =

d(a, c1) + d(a, c3) − d(c1, c3). Thus, d(a,w) = dist(a, [c1, c3]) < ε/2 < ε. So,
w = Y(c1, c2, c3) has distance < ε from a. Finally, for i = 1, 2, 3 we have:

d(w, ci) ≥ d(a, ci)− d(a,w) > s− ε− ε/2 > s− 4ε > h

Therefore b = Y(c1, c2, c3) satisfies the desired conditions.

The next lemma shows that any branch at any point in a model of rbRTr must have
maximum possible height, with that height realized by a point having distance r from
p. This also implies every model of rbRTr has radius equal to r .

7.7 Lemma Let M |= rbRTr and let a ∈ M . In any branch β at a, there exists at
least one point b such that d(p, b) = r .

Proof Let a ∈ M and δ = r − d(p, a), and let β be a branch at a.

We first assume p /∈ β (including the case where a = p). Thus a is not an endpoint
in M , so we have δ > 0 by Remark 4.1. In what follows, by iterating the use of
Lemma 7.6, we build a sequence b1, b2, b3, . . . of points in β so that for any k ∈ N,
[p, a, b1, . . . , bk] is a piecewise segment, and |r − d(p, bi)| = r − d(p, bi) < δ/2i .

First we choose b1 . Let c ∈ β , so d(a, c) > 0. If c is such that r−d(p, c) < δ/2, then
let b1 = c. Since c and p are in different branches at a, it follows that d(a, c) ≤ δ .
If r − d(p, c) ≥ δ/2, then let 0 < ε < d(a, c)/2. Use Lemma 7.6 to find c′ so
that d(c, c′) < ε, and so that there are at least 3 branches at c′ with height at least
(1− d(a, c)/(2δ))(r− d(p, c)). So |d(a, c)− d(a, c′)| < ε, and since ε < d(a, c)/2, we
know c′ ∈ β . Then find a point b1 on a branch at c′ other than the one containing a.
This makes [p, a, c′, b1] a piecewise segment. Select b1 so that:

d(c′, b1) = (1− d(a, c)
δ

)(r − d(p, c)) ≥ (1− d(a, c)
δ

)
δ

2
=
δ

2
− d(a, c)

2
d(a, b1) = d(a, c′) + d(c′, b1) > (d(a, c)− ε) + d(c′, b1)Then:

> d(a, c)− d(a, c)
2

+
δ

2
− d(a, c)

2
=
δ

2
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Thus d(a, b1) > δ/2. It follows that:

r − d(p, b1) = r − (d(p, a) + d(a, b1)) = (r − d(p, a))− d(a, b1)

= δ − d(a, b1) < δ − δ

2
=
δ

2

Once we have b1, . . . , bi , we proceed in a manner analogous to what was done above
to find bi+1 so that |r − d(p, bi)| = r − d(p, bi) < δ/2i . Then for any j > i we have:

d(bi, bj) = d(p, bj)− d(p, bi) < r − (r − δ

2i ) =
δ

2i

It follows that (bn) is a Cauchy sequence. Let b be the limit of (bi).

Claim: bi ∈ [p, b] for all i ∈ N.

If not, let i ∈ N be such that bi /∈ [p, b]. Then for all j ≥ i, bj /∈ [p, b], because
[p, bi, bj] is a piecewise segment. Let j > i and let q be the closest point to b on
[p, bi, bj], ie, q = Y(p, bj, b). Either q ∈ [p, bi] or q ∈ [bi, bj]. If q ∈ [bi, bj],
then [p, q] = [p, bi, q] implying bi ∈ [p, b] = [p, bi, q, b], a contradiction. Thus,
q ∈ [p, bi], and [p, q, bi, bj] is a piecewise segment. Using these facts and our choice
of q we conclude:

d(b, bj) = d(b, q) + d(q, bj) = d(b, q) + d(q, bi) + d(bi, bj)

≥ d(b, q) + d(q, bi) = d(b, bi)

We have demonstrated that d(b, bj) ≥ d(b, bi) > 0 for all j > i, contradicting that b is
the limit of the sequence (bi). This proves the claim.

Because bi ∈ [p, b], we know r ≥ d(p, b) ≥ d(p, bi) > r − δ/2i for any i ∈ N.
Therefore, d(p, b) = r . And b ∈ β , since otherwise b would be on a different branch
at a than b1 . That would make [b1, a, b] a piecewise segment, contradicting that
[p, b] = [p, a, b1, b] is a piecewise segment.

Finally, we deal with the case where p ∈ β . Since β is open, we may use Lemma 7.6
to find a point a′ ∈ β such that there are 3 branches at a′ . Select a branch β′ at a′ so
that p /∈ β′ and a /∈ β′ . The latter guarantees β′ ⊆ β . Applying the first part of this
proof to a′ and β′ yields a point b ∈ β′ such that d(p, b) = r .

The following theorem shows that complete richly branching pointed R-trees with
radius r form an elementary class.

7.8 Theorem The models of rbRTr are exactly the complete, richly branching R-trees
with radius r .
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Proof Let (M, d, p) be a complete, richly branching pointed R-tree with radius r
and let M be the corresponding Lr -structure. Clearly M |= RTr , and it remains to
verify that ϕM = 0. Let a ∈ M . If d(p, a) = r , then let c1 = c2 = c3 = a and
note that these witness ψM(a) = 0. So we assume d(p, a) < r , and let ε > 0 be
such that ε/3 < r − d(p, a). Since M is richly branching, the set B from Definition
7.1 is dense in M . So, there exists b ∈ B with d(a, b) < ε/3. Then there exist
c1, c2, c3 ∈ M such that each distance d(b, ci) is > r − d(b, p) − ε/3, and each of
c1, c2, c3 is on a different branch at b. By moving these points closer to b along the
geodesic segments if necessary, we may assume |d(b, ci) − (r − d(b, p)| < ε/3 for
each i = 1, 2, 3. The triangle inequality in M implies |d(a, ci) − d(b, ci)| < ε/3 for
all i = 1, 2, 3, and |(r − d(p, a)) − (r − d(p, b))| < ε/3. The triangle inequality in R
yields |d(a, ci)− (r − d(p, a))| < ε for each i = 1, 2, 3.

Next we fix i 6= j in {1, 2, 3} and note that d(ci, cj) = d(ci, b) + d(cj, b) because
c1, c2, c3 are on different branches at b. Since we have d(a, b) < ε/3, the triangle
inequality yields |d(a, ci) + d(a, cj)− d(ci, cj)| < 2ε/3.

So, for each ε, there are c1, c2 and c3 making

max
i=1,2,3

{|d(a, ci)− (r − d(p, a))|} < ε

and max
1≤i<j≤3

{|(d(a, ci) + d(a, cj))− d(ci, cj)|} < ε.

Thus, ψ(a)M = 0, and since a was arbitrary, we conclude ϕM = 0.

For the converse direction, assume M |= rbRTr , so (M, d, p) is a complete, pointed
R-tree. Let a ∈ M and ε > 0. By Lemma 7.6 we may find b ∈ M so that d(a, b) < ε

and there are at least 3 distinct branches at b. By Lemma 7.7 each branch at b contains
a point with distance r from p, so the height of each branch is at least r − d(p, b). It
also follows from 7.7 that M has radius r . Since a ∈ M and ε > 0 were arbitrary, we
conclude the set B of points with at least 3 branches of height ≥ r − d(p, b) is dense
in M . Therefore, M is richly branching.

Next, we turn to a series of lemmas that are needed for our proof that the theory rbRTr

is the model companion of RTr . (See Theorem 7.12 below.)

7.9 Lemma Every existentially closed model of RTr is a model of rbRTr .

Proof Let M |= RTr be existentially closed with underlying R-tree (M, d, p). Con-
sider a ∈ M . If r − d(p, a) = 0, then ψM(a) = 0 is true: make y1 = y2 = y3 = a.
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When r − d(p, a) > 0, using Lemma 6.1 we may construct an extension N |= RTr

of M with underlying R-tree (N, d, p) such that in N there exist c1, c2 and c3 , each
on a different branch at a and each with distance r − d(p, a) from a. It follows
that ψN (a) = 0. Since M is existentially closed and ψ is an inf -formula, we have
ψN (a) = ψM(a) = 0. Our choice of a ∈ M was arbitrary, so ϕM = 0. It follows
that M is a model of rbRTr .

The next lemma connects κ-saturation to the number of branches at the points whose
distance from the base point is < r , in a richly branching R-tree of radius r . (Recall
from Remark 4.1 that every point at distance = r from the base point in such an
R-tree is an endpoint.) The converse of this lemma is also true, and the resulting
characterization of κ-saturated models of rbRTr is Theorem 8.5 below, which will be
proved once we have shown that rbRTr admits quantifier elimination.

7.10 Lemma Let M |= rbRTr . Let κ be an infinite cardinal. If M is κ-saturated,
then (M, d, p) has at least κ-many branches at every point a such that d(p, a) < r .

Proof We begin with the case where κ = ω . Arguing by contradiction, we assume
there exists an ω -saturated model M of rbRTr containing a point a with d(p, a) < r
such that the degree of a is finite. Let β1, . . . , βn be the distinct branches at a.

For each i = 1, . . . , n we can find bi ∈ βi so that d(a, bi) = r − d(p, a) as follows.
When p is not in the branch βi we let bi be a point in βi with d(p, bi) = r . The existence
of such a point is guaranteed by Lemma 7.7. In this case, either p = a, or p and bi are
on different branches at a, and it follows in both instances that d(a, bi) = r − d(p, a).
When the base point p is in branch βi , we select x ∈ [a, p] distinct from a and p such
that there are at least 3 branches at x . Then d(p, x) < d(p, a), so r−d(p, x) > r−d(p, a).
On a branch at x that contains neither p nor a, by Lemma 7.7, there is a point y so that
d(p, y) = r . Note that (a, y] ⊆ βi . Since p and y are on different branches at x , we
know d(p, x) + d(x, y) = d(p, y) = r , so d(x, y) = r − d(p, x). Then

d(a, y) = d(a, x)+d(x, y) = d(a, x)+(r−d(p, x)) > d(a, x)+(r−d(p, a)) > r−d(p, a)

because a and y are on different branches at x . Since d(a, y) > r − d(p, a) we may
take the point on (a, y] with distance r − d(p, a) from a to be our bi .

Next, let r − d(p, a) > ε > 0. Since M is a richly branching R-tree, there exists a′ in
branch β1 such that 0 < d(a, a′) < ε/2 and there are at least 3 branches at a′ . Choose
a branch at a′ that does not contain a and does not contain b1 . Using Lemma 7.7,
find c in this branch at a′ so that d(a′, c) = r − d(p, a′). Note that by Lemma 2.4 we
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know [b1, a′, c] and [a, a′, c] are both piecewise segments, as is [bi, a, a′, c] for any
i = 2, . . . , n.

Using these facts and the fact that d(a, a′) < ε/2, it is now straightforward to show
that

|d(a, c)− (r − d(p, a))| < ε

|d(bi, c)− (d(bi, a) + d(a, c))| < ε.and

Let Σ be the set of all conditions

|d(a, x)− (r − d(p, a))| ≤ 1/k

|d(bi, x)− (d(bi, a) + d(a, x)) | ≤ 1/kand

for k ∈ N and i = 1, . . . , n.

Since ε was arbitrary, we have that Σ is finitely satisfiable. Since there are only finitely
many parameters in Σ, and M is ω -saturated, there must exist b ∈ M that satisfies
all of these conditions simultaneously. For this b we have d(a, b) = r − d(p, a) and
d(bi, b) = d(bi, a) + d(a, b), meaning b is in a different branch at a from any of the bi .
This contradicts that each branch at a was represented by one of b1, . . . , bn . Therefore
there must be at least ω -many branches at each point in M when M is ω -saturated.

Now, let κ > ω and assume M is κ-saturated. Let a ∈ M with d(p, a) < r . Assume
toward a contradiction that there are exactly α-many distinct branches at a where
α < κ. Index the branches at a by i < α , and by Lemma 7.7 on each of these branches
designate a point bi such that d(a, bi) = r − d(p, a). Let A = {a} ∪ {bi | i < α} and
note that A has cardinality less than κ. Define:

Σ = {|d(a, x)− (r − d(p, a))| = 0} ∪ {|d(bi, x)− (d(bi, a) + d(a, x)) | = 0 | i < α}

It is straightforward to show Σ is finitely satisfiable, since by the first part of this proof
there must be infinitely many branches at a. By κ-saturation there exists b ∈ M that
satisfies all of these conditions. Using Lemma 2.4 we conclude that b is on a different
branch out of a from each bi , contradicting the assumption that every branch at a was
represented by one of the bi .

7.11 Lemma Let κ be an infinite cardinal. Assume M is a κ-saturated model of
rbRTr with underlying R-tree (M, d, p). Let K be a non-empty, finitely spanned
R-tree. Designate a base point q in K . For any e ∈ M such that r − d(p, e) ≥
sup{d(q, x) | x ∈ K} and any collection {βi | i < α} of branches at e with cardinality
α < κ, there exists an isometric embedding f of K into M such that f (q) = e and
f (K) ∩ βi = ∅ for all i < α .
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Proof By Lemma 7.10, (M, d, p) has at least κ-many branches at each point a satisfy-
ing d(p, a) < r . By Lemma 2.17, there is a minimal set that spans K , namely, the set of
endpoints of K . Proceed by induction on the size of this minimal spanning set, building
up the embedding at each step using the fact that there are κ-many branches of sufficient
height at every interior point. The restriction that r − d(p, e) ≥ sup{d(q, x) | x ∈ K}
keeps the image of the embedding inside M .

7.12 Theorem The Lr -theory rbRTr is the model companion of RTr .

Proof Since RTr is an inductive theory, by Lemma 3.7 it suffices to show that the
models of rbRTr are exactly the existentially closed models of RTr . By Lemma 7.9 we
know every existentially closed model of RTr is a model of rbRTr . It remains to show
that every model of rbRTr is an existentially closed model of RTr . Let M |= rbRTr .
Let N |= RTr be an extension of M. We may assume M and N are ω1 -saturated.
(This is because we may consider the structure

(
M,N , ι

)
where ι is the embedding

from M to N , and take an ω1 -saturated elementary extension of that structure. If
we can verify the definition of existentially closed in that setting, it will be true of M
and N .) Let (M, d, p) and (N, d, p) be the underlying pointed R-trees for M and N
respectively.

Let a = a1, . . . , ak ∈ M , and without loss of generality assume base point p is
among a1, . . . , ak . We claim that for any b1, . . . , bl ∈ N , there exist c1, . . . , cl ∈ M
so that d(bi, bj) = d(ci, cj) for all i, j ∈ {1, . . . , l} and d(ai, bj) = d(ai, cj) for all
i ∈ {1, . . . , k} and j ∈ {1, . . . , l}.

To prove this claim, let b1, . . . , bl ∈ N , and let Ea ⊆ M be the subtree spanned by
a = a1, . . . , ak . Note that Ea = Ea . Define an equivalence relation on b1, . . . , bl

by: bi ∼ bj if bi and bj have the same closest point in Ea . Let A1, . . . ,Am be the
equivalence classes of this equivalence relation, and for v = 1, . . . ,m let ev be the
unique closest point in Ea common to the members of Av .

For each v = 1, . . . ,m let Kv be the R-tree spanned by Av ∪ {ev} in N , with base
point ev . Note that each Kv is closed and for u 6= v, Ku ∩ Kv = ∅. Since (N, d, p) has
radius r and p ∈ Ea and ev is the unique closest point to x in Ea , Lemma 2.4 gives
d(p, ev) + d(ev, x) = d(p, x) ≤ r for each x ∈ Kv . Therefore d(ev, x) ≤ r− d(p, ev) for
each x ∈ Kv . Thus, sup{d(ev, x) | x ∈ Kv} ≤ r−d(p, ev). Now, for each v = 1, . . . ,m,
by Lemma 7.11, there is an isometric embedding fv : Kv → M sending ev to ev such
that fv(Kv) does not intersect Ea except at ev . Note that ev is the unique closest point
in Ea for every point in fv(Kv).
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Let f be the union of the functions fv for v = 1, . . . ,m. If bi and bj are both in Av , then
d(bi, bj) = d(fv(bi), fv(bj)) = d(f (bi), f (bj)). If bi and bj are in Au 6= Av respectively,
then using Lemma 2.7:

d(bi, bj) = d(bi, eu) + d(eu, ev) + d(ev, bj)

= d(fu(bi), fu(eu)) + d(eu, ev) + d(fv(ev), fv(bj))

= d(f (bi), eu) + d(eu, ev) + d(ev, f (bj))

= d(f (bi), f (bj))

Therefore the function f is an isometric embedding from
m⋃

v=1

Kv to M .

Let cj = f (bj) for all j ∈ {1, . . . , l}. Then clearly d(bi, bj) = d(f (bi), f (bj)) = d(ci, cj)
for all i, j ∈ {1, . . . , l}. Now let i ∈ {1, . . . , k} and j ∈ {1, . . . , l}. Let ev be the
closest point to bi in Ea . Then:

d(ai, bj) = d(ai, ev) + d(ev, bj)

= d(ai, ev) + d(f (ev), f (bi))

= d(ai, ev) + d(ev, cj) = d(ai, cj)

Thus, the claim is true.

The values of quantifier free formulas in M are determined by distances in M . (This
can be shown using induction on the definition of quantifier free formula, since connec-
tives are continuous functions on atomic formulas, which in this case are all of the form
d(t1, t2) for terms t1, t2 .) So, the preceding claim implies that for any quantifier free
formula ϕ(x1, . . . , xk, y1, . . . , yl) and any b1, . . . , bl ∈ N , there exist c1, . . . , cl ∈ M
so that:

ϕ(a1, . . . , ak, b1, . . . , bl)N = ϕ(a1, . . . , ak, c1, . . . , cl)N = ϕ(a1, . . . , ak, c1, . . . , cl)M

Then standard arguments about infima imply:

inf
y1
. . . inf

yl
ϕ(a1, . . . , ak, y1, . . . , yl)M = inf

y1
. . . inf

yl
ϕ(a1, . . . , ak, y1, . . . , yl)N

Therefore, M is an existentially closed model of rbRTr .

8 Properties of the theory rbRTr

In this section we show that rbRTr has quantifier elimination and is complete and
stable, but not superstable. We characterize types, and show that the space of 2-types
over the empty set has metric density 2ω . We also characterize definable closure and
algebraic closure in models of rbRTr .
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8.1 Notation If A = A1, . . . ,An is a finite sequence of subsets of a model, we will
use the shorthand notation A1 . . .An for the union A1 ∪ · · · ∪ An . If some Aj has a
single element, we write the element instead of the set; for example ABC stands for
A ∪ B ∪ C and Ap stands for A ∪ {p}. This notation will be used mainly when we are
considering types over sets of parameters.

8.2 Lemma The Lr -theory rbRTr has quantifier elimination.

Proof By Theorem 7.12, Theorem 6.4 and Proposition 3.8.

8.3 Corollary The Lr -theory rbRTr is complete.

Proof In any model of rbRTr we may embed the structure consisting of just the base
point. This fact together with quantifier elimination implies that rbRTr is complete.

We now turn our attention to a discussion of types and type spaces. Let M |= rbRTr .
Recall that if b = b1, . . . , bn is tuple of elements inM, then tpM(b/A) is the complete
n-type of b over A in M. The space of all n-types over ∅ in models of a theory T
is denoted Sn(T). The space of n-types over A is denoted Sn(TA) or Sn(A) when the
theory T is clear from context. If q is an n-type and a is an n-tuple from M such
that M |= q(a) we say a realizes q in M, and write a |= q. If ϕ(x1, . . . , xn) is an
Lr -formula, we write ϕ(x1, . . . , xn)q for the value of this formula specified by the type
q.

The following lemma gives criteria for when two n-tuples have the same type. Recall
that for a subset A of a given R-tree M

EA =
⋃
{[a1, a2] | a1, a2 ∈ A}

is the smallest subtree of M containing A. The closure EA is the smallest closed subtree
containing A.

8.4 Lemma Let M |= rbRTr . Fix A ⊆ M .

(1) Let b, c ∈ M . Then tpM(b/A) = tpM(c/A) if and only if b and c have the
same unique closest point e ∈ EAp and d(b, e) = d(c, e).

(2) Let b = (b1, . . . , bn) and c = (c1, . . . , cn) be tuples in M . Then tpM(b/A) =

tpM(c/A) if and only if tpM(bi/A) = tpM(ci/A) for all 1 ≤ i ≤ n and
d(bi, bj) = d(ci, cj) for all 1 ≤ i, j ≤ n.
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(3) Let b = (b1, . . . , bn) and c = (c1, . . . , cn) be tuples in M . Let Eb be the subtree
of M spanned by Apb, and similarly define Ec . Then tpM(b/A) = tpM(c/A)
if and only if there is an isometry f : Eb → Ec that fixes each element of Ap (or
equivalently of EAp ) and satisfies f (bi) = ci for all i = 1, . . . , n.

Proof To show (1), first assume tpM(b/A) = tpM(c/A). By Lemma 2.14(3) this
implies d(b, a) = d(c, a) for all a ∈ EAp , which means b and c must have the same
unique closest point e ∈ EAp . Moreover, d(b, e) must equal d(c, e).

For the other direction, assume b and c have the same unique closest point e ∈ EAp

and that d(b, e) = d(c, e). Since rbRTr has quantifier elimination, and the values of
quantifier-free formulas are determined by the values of atomic formulas, it suffices to
show d(a, b) = d(a, c) for all a ∈ Ap. This follows easily from our assumptions using
Lemma 2.4, since for any a ∈ Ap, the point e must be on both segments [a, b] and
[a, c].

Statement (2) follows from part (1) and the fact that rbRTr admits quantifier elim-
ination. Note that tpM(bi/A) = tpM(ci/A) for all 1 ≤ i ≤ n if and only if
d(bi, a) = d(ci, a) for all a ∈ Ap. Again, we use that the values of quantifier-free
formulas are determined by the values of the atomic formulas. The atomic formu-
las involved are all of the form d(t1, t2) where t1 and t2 are variables x1, . . . , xn or
parameters from Ap.

Statement (3) follows from (2) and Lemma 2.14.

With Lemma 8.4 in hand, we can finish the characterization of κ-saturated R-trees,
completing the result promised in Section 7.

8.5 Theorem LetM |= rbRTr . Let κ be an infinite cardinal. ThenM is κ-saturated
if and only if M has at least κ-many branches at every point a ∈ M where d(p, a) < r .

Proof The forward direction is Lemma 7.10. Now, assume M has κ-many branches
at every point a ∈ M where d(p, a) < r . Let A ⊆ M have cardinality < κ.

Let q be a 1-type over A. By Lemma 8.4, this type is determined by a closest point
e ∈ EAp and a distance 0 ≤ s ≤ r − d(p, e), where s is the distance between EAp and
any realization of q. Suppose β is a branch in M at e. The complement of β is path
connected and closed, so if the complement contains all of Ap, then it contains EAp .
Hence, if β contains a point in EAp , it must contain an element of Ap.
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Because there are κ > |Ap|-many branches at e, there are branches at e in M that
do not intersect EAp . Let β be one of those branches. Lemma 7.7 allows us to take
x ∈ β such that d(p, x) = r , and hence d(x, e) = r− d(p, e), since p is not in β . Since
0 ≤ s ≤ r − d(p, e) we may take b on the segment [e, x] with d(e, b) = s. Then b
satisfies the type q. Therefore, all 1-types over A are realized in M, implying that
M is κ-saturated.

Our next result gives a description of the type space Sn(A) with its logic topology,
where A is a subset of a model M of rbRTr . If q ∈ Sn(A), we take the free variables
used in q to be the distinct variables x1, . . . , xn and require that X = {x1, . . . , xn} be
disjoint from Ap. Note that q induces a pseudometric, which we denote ρq , on ApX ,
by setting ρq(t1, t2) = d(t1, t2)q for each t1, t2 ∈ ApX . That is, if (b1, . . . , bn) realizes
q(x1, . . . , xn) in some elementary extension N of M, and we let π : ApX → N be
the evaluation map taking each a ∈ Ap to itself and taking each xi to bi , then we are
setting ρq(t1, t2) equal to dN (π(t1), π(t2)). Note that π can be viewed as the quotient
map from the pseudometric space (ApX, ρq) to the metric space (Ap{b1, . . . , bn}, dN ),
which is 0-hyperbolic since N is an R-tree. It follows that ρq is 0-hyperbolic on ApX .
(See Definition 2.9 and Lemma 2.14.)

For each q ∈ Sn(A), we regard ρq as an element of the product space [0, 2r](ApX)2
, to

which we give the product topology. Let HM(ApX) denote the set of all ρ ∈ [0, 2r](ApX)2

such that ρ defines a 0-hyperbolic pseudometric on ApX extending dM on Ap and
satisfying ρ(p, xi) ≤ r for all i = 1, . . . , n. This is a closed subset of [0, r](ApX)2

and
hence it is a compact Hausdorff space in the induced topology.

8.6 Lemma Let M |= rbRTr and A ⊆ M .

(1) The image of the map q 7→ ρq defined above on Sn(A) is HM(ApX).
(2) The map q 7→ ρq is a homeomorphism between Sn(A) with the logic topology

and HM(ApX) with the induced topology.

Proof Let M |= rbRTr and let A ⊆ M .

(1) Suppose ρ ∈ HM(ApX). Recall that the quotient metric space of (ApX, ρ) is
0-hyperbolic (see the comment just before Lemma 2.11) and the quotient map from
(ApX, ρ) to that metric space is isometric. Therefore, by Lemma 2.14(2) there is
an isometric mapping f from (ApX, ρ) into an R-tree (N, d). We may assume that
d(f (p), u) ≤ r for all u ∈ N and that (N, d) is complete, and hence that N =

(N, d, f (p)) |= RTr . By Theorem 7.12 we may assume that N is a κ-saturated and
strongly κ-homogeneous model of rbRTr , where κ is an infinite cardinal > |A|. Since
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rbRTr admits QE we may assume that Ap ⊆ N and that f is the identity on Ap. Now
let b = (b1, . . . , bn) = (f (x1), . . . , f (xn)) ∈ Nn , and let q(x1, . . . , xn) = tp(b/A) in N .
It is easy to see that ρ = ρq , and hence ρ is in the image of the map q 7→ ρq as desired.

(2) Quantifier elimination for rbRTr implies that the map q 7→ ρq is 1-1 and continuous
for the logic topology on Sn(A) and the induced topology on HM(ApX), and this map
is surjective by part (1). Both topologies are compact Hausdorff, and hence the map
must be a homeomorphism.

Next, we give some results about the type spaces as metric spaces. First, a reminder of
how the induced metric on types is defined.

Let M |= rbRTr be such that every type in Sn(rbRTr)) is realized in M for each
n ≥ 1. As defined in Ben Yaacov, Berenstein, Henson and Usvyatsov [4], the d -metric
on n-types over the empty set is

d(q, q′) = inf
b|=q, b′|=q′

max
i=1,...,n

dM(bi, b′i)

where b = b1, . . . , bn and b′ = b′1, . . . , b
′
n are tuples in M. Note that since M

realizes all 2n-types, the infimum in the definition is actually realized. This definition
can be extended in the obvious way to spaces of types over parameters.

First we consider the distance between 1-types over A for the theory rbRTr .

8.7 Lemma Let M |= rbRTr and A ⊆ M .

(1) As a metric space, S1(rbRTr) = S1(∅) is isometric to [0, r].
(2) More generally, S1(A) is in bijective correspondence with the set of ordered pairs

{(e, s) | e ∈ EAp and s ∈ [0, r − d(p, e)] ⊆ R}.

Indeed, q ∈ S1(A) is associated to (e, s) exactly when e is the unique closest
point in EAp to any realization b of q (in an elementary extension N of M)
and s = dN (e, b); we will denote this distance s by d(e, x)q .

(3) Given q, q′ ∈ S1(A) let eq , eq′ be the unique closest points in EAp to realizations
of q, q′ respectively.
(a) If eq 6= eq′ , then d(q, q′) = d(eq, x)q + d(eq, eq′) + d(eq′ , x)q′ .
(b) If eq = eq′ , then d(q, q′) = |d(p, x)q − d(p, x)q′ |.

(4) The metric space (S1(A), d) is an R-tree, isometric to the R-tree obtained from
EAp by amalgamating an additional branch βe at e that is isometric to the interval
(0, r − d(p, e)], for each e ∈ EAp .
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Proof Let M |= rbRTr and A ⊆ M .

(1) Lemma 8.6 gives a bijection f from S1(∅) = S1(rbRTr) onto [0, r], in which each
type q(x) is mapped to d(p, x)q . We show that f is isometric. Given two 1-types
q, q′ ∈ S1(rbRTr) a configuration minimizing the distance between realizations b |= q
and b′ |= q′ is the one where b, b′ and p are arranged along a piecewise segment. That
configuration makes d(b, b′) = |d(p, b)− d(p, b′)| which is the least possible value of
d(b, b′). by the triangle inequality. Thus, d(q, q′) = d(b, b′) = |d(p, b) − d(p, b′)| =

|f (q)− f (q′)|, showing that f is an isometry.

(2) This is a consequence of Lemmas 8.4, 8.6, and 2.14(3). Lemma 8.4(1) shows that
the pair (e, s) associated to q in (2) is indeed determined by q. A description of how
to find b realizing a type q associated to (e, s) in a sufficiently saturated elementary
extension of M is given in the last paragraph of the proof of Theorem 8.5.

(3) Let q, q′ ∈ S1(A). First assume eq 6= e′q . Then for any realizations b |= q and
b′ |= q′ , [b, eq, eq′ , b′] is a piecewise segment by Lemma 2.7, and the conclusion
follows. If eq = eq′ , then as in the proof of (1), a minimizing configuration will have
the three points b |= q and b′ |= q′ and p along a geodesic segment, and the conclusion
follows.

(4) This is immediate from (2) and (3).

Note that part (2) in Lemma 8.7 gives a description of S1(A) that is different from the
one in Lemma 8.6. It is possible to give an analogous description of Sn(A) when n > 1.
Let x1, . . . , xn be distinct variables, with X = {x1, . . . , xn} disjoint from EAp . Suppose
we are given q(x1, . . . , xn) ∈ Sn(A) and a realization (b1, . . . , bn) of q in some model
M of rbRTr containing A. Let π be the function on the set EApX defined by π(e) = e
for e ∈ EAp and π(xi) = bi for i = 1, . . . , n. According to parts (1) and (2) of Lemma
8.4, the type q is determined by the pseudometric η = ηq on EApX that is defined by
setting η(t1, t2) = dM(π(t1), π(t2)) for all t1, t2 ∈ EApX . The key properties of η are
the following:

(a) η agrees with dM on EAp ;
(b) η(p, xi) ≤ r for all i = 1, . . . , n;
(c) η(e, xi) = η(e, ei) + η(ei, xi) for all e ∈ EAp , i = 1, . . . , n; and
(d) η is 0-hyperbolic.

For every such pseudometric η there is an n-type q ∈ Sn(A) for which η = ηq . Indeed,
by Lemma 2.14, such a pseudometric η is determined by its restriction to the set ApX ,
which is an element of HM(ApX) defined above. Thus it corresponds to a type in Sn(A)
by Lemma 8.6.

Journal of Logic & Analysis 12:3 (2020)



32 S Carlisle and C W Henson

For n > 1 it seems to be very complex to give a precise description, as in the preceding
lemma, of the metric on Sn(A) over the theory rbRTr . Accordingly, we limit ourselves
to giving (in the next result) a precise statement of the metric density of the space of
2-types over ∅. Its proof illustrates some of the ideas needed to understand these metric
spaces more completely.

8.8 Proposition The space of 2-types over the empty set has metric density character
equal to 2ω .

Proof It is clear that S2(rbRTr) has cardinality 2ω . Hence it suffices to find, for some
δ > 0, a set of 2ω -many types in S2(rbRTr) that are pairwise at distance ≥ δ .

For each s ∈ [0, r] let qs(x, y) ∈ S2(rbRTr) contain the conditions d(p, x) = d(p, y) = r
and d(x, y) = 2s. Note that for every s there is a unique such type. If (as, bs) realizes
qs inM |= rbRTr we let Ys = Y(p, as, bs), and note that d(as,Ys) = d(bs,Ys) = s and
d(p,Ys) = r − s.

Suppose 0 ≤ t < s ≤ r . We will show that the distance between qs and qt is ≥ 2t .
So if we take 0 < δ < r , the types in {qs | δ ≤ s ≤ r} are pairwise at distance ≥ 2δ ,
giving the desired result.

So suppose for 0 ≤ t < s ≤ r we have (as, bs) realizing qs and (at, bt) realizing qt ,
in a model M of rbRTr , and that d(as, at) ≤ 2t . Letting c = Y(p, as, at) we have
d(p, c) ≥ r− t , implying that Ys and Yt are both in the geodesic segment [p, c]. Then,
since Ys 6= Yt , we have by Lemma 2.7 that [bs,Ys,Yt, bt] is a piecewise segment, and
hence

d(bs, bt) = d(bs,Ys) + d(Ys,Yy) + d(Yt, bs) = s + d(Ys,Yt) + t > 2t

which completes the proof since the realizations of qs, qt were arbitrary.

Remark A similar argument shows that if X is a metric R-tree that contains an
isometric copy of every 4-point 0-hyperbolic metric space of diameter at most r, then
the density character of X is at least 2ω . Likewise, if a is a point different from p in
M |= rbRTr , then the type space S1({a}) (relative to rbRTr ) has density character
exactly 2ω .

Next, we show that the definable closure and the algebraic closure of a set of parameters
A are the same, and are equal to the closed subtree spanned by Ap.

8.9 Proposition LetM |= rbRTr with (M, d, p) as its underlying R-tree. Let A ⊆ M
be a set of parameters. Then dcl(A) = acl(A) = EAp .
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Proof If a, b ∈ Ap, then by Lemma 5.2 any point in [a, b] is in dcl(A). Then
EAp ⊆ dcl(A) because EAp is the union of all such geodesic segments. Since dcl(A)
is closed, EAp ⊆ dcl(A). Combined with the fact that dcl(A) ⊆ acl(A), this gives
EAp ⊆ dcl(A) ⊆ acl(A). It remains to show acl(A) ⊆ EAp , which we do in the
contrapositive.

If c /∈ EAp , let e be the unique closest point to c in EAp . This e exists by Lemma 2.5.
Let β be the branch at e that contains c. Using Lemma 6.1, construct an extension
N |= rbRTr of M which adds an infinite number of branches at e, each of which is
isometric to β . By Lemma 8.4, on each of these branches is a realization of tp(c/A).
The distance between any two such realizations is 2d(e, c) > 0. This gives us a
non-compact set of realizations of tp(c/A). Therefore, c /∈ acl(A).

To finish this section we show rbRTr is stable, but not superstable (ie, it is strictly
stable).

8.10 Theorem The theory rbRTr is stable. Indeed when κ is an infinite cardinal,
rbRTr is κ-stable if and only if κ satisfies κω = κ.

Proof Let κ be an infinite cardinal. LetM |= rbRTr be κ+ -saturated, with underly-
ing R-tree (M, d, p).
First, assume κ = κω . Let |A| = κ. Then:

|EAp| ≤ |A× A|2ω = κ22ω ≤ κω2ω = κω = κ

Thus, |EAp| = κ. We count possible 1-types using Lemma 8.7, showing that:

|S1(A)| ≤ |EAp × [0, r]| = |EAp|2ω ≤ |EAp|ω2ω = κω2ω = κω = κ

Thus rbRTr is κ-stable.

For the other direction, assume κ < κω . We construct, via a tree construction, a
subset A of M with |A| = κ and |EAp| = κω . At Step 1, we choose κ-many points
(ai | i < κ) on distinct branches at p, each with distance r/4 from p. We can do
this since there are at least κ branches of sufficient height at every point in M by
Theorem 8.5 and Lemma 7.7. Note that we only need κ-saturation to guarantee κ-
many branches. At Step 2, for each ai we choose κ-many points on distinct branches
at ai , each with distance r/8 from ai , and distance 3r/8 from p. We index these
points by (ai,j | i, j < κ). At Step n for n ≥ 2, we have already designated points
ai1,i2,...,in−1 each of which has distance

∑n−1
k=1 r/2k+1 from p. At each of these points

choose κ-many points on distinct branches at ai1,i2,...,in−1 , each with distance r/2n+1
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from ai1,i2,...,in−1 , and distance
∑n

k=1 r/2k+1 from p. We index these new points by
(ai1,i2,...,in | i1, . . . , in < κ). Let A =

⋃∞
k=1(ai1,...,ik | i1, . . . , ik < κ). If we associate

p with the empty sequence, then the elements of Ap are in 1-1 correspondence with
κ<ω . So, the cardinality of A is |κ<ω| = κ.

If σ and τ are non-empty finite sequences from κ, we have that [p, aσ, aσ,τ ] is a
piecewise segment in M . (Here σ, τ denotes the concatenation of σ and τ .) Moreover,
for every such σ and every distinct i, j < κ, the points aσ,i , aσ,j , and p are in distinct
branches at aσ .

For each function f : ω → κ with f (0) = 0 we define a sequence (bf
n) of elements

of A by setting bf
0 = p and bf

n = af (1),...,f (n) for n > 0. For each n ∈ ω we have
that [bf

0, . . . , b
f
n] is a piecewise segment in M . Further, bf

k has distance r/2k+1 from
bf

k−1 for every k > 1, making (bf
n) a Cauchy sequence. Since M is complete, bf

n

must converge to a limit, which we denote by uf . Note that d(p, uf ) = r/2; indeed,
d(bf

n, uf ) = r/2n+1 for every n.

Let f and g be two such functions from ω to κ, and suppose m > 0 is the first index
at which f (m) and g(m) disagree. An easy calculation shows that uf , ug , and p are
in distinct branches at bf

m−1 = bg
m−1 in M and d(uf , ug) = r/2m−1 . In particular, the

map f 7→ uf is injective, so the set of all points uf has cardinality κω .

For each uf as above, let βf be the branch at uf in M that contains p. Evidently
A ⊆ βf ; since βf ∪{uf } is closed and path-connected, it must contain EAp . We choose
a point vf ∈ M in a different branch at uf from βf such that d(vf , uf ) = r/2. Note that
uf is the closest point to vf in EAp .

By Lemma 8.4 the type of vf over A is determined by uf and d(vf , uf ). Further, by
Lemma 8.7(3), for distinct f , g we have:

d(tp(vf /A), tp(vg/A)) = d(uf , vf ) + d(uf , ug) + d(ug, vg) > r

Therefore, the metric density character of S1(A) is at least κω . Since A has cardinality
κ and κω > κ, this shows that the theory rbRTr is not κ-stable.

9 The independence relation for rbRTr

In this section we characterize the model theoretic independence relation of rbRTr and
show that in models of rbRTr , types have canonical bases that are easily-described sets
of ordinary (not imaginary) elements.
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Let κ be a cardinal so that κ = κω and κ > 2ω . In this section let U be a κ-universal
domain for rbRTr . (That is, U is κ-saturated and κ-strongly homogeneous; see Ben
Yaacov, Berenstein, Henson and Usvyatsov [4, Definition 7.13] and the discussion
preceding it.) A subset of U is small if its cardinality is < κ.

9.1 Definition Let A,B and C be small subsets of U. Say A is ∗ -independent from
B over C, denoted A |∗^C

B, if and only if for all a ∈ A we have dist(a,EBCp) =

dist(a,ECp).

9.2 Lemma A |∗^C
B if and only if for all a ∈ A the closest point to a in EBCp is the

same as the closest point to a in ECp .

Proof (⇒) Assume A |∗^C
B. Take an arbitrary a ∈ A. Let e1 be the unique

closest point to a in EBCp and e2 the unique closest point to a in ECp . We assumed
dist(a,EBCp) = dist(a,ECp), which implies d(a, e1) = d(a, e2). Since e2 ∈ ECp ⊆
EBCp , we know e1 ∈ [a, e2] by Lemma 2.5. Therefore, e1 = e2 . Since a was arbitrary,
we know this holds for all a ∈ A.

(⇐) Assume for all a ∈ A the closest point to a in EBCp is the closest point to a in
ECp . Then clearly dist(a,EBCp) = dist(a,ECp) for all a ∈ A.

9.3 Theorem The relation |∗^ is the model theoretic independence relation for rbRTr .
Moreover, types over arbitrary sets of parameters are stationary.

Proof We will show |∗^ satisfies all the properties of a stable independence relation
on a universal domain of a stable theory as given in Ben Yaacov, Berenstein, Henson
and Usvyatsov [4, Theorem 14.12]. Then by [4, Theorem 14.14] we know |∗^ is the
model theoretic independence relation for the stable theory rbRTr .

(1) Invariance under automorphisms

Any automorphism σ of U satisfies σ(EAp) = Eσ(Ap) and is distance preserving.

(2) Symmetry: if A |∗^C
B then B |∗^C

A.

Assume A |∗^C
B. This means for all a ∈ A we have that the closest point in EBCp

to a is ea ∈ ECp . Thus, by Lemma 2.4, for any a ∈ A, for any y ∈ EBCp we have
[a, y]∩ ECp 6= ∅. It follows that for any x ∈ EAp , for any y ∈ EBCp there exists a point
of ECp on [x, y]. Let b ∈ B. Then for any x ∈ EAp there is a point of EpC on [x, b].
It follows that the closest point in EACp to any b ∈ B is in ECp .

Journal of Logic & Analysis 12:3 (2020)



36 S Carlisle and C W Henson

(3) Transitivity: A |∗^C
BD if and only if A |∗^C

B and A |∗^BC
D.

We know ECp ⊆ EBCp ⊆ EBCDp which implies:

dist(a,ECp) ≥ dist(a,EBCp) ≥ dist(a,EBCDp)

Therefore dist(a,EBCDp) = dist(a,ECp) if and only if

dist(a,EBCp) = dist(a,ECp) and dist(a,EBCDp) = dist(a,EBCp).

Hence
A |∗^

C
BD if and only if A |∗^

C
B and A |∗^

BC
D.

(4) Finite character: A |∗^C
B if and only if a |∗^C

B for all finite tuples a ∈ A.

This is clear from the definition.

(5) Extension: for all A,B,C we can find A′ such that tp(A/C) = tp(A′/C) and
A′ |∗^C

B.

By finite character and saturation of U, it suffices to show this statement when A is
a finite tuple. Let e ∈ ECp be the unique point closest to EAp = EAp . Let τ < κ be
the cardinality of EBp . Then there are at most τ -many branches in EBp at any point of
EBp . Since A is finite, use Lemma 7.11 to embed a copy of EAp = EAp on branches at
e that do not intersect EBp . The image of A under this embedding gives us A′ .

(6) Local Character: if a = a1, . . . , am is a finite tuple, there is a countable B0 ⊆ B
such that a |∗^B0

B.

Let ei be the closest point of EpB to ai for i = 1, . . . ,m. Let Bi be a countable subset
of B such that ei is an element of EBip . Let B0 =

⋃m
i Bi .

(7) Stationarity (over arbitrary sets of parameters): if tp(A/C) = tp(A′/C),
A |∗^C

B, and A′ |∗^C
B, then tp(A/BC) = tp(A′/BC), where C is a small submodel

of U.

By quantifier elimination, tp(A/BC) is determined by {tp(a/BC) | a ∈ A} plus the
information {d(a1, a2) | a1, a2 ∈ A}. These distances {d(a1, a2) | a1, a2 ∈ A} are
fixed by tp(A/C). Thus, it suffices to show the conclusion in the case when A = {a}
and A′ = {a′}. If a or a′ is in Cp the conclusion is obvious, so assume a, a′ /∈ Cp.
The type of a (or a′ ) over BC is determined by two parameters, the unique point in
EBCp that is closest to a, and the distance from a to that point. Since a |∗^C

B, it follows
that the closest point in ECp to a is the same as the closest point in EBCp to a, and
the same is true for a′ . Since tp(a/C) =tp(a′/C), we know a and a′ have the same
closest point e in ECp and d(a, e) = d(a′, e). Since e is also the closest point in EBCp

to a and a′ , we know that tp(a/BC) =tp(a′/BC) by Lemma 8.4.
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Canonical Bases

A canonical base of a stationary type is a minimal set of parameters over which that
type is definable. However, to avoid a discussion of definable types, we here use
an equivalent definition of canonical base, as given in Ben Yaacov, Berenstein, and
Henson [3]. As in that paper, we here take advantage of the fact (Lemma 8.9 and part
(7) of the proof of Theorem 9.3) that every type over an arbitrary set of parameters is
stationary.

For stable theories in general, canonical bases exist as sets of imaginary elements,
however, in models of rbRTr , they are sets of ordinary elements. That is, the theory
has built-in canonical bases. Indeed, in this setting they are very simple.

For sets A ⊆ B ⊆ U, and q ∈ Sn(A) we say q′ ∈ Sn(B) is a non-forking extension of q
if b |= q′ implies b |= q and b |̂

A
B. By the definition of independence, the condition

b |̂
A

B implies that the points e1, . . . , en in EAp closest to b1, . . . , bn respectively
must also be the closest points to b1, . . . , bn in EBp . Because rbRTr is stable and
all types are stationary, non-forking extensions are unique. Denote the unique non-
forking extension of q to the set B by q�B . Given a type q over a set A ⊆ U and an
automorphism f of U, f (q) denotes the set of Lr -conditions over f (A) corresponding
to the conditions in q, where each parameter a ∈ A is replaced by its image f (a).

The following is Definition 6.1 from Ben Yaacov, Berenstein, and Henson [3].

9.4 Definition A canonical base Cb(q/A) for a type q ∈ Sn(A) is a subset C ⊆ U
such that for every automorphism f ∈ Aut(U), we have: q�U = f (q)�U if and only if
f fixes each member of C .

The following result describes canonical bases in rbRTr .

9.5 Theorem Let b = (b1, . . . , bn) ∈ Un and A ⊆ U a set of parameters. Let
q ∈ Sn(A) be the type over A of the tuple b. Then a canonical base of q is given by
the set {ei | 1 ≤ i ≤ n}, where ei ∈ EAp is the closest point to bi in EAp . Note that
this set depends only on q.

Proof Let b, A ⊆ U and q ∈ Sn(A) be as described in the statement of the theorem.
Let C = {ei | 1 ≤ i ≤ n} where ei ∈ EAp is the closest point to bi in EAp . First,
assume f is an automorphism of U fixing C pointwise. Let c = (c1, . . . , cn) be a
realization of q�U (in some extension of U). Then c |= q and c |̂

A
U. To show

f (q)�U=q�U it suffices to show that c |= f (q) and c |̂
f (A)

U, because then q�U is the
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unique non-forking extension of f (q) to U. By Lemma 8.4, an n-type over a set A is
determined by the values it assigns to the formulas d(xi, xj) and d(xi, a) for a ∈ Ap.
Note that in f (q), the parameter-free Lr -conditions are the same as in the type q.
So, for example, d(xi, xj) must have the same value in f (q) as in q. Thus, to show
that c |= f (q) we just need to show that d(ci, a) = d(ci, f (a)) for all a ∈ Ap and
i ∈ {1, . . . , n}.

We know c |= q. Thus Lemma 8.4 implies that ei must be the closest point to ci in
EAp . Also, c |̂

A
U implies that ei is also the closest point in U to ci . Since f (EAp) ⊆ U

we know the closest point in f (EAp) to ci is ei = f (ei). Therefore by Lemmas 2.4 and
2.5, we know d(ci, a) = d(ci, ei) + d(ei, a) and d(ci, f (a)) = d(ci, ei) + d(ei, f (a)) for
any a ∈ Ap. Thus,

d(ci, a) = d(ci, ei) + d(ei, a)

= d(ci, ei) + d(f (ei), f (a))

= d(ci, ei) + d(ei, f (a)) = d(ci, f (a))

establishing that c |= f (q).

Since f is an isometry, clearly f (ei) = ei is the closest point to ci in f (EAp). The closed
subtree f (EAp) is equal to the closed subtree Ef (A)p since f ([a, b]) = [ f (a), f (b)] for all
a, b ∈ U and f (p) = p. This implies that c |̂

f (A)
U. We conclude that f (q)�U=q�U .

For the other direction, assume f is an automorphism of U that does not fix all of the
elements of C . Without loss of generality, assume f (e1) 6= e1 . Let (c1, . . . , cn) |= q�U .
Then the closest point in U to c1 is e1 , which is also the closest point to c1 in EAp . Then,
since f (e1) ∈ U, the point e1 must be on the geodesic segment joining f (e1) and c1 ,
so d(f (e1), c1) = d(f (e1), e1) + d(e1, c1). Thus, d(f (e1), e1) = d(f (e1), c1)− d(e1, c1).
Since d(f (e1), e1) 6= 0, then d(f (e1), c1) 6= d(e1, c1). But, d(e1, c1) is the value of the
formula d(e1, x1) in q�U , and by the definition of f (q), the value of d(f (e1), x1) in f (q)
must equal the value of d(e1, x1) in q. So, the L-condition |d(f (e1), x1)−d(e1, c1)| = 0
is in the type f (q), and therefore in the type f (q)�U . Thus, the tuple c = (c1, . . . , cn)
cannot be a realization of f (q)�U , and therefore q�U 6= f (q)�U .

10 Models of rbRTr : Examples

In this section we discuss examples of models of rbRTr from the literature. Our
first examples come from the explicitly described universal R-trees that are treated in
Dyubina and Polterovich [13]. We show that they give exactly the (fully) saturated
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models of rbRTr . Our second examples come from asymptotic cones of hyperbolic
finitely generated groups. They give exactly the unique saturated model of rbRTr of
density 2ω .

We begin with a lemma about the density of a κ-saturated model.

10.1 Lemma Let M |= rbRTr with underlying R-tree (M, d, p), and let κ be an
infinite cardinal.

(1) If there exists a ∈ M with degree κ, then the density character of M is at least
κ.

(2) If M is κ-saturated, then the density character of M is at least κω .

Proof (1) If d(p, a) = r , then there is a single branch at a, namely the branch
containing p. So, we must have d(p, a) < r . Using Lemma 7.7 and taking points on
different branches at a each with distance r from p, we find a collection of κ-many
points such that the distance between any two of them is 2(r − d(p, a)). Thus, the
density character of M must be at least κ.

(2) By Theorem 8.5, at each point in the underlying R-tree of M of M there are at
least κ-many branches. The tree construction from Theorem 8.10 then yields at least
κω -many distinct points with pairwise distances at least r .

Universal R-trees

Next, we review the description of the (isometrically) universal R-trees from Dyubina
and Polterovich [13] and relate them to saturated models of rbRTr .

10.2 Definition Let µ be a cardinal. An R-tree M is called µ-universal if, for any
R-tree N with ≤ µ branches at every point, there is an isometric embedding of N into
M .

10.3 Example ([13, Example 1.1.1 and Lemma 2.1.1]) For each µ ≥ 2 let Cµ be a
set with cardinality µ if µ is infinite, and cardinality µ − 1 if µ is finite. Let Aµ be
the set of functions f : (−∞, ρf ) → Cµ from an arbitrary left-infinite open interval to
Cµ , where f satisfies:

(1) There exists τf ≤ ρf so that f = 0 for all t ∈ (−∞, τf ).
(2) The function f is piecewise constant from the right. That is, for any t ∈ (−∞, ρf )

there exists δ > 0 so that f is constant on [t, t + δ].
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On Aµ define the metric d for distinct f , g by d(f , g) = (ρf − s) + (ρg − s) where
s = sup{t | f (t′) = g(t′)∀t′ < t}.

Dyubina and Polterovich [13] show that Aµ is a complete R-tree with µ-many branches
of infinite height at every point. They also show that Aµ is the unique (up to isometry)
R-tree with µ branches at each point and that it is homogeneous and µ-universal. In
our terminology, for µ ≥ 3 the space Aµ is a complete, unbounded richly branching
R-tree.

Let Mµ be the pointed R-tree obtained by choosing an arbitrary point p ∈ Aµ to be
the base point and takingMµ to be the closed ball in Aµ of radius r centered at p. We
see thatMµ is a model of rbRTr . When µ is infinite,Mµ is µ-saturated by Theorem
8.5 and Mµ has density at least µω by Lemma 10.1(2).

Classical model theory suggests that since rbRTr is complete and κ-stable exactly
when κ = κω , there should be a κ-saturated model of rbRTr with density κ exactly
when κ = κω . Lemma 10.1(2) shows that if rbRTr has a κ-saturated model of density
κ, then we must have κ = κω . We verify here that when κ = κω and we apply the
construction described in the preceding paragraph to µ = κ, we do get the unique
κ-saturated model Mκ of rbRTr of density κ.

To complete the verification, we need to show that when µ is infinite, the density
of Mµ is at most µω . In fact, an examination of the construction shows that the
cardinality of Aµ is at most µω . Conditions (1) and (2) in Example 10.3 imply that
each f ∈ Aµ can only change values at a countable or finite number of points. Indeed,
given f ∈ Aµ , we can inductively build a sequence {tn}n∈N recording where f changes
value as follows. For f ∈ Aµ , let t0 = τf .

Given tn , let tn+1 = sup{t ∈ (−∞, ρf ) | f (t) = f (tn)} if this supremum is < ρf . If
sup{t ∈ (−∞, ρf ) | f (t) = f (tn)} = ρf , then set tn+i = ρf for all i ∈ N.

• If tn = tn+1 , then tn+i = tn = ρf for all i ∈ N.
• f is constant on [tn, tn+1) for each n ∈ N.

For each n ∈ N, let αn ∈ Cµ be the value of f on [tn, tn+1). This gives us a sequence
{αn} of elements of Cµ . The sequences {tn} and {αn} determine f . Thus, the
cardinality of Aµ is at most 2ω · µω = µω .

It follows that the metric density ofMµ is exactly µω . Thus, in the case that µ = µω ,
the model Mµ is a µ-saturated model of rbRTr of density µ, and it is the unique
model with those properties.

In the case that µ = µω , we can get an alternative model-theoretic argument that Aµ is
the unique complete R-tree with µ branches at every point. Given any two complete
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R-trees M1 and M2 with µ-many branches every point, select a base point in each.
Then for each r > 0 the closed r-balls in M1 and M2 (centered at their respective base
points) are saturated models of rbRTr . Hence those r-balls are isomorphic by the fact
that saturated models of a complete theory with the same density are isomorphic. A
back-and-forth argument can be used to build an isomorphism from M to N , where
each time we extend the partial isomorphism to a new point we take its distance from
the base point into account and work in closed r-balls for large enough r .

Asymptotic Cones

A finitely generated group is hyperbolic if its Cayley graph is a δ -hyperbolic metric
space for some δ > 0. A non-elementary hyperbolic group is one that has no cyclic
subgroup of finite index.

10.4 Definition Let (M, d, p) be a metric space. Let U be a non-principal ultrafilter
on N and let (νm)m∈N be a sequence of positive integers such that limm→∞ νm = ∞.
The asymptotic cone of (M, d, p) with respect to (νm)m∈N and U is the ultraprod-
uct of pointed metric spaces

∏
U(M, d/νm, p). Denote this asymptotic cone by

ConU,(νm)(M, d, p). Elements of ConU,(νm)(M, d, p) are denoted [an] where an ∈ M
for each n.

There are versions of this definition that allow, for example, a different choice of base
point in each factor. Keeping the same base point is sufficient for our discussion.

10.5 Example An asymptotic cone ConU,(νm)(G) of a finitely generated group is
defined to be the asymptotic cone of its Cayley graph with base point e and some
designated word metric on G. It is a fact that any asymptotic cone of a hyperbolic
group is an R-tree and is homogeneous (see van den Dries and Wilkie [9] or Drutu
[10]). In fact, in the case of a non-elementary hyperbolic group, all asymptotic cones
are homogeneous with 2ω branches at every point (see [10, Proposition 3.A.7]) and
are thus are isometric to A2ω from Example 10.3. A proof of this fact is given below
(Lemma 10.7).

10.6 Fact Say B and C are both finite generating sets for the hyperbolic group G
and U is a non-principal ultrafilter on N. The word metrics dB and dC are Lipschitz
equivalent (and the corresponding Cayley graphs are quasi-isometric). It follows that
the asymptotic cones ConU,(νm)(G, dB, e) and ConU,(νm)(G, dC, e) are homeomorphic.

Journal of Logic & Analysis 12:3 (2020)



42 S Carlisle and C W Henson

10.7 Lemma Let G be a non-elementary hyperbolic group. Let U be a non-
principal ultrafilter on N and let {νm}m∈N be a sequence of positive integers such
that limm→∞ νm = ∞. Then for any finite generating set C for G, the asymptotic
cone ConU,(νm)(G, dC, e) is a homogeneous richly branching R-tree with 2ω -many
branches at every point.

Proof Since G is finitely generated, we know that G is countable. Therefore, any
asymptotic cone of G has cardinality (and therefore density) at most 2ω . By Lemma
10.1 we conclude that any point in the cone can have at most 2ω branches. We also
know ConU,(νm)(G, dC, e) is a homogeneous R-tree. Since it is non-elementary G
contains a free subgroup F with 2 generators (See Bridson and Haefliger [7]). By
Fact 10.6 we may assume without loss of generality that the generators of F are also
generators of G and that C is a minimal set of generators. In F , for each m ∈ N, we can
find a finite set Cm such that d(e, a) ≥ νm for any a ∈ Cm and so that (a · b)e ≤

√
νm

for distinct a, b ∈ Cm . The Cayley graph of F is a subgraph of the Cayley graph of G,
and the Cayley graph of a free group is an R-tree, thus we use R-tree terminology to
describe how to find Cm .

Given m ∈ N>0 let nm be the largest integer so that nm ≤
√
νm . Note that nm →∞.

There are 4 · 3nm−1 elements of F with distance nm from e. Let c denote such an
element. There are 3 branches at c in the Cayley graph of F that do not contain e. On
each of these branches, choose a point a with d(a, e) ≥ νm . Repeat this process for
each c with distance nm from e. Let Cm be the collection of all the points a. Then
|Cm| = 4 · 3nm , and since nm →∞ we know |Cm| → ∞. For any distinct a, b ∈ Cm ,
the distance from e to [a, b] is at most nm ≤

√
νm , because [a, b] will always contain

at least one of the points in F with distance nm from e.

Since |Cm| → ∞ and U is a non-principal ultrafilter on N, we know that ΠmCm/U is
a set of points in the asymptotic cone with cardinality 2ω . Moreover, in the asymptotic
cone we have

d([am], [e]) = lim
U

dC(am, e)
νm

≥ 1.

Since (am · bm)e ≤
√
νm , we know the distance from [e] to the geodesic segment

connecting [am] and [bm] is

([am] · [bm])[e] = lim
U

(am · bm)e

νm
= 0.

Thus, [e] ∈ [[am], [bm]], putting [am] and [bm] on separate branches at [e]. This gives
us 2ω -many distinct branches at [e] in ConU,(νm)(G, dC, e). Therefore, there must be
2ω -many branches at every point in the cone.
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10.8 Corollary Let G be a non-elementary hyperbolic group. LetM be the model of
rbRTr with underlying space equal to the closed r-ball of ConU,(νm)(G, dC, e). Then
M is the unique saturated model of rbRTr of density 2ω .

Proof By the preceding lemma and Lemma 10.1, we know M has density 2ω and
M is 2ω -saturated by Lemma 8.5.

11 Models of rbRTr : Constructions and non-categoricity

In this section we show that rbRTr has the maximum number of models of density
character κ for every infinite cardinal κ. Indeed, for each κ we construct a family of 2κ -
many such models such that no two members of the family are homeomorphic. (Two
models of rbRTr are homeomorphic if their underlying R-trees are homeomorphic
by a map that takes base point to base point. Note that non-homeomorphic models
of rbRTr are necessarily non-isomorphic.) First we treat separable models, and the
amalgamation techniques used in that case also allow us to characterize the principal
types of rbRTr and to show that this theory has no atomic model. Then we use simple
amalgamation constructions to handle nonseparable models.

11.1 Lemma Let S be a non-empty set of integers, each of which is ≥ 3. There exists
a separable richly branching R-tree M such that

(1) for each k ∈ S the set {x ∈ M | x has degree k} is dense in M , and
(2) given a branch point x ∈ M the degree of x is an element of S .

Proof Let (kj | j ∈ N) be a sequence such that every element of S appears infinitely
many times in the sequence, and every term of the sequence is an element of S . We
construct an increasing sequence N0 ⊆ N1 ⊆ · · · ⊆ Nj . . . of separable R-trees as
follows.

Let N0 be the R-tree R with base point 0. Let A0 be a countable, dense subset of
N0 . Use Lemma 6.1 to add k0 − 2 distinct rays (copies of R≥0 ) at each point in A0 ,
bringing the number of branches of infinite length at each point in A0 up to k0 . Call
the resulting R-tree N1 . Note that N0 ⊆ N1 . The R-tree N1 is separable, since it is a
countable union of separable spaces. Note also that all the points in N1 \ A0 only have
2 branches, and it is straightforward to show N1 \ A0 is uncountable and dense in N1 .

Once Nj has been constructed, to construct Nj+1 let Aj ⊂ Nj \ (∪j−1
i=0Aj) be a countable,

dense subset of Nj . This is possible since Nj \ (∪j−1
i=0Aj) is dense in Nj . Use Lemma
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6.1 to add kj − 2 rays at each point in Aj , bringing the number of branches of infinite
length at each point in Aj up to kj . The resulting R-tree is Nj+1 . Note that Nj+1

is separable, since it is a countable union of separable spaces. Note also that all the
points in Nj+1 \ ∪j

j=0Aj still only have 2 branches, and that this set is uncountable and
dense in Nj+1 . Lastly, it is clear that given x ∈ Nj+1 the number of branches at x must
be either 2 (in which case x is not a “branch point") or one of {k0, . . . , kj}. This is
because at the jth step, the only points at which we add rays are those in Aj , and then
in subsequent steps we do not add rays at any of those points.

Let M = ∪j∈NNj be the union of this countable chain of separable R-trees. Then M
is a separable R-tree (see Chiswell [8, Lemma 2.1.14].) Since for each Nj the number
of branches at each branch point is an element of S , this will also be true in M . Let
k ∈ S . Let J(k) = {j ∈ N | kj = k}. By how we chose the sequence (kj) the set J(k)
is infinite. The set of points in M which have exactly k branches is ∪j∈J(k)Aj . We will
show this set is dense in M . Let x ∈ M . Let jx ∈ N be the smallest integer such that
x ∈ Njx . Let j∗ ∈ J(k) be such that j∗ > jx . We know that Aj∗ is dense in Nj∗ , and that
x ∈ Njx ⊆ Nj∗ . Therefore, there are points in Aj∗ ⊆ ∪j∈J(k)Aj arbitrarily close to x . Our
choice of x ∈ M was arbitrary, therefore ∪j∈J(k)Aj is dense in M . Because we chose a
non-empty S with members all ≥ 3 the set of branch points with at least 3 branches of
infinite length is dense in M . Therefore, M is a richly branching R-tree.

11.2 Remark In the preceding proof, we did not use the fact that we are considering
homeomorphisms of pointed topological spaces. The R-trees constructed in Lemma
11.1 are in fact non-homeomorphic, even when we are not required to preserve the
base point.

11.3 Theorem There exist 2ω -many pairwise non-homeomorphic (hence non-iso-
morphic) separable models of rbRTr .

Proof Any homeomorphism g between models M and N of rbRTr is a homeo-
morphism on the underlying R-trees which must preserve branching. In particular,
given n ∈ N≥3 , if there is a point with degree n in M , then there must be a point
with degree n in N . Choose two different subsets S and S′ of N≥3 , and construct a
richly branching tree for each as in Lemma 11.1. Let M and M′ be the models of
rbRTr based on the completions of their closed r-balls, respectively. By Lemma 2.18,
taking the completion only adds points of degree 1. It follows thatM andM′ cannot
be homeomorphic. Since there are 2ω -many different such sets S , there are 2ω -many
different non-homeomorphic, separable models of rbRTr .
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Recall that given a continuous theory T , a type q ∈ Sn(T) is principal if for every
modelM of T , the set q(M) of realizations of q inM is definable over the empty set.
As in classical first order logic, given a complete theory in a countable signature, there
is a Engeler-Ryll-Nardzewski-Svenonius theorem stating the equivalence between ω -
categoricity and the fact that every type is principal. (See Ben Yaacov, Berenstein,
Henson and Usvyatsov [4, Theorem 12.2].) Furthermore, a type q is principal if and
only if q is realized in every model of T . (See [4, Theorem 12.6].)

Theorem 11.3 obviously implies that rbRTr is not ω -categorical, and thus not every
type of rbRTr is principal. Our next result gives a characterization of the principal
types in Sn(rbRTr). In particular, a principal type is the type of a tuple of points that
all lie along a single piecewise segment with p as an endpoint. Thus, there are very
few of them. As a consequence, we conclude that rbRTr does not have a prime model
(equivalently, does not have an atomic model, one in which only principal types are
realized).

For a clear and comprehensive treatment of separable models in continuous model
theory, we refer the reader to Section 1 in Ben Yaacov and Usvyatsov [5]. Note
that where we and Ben Yaacov, Berenstein, Henson and Usvyatsov [4] use the word
principal, the authors of [5] use isolated, which is now the standard terminology. In
([5, Theorem 1.11]) they prove an omitting types theorem, and as a corollary ([5,
Corollary 1.13]) show that nonprincipal types can be omitted. Further, it follows from
[5, Definition 1.7] and properties of definable sets in continuous model theory, that
every principal type is realized in every model, and this is implicit in the discussion
following that definition.

11.4 Theorem Let q ∈ Sn(rbRTr). The following are equivalent:

(1) The type q is principal.
(2) There exists a permutation σ of {1, . . . , n} such that q contains the condition

d(p, xσ(n)) = d(p, xσ(1)) +

n−1∑
i=1

d(xσ(i), xσ(i+1)).

(3) There exists a permutation σ of {1, . . . , n} such that for any modelM of rbRTr

and (b1, . . . , bn) ∈ Mn that realizes q inM, we have that [p, bσ(1), . . . , bσ(n)] is
a piecewise segment in M.

Proof That (2) and (3) are equivalent (for the same permutation σ ) follows from
Chiswell [8, Lemma 2.1.4]. See the discussion after Definition 2.6.
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We show (1) implies (3) by proving the contrapositive. Let M |= rbRTr and suppose
(b1, . . . , bn) ∈ Mn realizes q in M. For each i let ti be the number d(p, bi). Choose
j ∈ {1, . . . , n} such that d(p, bj) ≥ d(p, bi) holds for every i ∈ {1, . . . , n}. If (3) fails,
there must be i such that bi is not on the segment [p, bj]. Note that this implies that
p, bi, bj are distinct, so ti and tj are > 0. (If d(p, pj) = 0 then d(p, bi) = 0 for all i,
meaning that b1 = . . . bn = p, contradicting the assumption that (3) fails.)

Let e = Y(p, bi, bj) be the closest point to bi on the segment [p, bj]. If e = bj , then

d(p, bi) = d(p, e) + d(e, bi) = d(p, bj) + d(bj, bi) > d(p, bj)

which is a contradiction. This leaves two possibilities.

Case 1: Assume e = p. Then bi and bj are on different branches at p, so q contains the
conditions d(xi, xj) = d(p, xi) + d(p, xj), d(p, xi) = ti and d(p, xj) = tj . It follows that
whenever (c1, . . . , cn) realizes q in any model N of rbRTr , the points ci and cj must
be on different branches at p. However, using techniques as in 11.1, we can construct
N |= rbRTr in which there is only a single branch at p. Then q is not realized in N
and thus q is not principal.

Case 2: Assume e 6= p. Then p and bj are on different branches at e, and Lemma
2.5 implies that e ∈ [p, bi] and e ∈ [bi, bj]. So p, bi, bj , being 3 distinct points, are
on 3 distinct branches at e = Y(p, bi, bj). As discussed in the preceding case, these
properties of p, bi, bj are witnessed by conditions in q; also, q contains the condition
d(p,Y(p, xi, xj)) = t for some t ∈ (0, r]. It follows that in any model of rbRTr in
which q is realized, there must be a point c whose distance from p is t and at which
the model has 3 branches. Using techniques discussed earlier in this section, we may
build a model N in which there are no branch points at distance t from p. Then q is
not realized in N , implying that q is not a principal type.

Last, we show (3) implies (1). Let q ∈ Sn(rbRTr) be a type satisfying the conditions
in (3) (and hence in (2)) with permutation σ . Then d(p, xσ(n))q ≥ d(p, xσ(i))q for all
i ∈ {1, .., n}. Take any model M |= rbRTr . Then there is at least one branch at
the base point p, and by Lemma 7.7 along this branch we can find a point b so that
d(p, b) = d(p, xσ(n))q . On the segment [p, b] we can find points b1, . . . , bn such that
d(p, bσ(i)) = d(p, xσ(i))q for all i. From this it follows that (b1, . . . , bn) realizes q in
M. Since q is realized in every model of rbRTr , it is a principal type.

11.5 Corollary The L-theory rbRTr has no prime model.

Proof Assume rbRTr has a prime modelM with underlying R-tree (M, d, p). Then
M is atomic and the type of any tuple b1, . . . , bn must be principal. By the preceding
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theorem, this means that for any pair b1, b2 in M , either b1 ∈ [p, b2] or b2 ∈ [p, b1].
It follows that M consists of a piecewise segment with endpoint p. In particular, M
is not richly branching, which is a contradiction.

We finish this section by showing that when κ is uncountable, then the number of
different models of rbRTr having density character equal to κ is also the maximum
possible, namely 2κ . As in the case κ = ω , which was treated in the first part of
this section, we produce large sets of models that are not only non-isomorphic, but
in fact have underlying R-trees which are non-homeomorphic (as pointed topological
spaces).

We will carry out the construction by induction on κ, and we begin with a useful
lemma.

11.6 Lemma Let κ be an uncountable cardinal. The following conditions are equiv-
alent:

(1) The number of non-homeomorphic models of rbRTr of density character ≤ κ

is at least κ.
(2) The number of non-homeomorphic models of rbRTr of density character ≤ κ

that have just one branch at the base point is at least κ.
(3) The number of non-homeomorphic models of rbRTr of density character = κ

is 2κ .

Proof Let κ be an uncountable cardinal. Clearly, (3) implies (1). To show (2) implies
(3), assume (2) and let (Bα | α < κ) be a list of the pairwise non-homeomorphic
models of rbRTr , each with density character ≤ κ and exactly one branch at the base
point. Given a subset S ⊆ κ of cardinality = κ, take the collection of Bα for α ∈ S
and glue them all together at their base points using Theorem 6.4. Call this amalgam
MS , and let p be the point in MS at which the Bα are all glued together. Make p the
base point of the Lr -structure MS . Note that the density character of MS is exactly
κ, since each branch of its underlying R-tree MS at p has density ≤ κ, and there are
exactly κ-many branches at p. Moreover, it is easy to check that MS is a model of
rbRTr .

By this construction, if B ranges over the branches of MS at p, the homeomorphism
type of B ∪ {p} (with p as distinguished element) ranges bijectively over the home-
omorphism types of Bα (also with p as distinguished element) as α ranges over S .
It follows that the homeomorphism type of MS determines S . Therefore the family
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{MS | S ⊆ κ and S has cardinality = κ} verifies condition (3), since κ has 2κ -many
subsets of cardinality = κ.

Finally, we prove that (1) implies (2). For each model M of rbRTr , let b(M) denote
the number of branches of M at its base point; we take this to be a positive integer
or ∞, where b(M) = ∞ means that there are infinitely many branches. Since κ is
uncountable, condition (1) yields a class K of at least κ-many non-homeomorphic
models of rbRTr , each of density character ≤ κ, such that b(M) has a constant value b
as M ranges over K . We may assume b 6= 1, since otherwise condition (2) is satisfied
by the models in K .

Let a be an integer ≥ 3 that is different from b + 1. ( Note that a 6= b + 1 is
automatically true if b is ∞.) Using a method similar to that in the proof of Lemma
11.1, we may take N = (N, d, p) to be a separable model of rbRTr with the following
properties: (1) for all x in N , the number of branches in N at x is 1 or 2 or a; (2) N
has a single branch at its base point p; and (3) N has a single branch at some point
y, where dN (p, y) = r/2. To get single branches at 2 points with a given distance
as required here, proceed as in the proof of Lemma 11.1, starting with the interval
[0, r/2] ⊆ R instead of R, and in subsequent steps always exclude 0 and r/2 from the
sets of points where rays are added.

Now consider an arbitrary M ∈ K , and denote the base point of M by q. Scale the
metric on M down by a factor of 2, resulting in an Lr -structure with a radius of r/2.
We construct a larger R-tree M∗ by amalgamating the scaled-down M and N in the
way that identifies q and y; we will denote this point of M∗ by qy. We take the base
point of M∗ to be the base point p of N . The radius of M∗ is r , because the radius
of N was r , and by our amalgamation construction, for every point x ∈ M∗ residing
in the scaled down copy of M ,

dM
∗
(p, x) = dM

∗
(p, qy) + dM

∗
(qy, x) =

r
2

+
dM(y, x)

2
which attains its maximum value r as x ranges over the scaled down copy of M .

It is straightforward to check that M∗ is a model of rbRTr , has density ≤ κ, and has
a single branch at its base point. Note that the branches of M∗ at the amalgamated
point qy consist of the branches of q in M together with the tree that results from N
by removing y. In particular, this means that M∗ has b + 1-many branches at qy.

We claim that the class K∗ = {M∗ | M ∈ K} verifies condition (3); it remains
only to show that no two members of this class are homeomorphic. (Recall that the
homeomorphisms we consider must take base point to base point.) The key to this is
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the fact that the point qy can be topologically identified in M∗ , given that we know
the base point p. To do this, note first that the segment X = [p, qy) in M∗ is identical
to the segment [p, y) in N , and every point in X has the same number of branches in
M∗ as in N . Therefore every point x of X has 1, 2, or a-many branches in M∗ , and
thus the number of branches at x is different from the number of branches at qy. From
this we conclude that for any M1,M2 ∈ K , any homeomorphism of M∗1 onto M∗2
that takes base point to base point must map the scaled version of M1 onto the scaled
version of M2 . Since this can only happen when M1 = M2 , by assumption on K ,
we conclude that M∗1 =M∗2 , as desired.

11.7 Theorem Let κ be an uncountable cardinal. The number of non-homeomorphic
models of rbRTr of density character equal to κ is 2κ .

Proof We assume that σ is the least uncountable cardinal at which there are strictly
fewer than 2σ -many non-homeomorphic models of density character equal to σ , and
derive a contradiction. Using Theorem 11.3, we see that condition (1) in Theorem
11.6 holds when κ = ω1 ; condition (3) in that result yields that rbRTr has 2ω1 -many
non-homeomorphic models of density character equal to ω1 . Thus σ > ω1 . Now
suppose σ is a successor cardinal; say it is the next cardinal bigger than λ, which
must be uncountable. Our choice of σ ensures that there must be 2λ ≥ σ -many
non-homeomorphic models of density character λ. Applying Lemma 11.6 with κ = σ

gives a contradiction; indeed, we have verified condition (1), while condition (3) is
false. So σ must be a limit cardinal. Let τ be the number of non-homeomorphic
models of rbRTr that have density character ≤ σ ; our treatment of ω1 shows that τ is
uncountable. Furthermore, Lemma 11.6 applied to κ = σ yields τ < σ . Our choice
of σ ensures that there are 2τ > τ -many non-homeomorphic models of rbRTr that
have density character τ , contradicting the definition of τ .

12 Unbounded R-trees

As noted in the Introduction, we have chosen to treat bounded pointed R-trees in this
paper, because many of the model-theoretic ideas and tools we need from continuous
first order logic are only documented for bounded metric structures in the literature.

However, it would certainly be a natural research topic to study the model theory
of unbounded (ie, not necessarily bounded) pointed R-trees. The most immediately
available setting for doing this would be to consider a pointed R-tree (M, p) as a
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many-sorted metric structure in which each sort is one of the (closed) bounded balls
of (M, p) (centered at p), and the union of the family of distinguished balls is all
of M . Everything done in this paper can easily be carried over to that setting. The
disadvantages of doing so are the technical awkwardness of the many-sorted framework
and the need for imposing an arbitrary family of radii for the bounded balls into which
the full tree is stratified.

It is certainly more mathematically natural to consider pointed R-trees on their own,
without imposing a many-sorted stratification. There are suitable logics for doing
model theory with such unbounded structures. For example, a version of continuous
first order logic for unbounded metric structures is described in Ben Yaacov [1]. Also,
a logic based on positive bounded formulas and an associated concept of approximate
satisfaction is presented in Section 6 of Dueñez and Iovino [11]. However, for neither
of these approaches are the ideas and tools of model theory developed as we need them
in this paper.

In each of these three available settings for treating arbitrary pointed R-trees, the
arguments in this paper can be used easily to demonstrate: (1) the class of pointed R-
trees is axiomatizable and (2) for each r > 0, the ball {x | d(x, p) ≤ r} is a definable
set (over ∅, uniformly in all pointed R-trees). Together with what is developed in
Ben Yaacov, Berenstein, Henson and Usvyatsov [4] as well as in Ben Yaacov [1] and
in Dueñez and Iovino [11], this quickly yields that the model theoretic frameworks
for pointed R-trees provided by these three settings are completely equivalent. In
particular, this approach yields a model companion for the theory of pointed R-trees
whose models are exactly the richly branching R-trees (ie, the complete pointed R-
trees described in Remark 7.2). Furthermore, this model companion has suitably stated
versions of all the properties of rbRTr that are proved in this paper.
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