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Abstract: Exact representations of real numbers such as the signed digit repre-
sentation or more generally linear fractional representations or the infinite Gray
code represent real numbers as infinite streams of digits. In earlier work by the
first author it was shown how to extract certified algorithms working with the
signed digit representations from constructive proofs. In this paper we lay the
foundation for doing a similar thing with nonempty compact sets. It turns out that
a representation by streams of finitely many digits is impossible and instead trees
are needed.
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1 Introduction

Digital representations of real numbers have been widely studied in the literature.
Probably best known is the signed digit representation as considered in Ciaffaglione
and Di Gianantonio [7], Escardó and Marcel-Romero [12] Berger and Hou [4] and
many others, where a real number in [−1, 1] is represented by a stream of signed digits
−1, 0, 1, a digit d representing the mapping x 7→ (x + d)/2. This has been generalized
to linear fractional representations studied in Edalat and Sünderhauf [11] as well as
Edalat and Heckmann [9] where digits represent maps of the form x 7→ (ax+b)/(cx+d).
A variant of the signed digit representation is the infinite Gray code introduced by
Tsuiki [14] which represents real numbers in [−1, 1] by a binary stream with possibly
one undefined entry. The infinite Gray code has the remarkable property that it is
non-redundant, that is, every real has exactly one code.

Berger [2] showed how to use the method of program extraction from proofs (see eg
Schwichtenberg and Wainer [13]) to extract certified algorithms working with the signed
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digit representations. In this paper we lay the foundation for doing a similar thing with
nonempty compact sets.

In the first part of the paper (Section 2 to Section 5) we develop our approach in the style
of classical mathematics speaking explicitly about representations. In Section 2 we
generalize the signed digit representation to digit spaces (X,D), that is, we replace the
interval [−1, 1] by a complete bounded metric space X and the signed digits by a finite
set D of contractions whose images cover X . In Section 3 and Section 4 we introduce
the hyper-space of nonempty compact sets and develop a representation of compact
sets by non-wellfounded trees of digits, after having shown that in most situations a
representation by streams of digits is impossible. In Section 5 we compare the notion of
computability for compact sets generated by our tree representation with those studied
by Brattka and Presser [6].

In the second part (Section 6 to Section 8) we recast the approach constructively in a
representation free way. We introduce a coinductive predicate on the powerset of X
whose realizers are trees representing nonempty compact subsets of X generalizing
the coinductive approach to the signed digit representation studied by Berger [2]. We
sketch how this approach can be used to extract programs computing with compact sets
from constructive proofs and comment on the relation to iterated function systems as
studied by Edalat [8]. The Cantor set is considered as an example.

2 Digit spaces

A metric space X with metric µ is called bounded if there exists a number M ≥ 0,
called bound of X , such that µ(x, y) ≤ M for all x, y ∈ X . A contraction on X is a
function d : X → X such that there exists a number q < 1, called contraction factor,
with µ(d(x), d(y)) ≤ q · µ(x, y) for all x, y ∈ X .

Definition 2.1 A digit space (X,D) consists of a bounded and complete nonempty
metric space X and a finite set D of contractions on X , called digits, that cover X , that
is,

⋃
{ d[X] | d ∈ D } = X , where d[X] := { d(x) | x ∈ X } .

Our running example of a digit space will be the signed digit space (I,AV) where I :=
[−1, 1] ⊆ R with the usual metric and AV := { avi | i ∈ SD } with SD := {−1, 0, 1}
and avi(x) := (x + i)/2. By a slight abuse of notation we will call both the elements of
AV and of SD signed digits or just digits.
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In the following we identify a finite sequence of digits ~d = [d0, . . . , dn−1] ∈ Dn with
the composition d0 ◦ · · · ◦ dn−1 and a digit d with the singleton sequence [d] ∈ D1 .
The set of all finite sequences of digits will be denoted by D<ω . Moreover, we let q < 1
be a common contraction factor for all digits d ∈ D.

Lemma 2.2 Every digit space is compact, that is, the underlying metric space is
compact.

Proof Let D = (X,D) be a digit space. It suffices to show that X is totally bounded.
So let ε > 0. Let n ∈ N be so large that qn ·M < ε where q is a common contraction
factor for each d ∈ D. Then for arbitrarily chosen x ∈ X , the set {~d(x) | ~d ∈ Dn } is a
finite ε-covering, ie the ‖Dn‖ many balls Bµ(~d(x), ε) of radius ε around ~d(x) cover
X .

Conversely, every compact metric space is bounded, since the metric is continuous.
Note that for any x0 ∈ X , the set of all elements ~d(x0) with ~d ∈ D<ω is dense in X .

The purpose of a digit space is to provide representations for the elements of X by
infinite streams of digits. Let Dω be the set of all infinite sequences of elements of D
and set for α ∈ Dω :

α<n := [α0, . . . , αn−1]

Lemma 2.3 Let (X,D) be a digit space. Then
⋂

n∈N α
<n[X] is a singleton for every

α ∈ Dω .

Proof Since digits are continuous and X is compact, the set α<n[X] is compact as
well. As X is Hausdorff, it is closed in particular. Moreover, it is nonempty, since X is
nonempty. Since clearly α<n+1[X] ⊆ α<n[X], the family (α<n[X])n∈N has the finite
intersection property. Therefore,

⋂
n∈N α

<n is not empty. On the other hand,

sup{µ(x, y) | x, y ∈ α<n[X] } ≤ qn ·M,

which implies that sup{µ(x, y) | x, y ∈ α<n[X] } → 0, as n → ∞. Consequently,
||
⋂

n∈N α
<n[X]|| ≤ 1.

Definition 2.4 Let (X,D) be a digit space and α ∈ Dω . In view of Lemma 2.3, we let
[[α]] ∈ X denote the uniquely determined element of

⋂
n∈N α

<n[X].

Note that for every infinite sequence α0α1 . . . of digits and every digit d , dα0α1 . . . is
an infinite sequence of digits as well.
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Lemma 2.5 For every d ∈ D and α ∈ Dω , [[dα]] = d([[α]]).

Proof We have that d[{[[α]]}] ⊆ d[
⋂

n∈N α
<n[X]] ⊆ d[α<m[X]], for all m ∈ N,

and hence that {d([[α]])} ⊆
⋂

n∈N(dα)<n[X] = {[[dα]]}. Consequently, [[dα]] =

d([[α]]).

The next technical lemma will be useful in what follows.

Lemma 2.6 Let ~d ∈ Dn . Then, for every x ∈ ~d[X], there is some α ∈ Dω with
α<n = ~d and [[α]] = x .

Proof Let x ∈ ~d[X] and let y ∈ X such that x = ~d(y). By the covering property
of D, there exist e ∈ D and z ∈ X such that y = e(z). Hence x = (~de)(z), in
particular x ∈ (~de)[X]. By dependent choice, there is some α ∈ Dω with α<n = ~d and
x ∈ α<m[X] for all m ≥ n, hence [[α]] = x .

As is well known, Dω is a compact bounded metric space with metric

δ(α, β) :=

{
0 if α = β,

2−min{ n | αn 6= βn } otherwise.

Proposition 2.7 (1) [[·]] : Dω → X is onto and uniformly continuous.

(2) The metric topology in X is equivalent to the quotient topology induced by [[·]].

Proof (1) As a consequence of the preceding lemma, [[·]] is onto. For the verification
of the remaining statement let α, β be distinct elements of Dω . Then

[[α]], [[β]] ∈ α<min { n | αn 6= βn } [X],

and therefore

(1) µ([[α]], [[β]]) ≤ qmin { n | αn 6= βn } ·M.

By definition of δ(α, β), min { n | αn 6= βn } = − log2 δ(α.β). It follows that

µ([[α]], [[β]]) ≤ q− log2 δ(α,β) ·M
= 2− log2 q·log2 δ(α,β) ·M = δ(α, β)− log2 q ·M,

(2)

from which we obtain that [[·]] is uniformly continuous.

(2) We have to show that for any subset O of X , O is open in the metric topology if and
only if [[·]]−1[O] is open in the metric topology on Dω .

Journal of Logic & Analysis 8:3 (2016)
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The ‘only-if’-part holds as [[·]] is continuous. For the other direction assume that
[[·]]−1[O] is open in Dω and x ∈ O. We need to show that x lies in the interior of O.

Since x ∈ O, there is some α ∈ Dω so that [[α]] = x . Hence, α ∈ [[·]]−1[O]. Since the
latter set is open, there is some mα ∈ N with Bδ(α, 2−mα) ⊆ [[·]]−1[O], which means
that [[β]] ∈ O, for all β ∈ Dω with δ(α, β) < 2−mα .

Claim 1 ∃m ∈ N ∀α, β ∈ Dω [δ(α, β) < 2−m ∧ [[α]] = x⇒ [[β]] ∈ O]

In words, there exists a natural number m such that for all sequences α and β in Dω

the first m elements of which coincide, if [[α]] = x then [[β]] ∈ O.

Since [[·]] is continuous, we have that [[·]]−1[{x}] is closed and hence compact.
Moreover,

[[·]]−1[{x}] ⊆
⋃
{Bδ(α, 2−mα+1) | [[α]] = x }.

Hence, there exist α1, . . . , αn ∈ Dω with [[αi]] = x , for 1 ≤ i ≤ n, so that

[[·]]−1[{x}] ⊆
⋃
{Bδ(αi, 2−mαi +1) | 1 ≤ i ≤ n }.

Set m := max {mαi | 1 ≤ i ≤ n } + 1 and let α, β ∈ Dω with [[α]] = x . Then there is
some 1 ≤ i ≤ n with δ(α, αi) < 2−mαi +1 . It follows that

δ(αi, β) ≤ δ(αi, α) + δ(α, β) < 2−mαi +1 + 2−m ≤ 2−mαi .

Hence, [[β]] ∈ O. Thus, Claim 1 is proven.

Let m be as in Claim 1 and set E := {~d ∈ Dm+1 | ~d[X] ⊆ O } as well as

A :=
⋃
{~e [X] | ~e ∈ E } and B :=

⋃
{~e [X] | ~e ∈ Dm+1 \ E }.

Then A and B are closed sets (since they are finite unions of compact, hence closed
sets) that cover X . Furthermore, A ⊆ O. It follows that X \ B is an open subset of
O. Therefore, it suffices to show that x ∈ X \ B. Assume to the contrary that x ∈ B.
Then there is some ~e ∈ Dm+1 such that x ∈ ~e [X] and there exists some y ∈ ~e [X] \ O.
With Lemma 2.6 it moreover follows that there are α, β ∈ Dω with prefix ~e such that
[[α]] = x and [[β]] = y. Thus δ(α, β) < 2−m . With Claim 1 we therefore obtain that
y ∈ O, a contradiction.

Note that the proof of Proposition 2.7(1) shows that [[·]] is even Hölder continuous
of order − log2 q. In particular if q ≤ 1/2, then [[·]] is Lipschitz-continuous with
Lipschitz constant M .

Continuous images of compact sets are compact again. The next result is therefore a
consequence of Proposition 2.7.
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Corollary 2.8 Let C ⊆ Dω be compact. Then [[C]] is a compact subset of X .

Conversely, if A ⊆ X is compact, then A is closed, as X is Hausdorff. Hence,
C := [[·]]−1[A] is closed as well. Since Dω is compact, it follows that C is compact too.
Moreover, [[C]] = A, because [[·]] is onto.

Lemma 2.9 Let A be a compact subset of X . Then there is a compact subset C of Dω

with [[C]] = A.

3 Compact sets and the Hausdorff metric

We start this section by deriving some facts about metric digit spaces needed in the
sequel.

Definition 3.1 Let (X, µ) be a metric space and ε ∈ R+ . Then a subset E of X is an
ε–chain if µ(x, y) ≥ ε, for all x, y ∈ E such that x 6= y.

Lemma 3.2 Let (X,D) be a digit space such that (X, µ) is bounded with bound M .
Moreover, let q be a uniform contraction factor for all digits in D. Then the size of
every qn ·M–chain in X is bounded by ‖D‖n .

Proof Let E be a qn ·M–chain in X . Because of the covering property we have that
X =

⋃
{~d[X] | ~d ∈ Dn }. Now, let x, y ∈ E with x 6= y and assume that there is some

~d ∈ Dn so that x, y ∈ ~d[X]. Then there are x′, y′ ∈ X with x = ~d(x′) and y = ~d(y′).
Hence

(3) µ(x, y) ≤ qn · µ(x′, y′).

Since M is a bound of X , we have that µ(x′, y′) ≤ M . On the other hand, µ(x, y) ≥ qn ·M ,
as E is a qn ·M–chain. With (3) it thus follows that qn ·M < qn ·M , a contradiction.
Hence, ‖E ∩ ~d[X]‖ ≤ 1, for each ~d ∈ Dn . Thus, ‖E‖ ≤ ‖D‖n .

For a metric space (X, µ) we denote by K(X) the set of nonempty compact subsets of
X . The Hausdorff metric, µH , on K(X) is defined by the formula

µH(A,B) := inf{ ε ≥ 0 | A ⊆ Bµ(B, ε) ∧ B ⊆ Bµ(A, ε) },

where Bµ(A, ε) := { x ∈ X | ∃y ∈ Aµ(x, y) < ε }.

The subsequent properties are often useful. Let to this end

µ(A, y) := infx∈A µ(x, y) and µA(B) := supy∈B µ(A, y).
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Lemma 3.3 For x, y ∈ X , A,A′,B,B′ ∈ K(X) and a contraction d : X → X the
following statements hold:

(1) µH({x}, {y}) = µ(x, y)

(2) µH(A,B) = max{µA(B), µB(A)}
(3) µH(A ∪ A′,B ∪ B′) ≤ max{µH(A,B), µH(A′,B′)}
(4) µH(d[A], d[B]) ≤ q · µH(A,B)

Note that K(X) has the same bound M as X . Moreover, it is well-known that K(X)
inherits completeness and compactness from X . However, we cannot expect K(X) to
have a finite covering system of contractions as we show in the following.

Lemma 3.4 Let (X, µ) be a bounded metric space and ε ∈ R+ . If X has an ε–chain
E of size m, then K(X) has an ε–chain of size 2m − 1.

Proof It suffices to show that the collection of all nonempty subsets of E is an ε–chain
with respect to the Hausdorff metric. Let A,B be two different nonempty subsets of
E . We have to show that µH(A,B) ≥ ε. Since A 6= B, A \ B or B \ A are not empty.
Without restriction we consider the first case. Let x ∈ A \ B and z ∈ B. Then x 6= z
and hence µ(x, z) ≥ ε. It follows that µH(A,B) ≥ ε.

Corollary 3.5 Let (X, µ) be a bounded metric space and K(X) have a finite set of
digits. Then there are constants c1, c2 ∈ R such that for every 2−n –chain E in X ,
‖E‖ ≤ c1 · n + c2 .

Proof Let M be a bound of X , D be the set of digits of K(X) of size k and q be a
uniform contraction factor of the digits in D. If E′ is a qm ·M–chain in X , it follows
with Lemma 3.4 that K(X) has a qm ·M–chain of size 2‖E

′‖ − 1. By Lemma 3.2 we
therefore have that 2‖E

′‖ ≤ km + 1 ≤ km+1 . Thus,

‖E′‖ ≤ log2(km+1) = (m + 1) · log2 k.

Now, let E be a 2−n –chain in X and m = b n+log2 M
− log2 q c. Then

qm ·M ≤ q
n+log2 M
− log2 q ·M = (2log2 q)

n+log2 M
− log2 q ·M = 2−n.

It follows that E is a qm ·M–chain as well. Therefore, by the above:

‖E‖ ≤ m · log2 k + log2 k

≤ log2 k
− log2 q

· (n + log2 M) + log2 k

=
log2 k
− log2 q

· n + (log2 k +
log2 k
− log2 q

· log2 M)

Journal of Logic & Analysis 8:3 (2016)
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Lemma 3.6 Let X be a non-trivial bounded and convex subset of a normed linear
space. Then there cannot be finitely many contractions on K(X) that cover K(X).

Proof Let x, y be different elements of X . Hence ||x− y|| ≥ 2−n0 for some n0 ∈ N+ .
Let n ∈ N+ and set

xν := 2−nνx + (1− 2−nν)y

as well as En := { xν | 0 ≤ ν ≤ 2n }. Then En ⊆ X is a 2−(n0+n) –chain, since for
ν 6= ν ′ we have that:

||xν − xν′ || = ||(ν − ν ′)2−nx + (ν ′ − ν)2−ny||
= |ν − ν ′|2−n||x− y|| ≥ |ν − ν ′|2−(n0+n) ≥ 2−(n0+n)

Now, assume that K(X) has a finite system of digits. By Corollary 3.5 there are constants
c1, c2 ∈ R+ (independent of n) such that:

‖En‖ ≤ c1 · (n0 + n) + c2 = c1 · n + (c1 · n0 + c2)

On the other hand, ‖En‖ = 2n + 1, which is a contradiction for large enough n.

4 Representation of compact sets by trees

Since, according to Lemma 3.6, it will in most cases be impossible to turn K(X) into a
digit space, we consider a representation of compact sets by trees (instead of streams)
of digits of the original digit space (X,D).

Definition 4.1 Let (X,D) be a digit space. A digital tree is a nonempty set T ⊆ D<ω

of finite sequences of digits that is downwards closed under the prefix ordering
and has no maximal element, that is, [] ∈ T and whenever [d0, . . . , dn] ∈ T , then
[d0, . . . , dn−1] ∈ T and [d0, . . . , dn, d] ∈ T for some d ∈ D.

Note that each such tree is finitely branching as D is finite. Moreover, every element
[d0, . . . , dn−1] ∈ T can be continued to an infinite path α in T , that is, α ∈ Dω is such
that αi = di , for i < n, and [α0, . . . , αk−1] ∈ T for all k ∈ N. In the following we
write α ∈ T to mean that α is a path in T and by a path we always mean an infinite
path.

Let TD denote the set of digital trees with digits in D and for T ∈ TD and n ≥ 0, let
T≤n be the finite initial subtree of T of height n. Then:

T≤n = {α<m | α ∈ T ∧ m ≤ n }

Journal of Logic & Analysis 8:3 (2016)
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Every such initial subtree defines a map fT,n : X → P(X) from X into the powerset of
X in the obvious way:

fT,n(x) := {~d(x) | ~d ∈ Dn ∩ T }

Definition 4.2 For every T ∈ TD we define its value by

[[T]] :=
⋂

n∈N
fT,n[X].

Lemma 4.3 [[T]] = { [[α]] | α ∈ T } .

Proof Observe that fT,n[X] =
⋃
{~d[X] | ~d ∈ Dn ∩ T } . Therefore, [[α]] ∈ [[T]], for

every α ∈ T . Conversely, let x ∈ [[T]]. Then there is some ~d ∈ Dn ∩ T with x ∈ ~d[X],
for each n ∈ N. Since the set of all ~d ∈ Dn ∩ T with x ∈ ~d[X] is a finitely branching
infinite tree, it follows with König’s Lemma that there is a path α ∈ T with x ∈ α<n[X],
for all n. Thus, x = [[α]].

Corollary 4.4 Let T ∈ TD and let {d1, . . . , dm} be the set of digits d ∈ D such that
[d] ∈ T and Ti := {~d ∈ T<ω | di~d ∈ T } (i = 1, . . . ,m), ie Ti is the ith immediate
subtree of T :

[]

T = d1 dm

T1 Tm

Then [[T]] =
⋃m

i=1 di[[[Ti]]].

Proof Apply Lemma 2.5.

Note that this interpretation of a digital tree corresponds to the IFS-tree of an iterated
function system in Edalat [8].

Let T be a digital tree and α be an infinite path not lying in T . Then there is a finite
initial segment α<n of α that is not contained in T , since as explained above, a path is
identified with the sequence of its finite initial segments. Because T is closed under
taking initial segments, for all infinite continuations β of α<n we have that β 6∈ T as
well. Thus, Dω \ T is open in the metric topology on Dω .

Journal of Logic & Analysis 8:3 (2016)
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Lemma 4.5 For any digital tree the set of its infinite paths is closed in Dω .

Obviously, the set of infinite paths of a tree is nonempty. Conversely, let C be a
nonempty closed subset of Dω and TC := {α<n | α ∈ C ∧ n ∈ N } . Obviously, TC is
a digital tree.

Lemma 4.6 Let C be a nonempty closed subset of Dω . Then the sequences in C are
exactly the paths of TC .

Proof Clearly, every element of C is a path in TC . Conversely, if β is a path in TC ,
then its initial segment of length n is of the form α<n for some α ∈ C . Hence β has
distance 2−n from α . It follows that β is in the closure of C , hence in C .

As we have already seen in Corollary 2.8 and Lemma 2.9, the compact subsets of X
are exactly the images of the compact subsets in Dω under [[·]]. Thus, we have the
following result.

Lemma 4.7 The nonempty compact subsets of a digit space (X,D) are exactly the
values of digital trees.

The metric defined on Dω in Section 2 can be transferred to TD . As we will see next, it
coincides with the Hausdorff metric.

Lemma 4.8 For S,T ∈ TD ,

δH(S,T) =

{
0 if S = T ,

2−min{ n | S≤n 6= T≤n } otherwise.

Proof Without restriction let S 6= T . Then there exists

n0 := min { n | S≤n 6= T≤n }.

Note that n0 ≥ 1 as S≤0 = T≤0 . It follows that S≤n0−1 = T≤n0−1 . Let β ∈ S .
Then there is some α ∈ T such that β<n0−1 = α<n0−1 , ie min { n | αn 6= βn } ≥ n0 .
Thus, δ(α, β) ≤ 2−n0 and hence δ(α, β) < 2−n0 + τ , for all τ > 0. This shows that
S ⊆ Bδ(T, 2−n0 + τ ), for all τ > 0. Similarly, we obtain that T ⊆ Bδ(S, 2−n0 + τ ), for
all τ > 0. It follows that δH(S,T) ≤ 2−n0 .

Now, assume that δH(S, T) < 2−n0 . Then there is some ε ∈ R with δH(S, T) < ε < 2−n0 .
Let β ∈ S . Then there exists α ∈ T with δ(α, β) < ε, from which we obtain that

min { n | αn 6= βn } > − log2 ε > n0

Journal of Logic & Analysis 8:3 (2016)
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and hence that
min { n | αn 6= βn } ≥ d− log2 εe > n0,

respectively,
max { n | αn = βn } ≥ d− log2 εe − 1 > n0 − 1.

This shows that S≤n1−1 ⊆ T≤n1−1 , where n1 = d− log2 εe − 1. In the same way we
obtain that also T≤n1−1 ⊆ S≤n1−1 . Thus, S≤n1−1 = T≤n1−1 . Since n1 > n0 , we have
that n1 − 1 ≥ n0 . However, by definition of n0 , S≤n0 6= T≤n0 , a contradiction. Thus,
δH(S,T) = 2−n0 .

Proposition 4.9 (1) [[·]] : TD → K(X) is onto and uniformly continuous.

(2) The topology on K(X) induced by the Hausdorff metric is equivalent to the
quotient topology induced by [[·]].

Proof (1) Ontoness is a consequence of Lemma 4.7. For the verification of uniform
continuity let S,T ∈ TD , α ∈ S and β ∈ T . With Inequality (2) we have that

µ([[S]], [[β]]) ≤ µ([[α]], [[β]]) ≤ δ(α, β)− log2 q ·M ≤ δH(S,T)− log2 q ·M

and hence that
µ[[S]]([[T]]) ≤ δH(S,T)− log2 q ·M.

Similarly, we obtain that also µ[[T]]([[S]]) ≤ δH(S,T)− log2 q ·M and hence that

µH([[S]], [[T]]) ≤ δH(S,T)− log2 q ·M,

from which the uniform continuity of [[·]] follows.

(2) The statement follows by a straightforward adaptation of the proof of Propo-
sition 2.7(2).

5 Computably compact sets

The purpose of the present paper is to provide a logic-based approach to computing
with continuous data. In this section we compare it with Weihrauch’s Type-Two Theory
of Effectivity [15].

Definition 5.1 (Brattka and Presser [6]) Let (X, µ) be a metric space with dense
subspace Q, say

Q = {u0, u1, . . .},

Journal of Logic & Analysis 8:3 (2016)



12 Ulrich Berger and Dieter Spreen

the elements of which are called basic elements. Then (X, µ,Q) is called computable if
the two sets

{ (u, v, r) ∈ Q× Q×Q | µ(u, v) < r }
{ (u, v, r) ∈ Q× Q×Q | µ(u, v) > r }

are effectively enumerable, ie the function λ(u, v) ∈ Q2. µ(u, v) is computable.

Note that when we say that { (u, v, r) ∈ Q× Q×Q | µ(u, v) < r } is effectively enu-
merable, we mean that with respect to a canonical coding σQ of Q, the set

{ 〈i, j, n〉 ∈ N | µ(ui, uj) < σQ(n) }

is computably enumerable. Similarly, when we say that λ(u, v) ∈ Q2. µ(u, v) is
computable, we mean that there is a computable function f such that for given i, j ∈ N,
f (i, j) is the Gödel number of a computable function g so that (σQ(g(n)))n∈N is a Cauchy
sequence of rationals converging to µ(ui, uj). In what follows we will work with finite
objects such as basic elements, finite sets of basic elements, digits or finite sequences of
digits directly as in the above definition and leave it to the reader to make the statements
precise, if wanted. Note that by doing so we identify a digit d with the letter d .

Definition 5.2 Let (X, µ,Q), (X′, µ′,Q′) be metric spaces with countable dense sub-
spaces Q and Q′ , respectively. A uniformly continuous map Φ : X → X′ is computable
if it has a computable modulus of continuity and there is a procedure gΦ which given
u ∈ Q and n ∈ N computes a basic element v ∈ Q′ with µ′(Φ(u), v) < 2−n .

As is easily verified, the set of all computable maps on X is closed under composition.

Definition 5.3 Let (X,D) be a digit space such that the underlying metric space (X, µ)
has a countable dense subset Q with respect to which it is computable. (X,D,Q) is
said to be a computable digit space if, in addition, all digits d ∈ D are computable.

Let

Aeff := { x ∈ X | there is a procedure that given n ∈ N
computes a basic element u ∈ Q with µ(x, u) < 2−n }.

Besides Q, computable digit spaces possess other canonical dense subspaces. For
x0 ∈ Aeff set

QD := {~d(x0) | ~d ∈ D<ω }.
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We want to show that Q and QD are effectively equivalent in the sense that given u ∈ Q
and n ∈ N we can compute a sequence ~d ∈ D<ω such that µ(u,~d(x0)) < 2−n , and that
similarly there is a computable function g : N× D<ω → Q with:

∀n ∈ N,~d ∈ D<ωµ(~d(x0), g(n,~d)) < 2−n

To do so, some more requirements have to be satisfied.

Definition 5.4 A digit space (X,D) is well-covering if every element of X is contained
in the interior of d[X] for some d ∈ D.

Lemma 5.5 Let (X,D) be a well-covering digit space. Then there exists ε ∈ Q+ such
that for every x ∈ X there exists d ∈ D with Bµ(x, ε) ⊆ d[X].

Proof Assume the contrary. Then for every n ∈ N there exists xn ∈ X such that
Bµ(xn, 2−n) is not contained in d[X] for any d ∈ D. Let x be an accumulation point of
the xn . Then clearly, x is not in the interior of d[X] for any d ∈ D.

Each ε ∈ Q+ as in the preceding lemma will be called a well-covering number.

Definition 5.6 Let (X,D,Q) be a computable digit space. We call (X,D,Q)

(1) decidable if for u ∈ Q, θ ∈ Q+ and d ∈ D it can be decided whether Bµ(u, θ) ⊆
d[X];

(2) constructively dense if there is a procedure that given θ ∈ Q+ , d ∈ D and
u ∈ d[X] ∩ Q computes a v ∈ Q such that µ(u, d(v)) < θ .

Lemma 5.7 Let (X,D,Q) be a well-covering, decidable and constructively dense digit
space. Then, for every u ∈ Q and n ∈ N a sequence ~d of digits can effectively be
found such that µ(u,~d(x0)) < 2−n .

Proof Let ε be a well-covering number for (X,D) and set

j(n) := min { i ∈ N | qi−1 ·M < 2−n }.

Given u ∈ Q and n ∈ N, proceed as follows:

(1) Let i := 0. If j(n− 1) = 0, output [] (empty sequence). Otherwise, set vi := u,
increase i by 1 and go to (2).
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(2) Assume that ~e has been computed so far. Use the decidability of (X,D,Q) to
find some e ∈ D with Bµ(vi, ε) ⊆ e[X]. If j(n− 1) = i, output ~ee. Otherwise,
use computable density to find some vi ∈ Q such that

µ(vi−1, e(vi)) < qj(n−1)−i ·M/(j(n− 1)− 1),

increase i by 1 and go to (2).

Now, if j(n− 1) = 0, we have that ~d = []. Hence,

µ(u,~d(x0)) = µ(u, x0) ≤ M ≤ qj(n−1)−1 ·M < 2−n.

Otherwise, we have found d1, . . . , dj(n−1) ∈ D and v0, . . . , vj(n−1)−1 ∈ Q with

µ(vk, dk+1(vk+1)) < qj(n−1)−k−1 ·M/(j(n− 1)− 1),

for 0 ≤ k < j(n− 1)− 1. Then ~d = [d1, . . . , dj(n−1)] and:

µ(u,~d(x0)) ≤
j(n−1)−2∑

k=0

µ(d1 · · · dk(vk), d1 · · · dk+1(vk+1))

+ µ(d1 · · · dj(n−1)−1(vj(n−1)−1), d1 · · · dj(n−1)(x0))

≤
j(n−1)−2∑

k=0

qk · qj(n−1)−k−1 ·M/(j(n− 1)− 1) + q(j(n−1)−1) ·M

= (j(n− 1)− 1) · qj(n−1)−1 ·M/(j(n− 1)− 1) + q(j(n−1)−1) ·M
= 2 · qj(n−1)−1 ·M < 2−n

Lemma 5.8 Let (X,D,Q) be computable. Then there is a procedure h which given
~d ∈ D<ω and n ∈ N produces a basic element v ∈ Q so that µ(~d(x0), v) < 2−n .

Proof Since x0 ∈ Aeff , there is a procedure f which on input n ∈ N computes a basic
element u ∈ Q with µ(x0, u) < 2−n . Now, define h by recursion on ~d :

On input n, if ~d = [], output the result of procedure f on input n. Otherwise, assume
that ~d = e~e and that the result of h on input ~e and n + 1 is u ∈ Q. Then output the
result of applying ge to input u and n + 1.

Summing up we obtain the following result.

Proposition 5.9 Let (X,D,Q) be a well-covering, decidable and constructively dense
digit space. Then the topological bases Q and QD are effectively equivalent.
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Definition 5.10 Let (X,D) be a digit space. An element x ∈ X is computable if
there is a computable infinite sequence α ∈ Dω with [[α]] = x. Denote the set of all
computable elements of X by Xc .

Let x ∈ X be computable and let this be witnessed by α ∈ Dω . With Lemma 2.6 and
(1) we obtain that µ(x, α<n(x0)) ≤ qn ·M . Set

̄(n) := min { i ∈ N | qi ·M < 2−n },

and assume that (X,D,Q) is computable. By Lemma 5.8, for any given n, we
can compute a basic element v ∈ Q with µ(α<̄(n+1), v) < 2−n−1 . It follows that
µ(x, v) < 2−n . This shows that Xc ⊆ Aeff . The converse implication will be a
consequence of Theorem 8.2 derived later in a constructive fashion. To this end a further
condition is needed.

Definition 5.11 A computable digit space (X,D,Q) has approximable choice if for
every d ∈ D there is an effective procedure λ(θ, u).vθu : Q+ × d[X] ∩ Q→ Q such that
for all θ ∈ Q+ :

(1) For all u ∈ d[X] ∩ Q and all θ̄ ∈ Q+ , µ(vθu, v
θ̄
u) < max{θ, θ̄}.

(2) One can compute θ′ ∈ Q+ such that for all u, u′ ∈ d[X] ∩ Q, if µ(u, u′) < θ′

then µ(vθu, v
θ
u′) < θ .

(3) For all u ∈ d[X] ∩ Q there is some z ∈ d−1[u] with µ(z, vθu) < θ .

Obviously, every computable digit space with approximable choice is constructively
dense.

Proposition 5.12 Let (X,D,Q) be a well-covering and decidable computable digit
space with approximable choice. Then Xc = Aeff .

For Φ : X → X , a map Φ′ : range(Φ)→ X is a right inverse of Φ if Φ ◦ Φ′ is the
identity on X .

Proposition 5.13 A computable digit space (X,D,Q) has approximable choice if, and
only if, every d ∈ D has a computable right inverse.

Proof Assume that (X,D,Q) has approximable choice and let d ∈ D and x ∈ range(d).
Because of density there is some um ∈ Q ∩ int(d[X]) with µ(x, um) < 2−m , for all
m ∈ N.
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Use approximable choice to pick the function λ(θ, u).vθu . For θn := 2−n−4 , pick θ′ ∈ Q+

according to approximable choice, part (2). Let Nn ≥ 0 such that µ(x, um) < θ′/3, for
m ≥ Nn . Without restriction let Nn be such that Nn ≥ Ni , for all i < n. Set vn := vθn

uNn
.

By approximable choice, part (3), there is some zn ∈ d−1[uNn] with µ(zn, vn) < θn .
Because of the assumption on Nn , we have that µ(uNm , uNn) < θ′ , for m ≥ n. Hence,
µ(vm, vn) < θn . It follows that µ(zm, zn) < 3θn < 2−n . Thus, (zn)n∈N is a fast Cauchy
sequence. Since (X, µ) is complete, it converges to some y(um) ∈ X . As d is continuous,
we obtain that

d(y(um)) = lim
n→∞

d(zn) = lim
n→∞

un = x.

Now, let x′ ∈ range(d) with µ(x, x′) < θ′/3 as well as u′m ∈ Q ∩ int(d[X]) with
µ(x′, u′m) < 2−m , for m ∈ N. Moreover, N′n ≥ 0 such that µ(x′, u′m) < θ′/3, for
m ≥ N′n . Without restriction assume that N′n ≥ N′i , for all i < n. Finally, let
v′n := vθn

u′
N′n

and z′n ∈ d−1[uN′n] with µ(z′n, v
′
n) < θn . Then µ(uNn , u

′
N′n

) < θ′ and hence

µ(vn, v′n) < θn . It follows that µ(zn, z′n) < 3θn and thus µ(y(um), y(u′m)) < 9θn < 2−n .

For x = x′ , we obtain that y(um) = y(u′m) , ie y does not depend on the choice of the
approximating sequence (um)m∈N . Define d′(x) := y. By what we have just shown, d′

is uniformly continuous with computable modulus of continuity. If x ∈ Q ∩ range(d),
choose um := x . Then µ(d′(x), vn) < 2θn < 2−n . Thus, d′ is computable.

Conversely, let d′ be a right inverse of d . For θ ∈ Q+ let

m(θ) := min {m ∈ N | 2−m ≤ θ }.

Since d′ is computable, we can compute for any given u ∈ Q ∩ range(d) and n ∈ N a
basic element v ∈ Q so that µ(d′(u), vn) < 2−n . Set vθu := vm(θ)+2 . It remains to verify
the conditions in Definition 5.11 of having approximable choice:

(1) Let θ, θ̄ ∈ Q+ . Without restriction let θ ≥ θ̄ . Then µ(vθu, v
θ̄
u) ≤ µ(vθu, d

′(u)) +

µ(d′(u), vθ̄u) < 2−m(θ)−1 < θ .

(2) As d′ has a computable modulus of continuity, for given θ ∈ Q+ we can compute a
θ′ ∈ Q+ such that for u, u′ ∈ Q∩ range(d), if µ(u, u′) < θ′ then µ(d′(u), d′(u′)) < θ/2,
from which it follows that µ(vθu, v

θ
u′) < θ .

(3) is obvious: choose z := d′(u).

In Type-Two Theory of Effectivity an element x ∈ X is defined to be computable,
if it is contained in Aeff . So, it follows that both computability notions coincide. In
the present approach elements of X are represented by infinite streams of digits. In
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Type-Two Theory of Effectivity, similarly, an element x is represented by an infinite
sequence (ui)i∈N of basic elements with µ(x, un) < 2−n . The resulting representation
is called the Cauchy representation ρC . As follows from the proofs leading to the
preceding proposition, one can computably pass from an infinite stream α of digits
to an infinite sequence of basic elements (ui)i∈N so that µ([[α]], un) < 2−n , and vice
versa. This means that there are computable translations between both representations
as summarized by the next result.

Theorem 5.14 Let (X,D,Q) be a well-covering and decidable computable digit space
with approximable choice. Then there are computable operators F : Dω → Qω and
G : Qω ⇀ Dω such that for α ∈ Dω and w ∈ dom(G),

ρC(F(α)) = [[α]] and [[G(q)]] = ρC(w).

Let us next start an analogous investigation for compact sets. As has already been
mentioned, (K(X), µH) is a complete compact metric space. It has a canonical dense
subset, the set Q := P+

fin(Q), the elements of which we will call basic sets. If (X, µ,Q)
is computable the same holds for (K(X), µH,Q) (see Brattka [5]).

So, every nonempty compact set is the limit of a fast Cauchy sequence of basic sets with
respect to the Hausdorff metric. Brattka and Presser [6] call the resulting representation
ηH of K(X) the Hausdorff representation.

Proposition 5.15 Let (X,D,Q) be a computable digit space. Then there is a computable
operator H : TD → Qω such that for every T ∈ TD , H(T) ∈ dom(ηH) with

ηH(H(T)) = [[T]].

Proof Let T ∈ TD , α ∈ T and n ∈ N. Moreover, let the computable map h : D<ω ×
N→ Q be as in Lemma 5.8. Then we have that

µ(α<̄(n)(x0), h(α<̄(n), n)) < 2−n and µ(α<̄(n)(x0), α<̄(m)(x0)) < 2−n,

for m ≥ n. Thus,

µ(h(α<̄(n+2), n + 2), h(α<̄(m+2),m + 2)) < 2−n.

Now, set H(T) := (Cn)n∈ω where

Cn := { h(~d, n + 2) | ~d ∈ T ∩ D̄(n+2) }.

Then we obtain that µH(Cn,Cm) < 2−n . In order to see that also µH([[T]],Cn) < 2−n ,
let x ∈ [[T]]. Hence, x = [[α]], for some α ∈ T . It follows that µ(x, α<̄(n)(x0)) < 2−n

and therefore µ(x, h(α<̄(n+2), n + 2)) < 2−n . Thus, inf {µ(x, u) | u ∈ Cn } < 2−n .
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On the other hand, if u ∈ Cn , then u = h(γ<̄(n+2), n + 2), for some γ ∈ T . Since
µ([[γ]], h(γ<̄(n+2), n + 2)) < 2−n , we obtain that µH([[T]],Cn) < 2−n . Consequently,
limn→∞ Cn = [[T]].

As a consequence of Theorem 8.4, also the converse holds: given an infinite word in Σω

representing a nonempty compact set K , one can compute a digital tree with value K .

Theorem 5.16 Let (X,D,Q) be a well-covering and decidable computable digit space
with approximable choice. Then there are computable operators H : TD → Qω and
J : Qω ⇀ TD such that for T ∈ TD and w ∈ dom(J),

ηH(H(T)) = [[T]] and [[J(w)]] = ηH(w).

It follows that we can effectively translate representations of compact sets in Type-Two
Theory of Effectivity into representations in our setting, and vice versa.

Definition 5.17 Let (X,D) be a digit space. A set K ∈ K(X) is computable if it is the
value of computable digital tree. Denote the set of computable compact sets by K(X)c .

In Type-Two Theory of Effectivity a compact set is computable if it is contained in Aeff
K ,

where:

Aeff
K := {K ∈ K(X) | there is a procedure that given n ∈ N

computes a basic set U ∈ Q with µH(K,U) < 2−n }

With the preceding theorem we obtain that both notions coincide.

Corollary 5.18 Let (X,D,Q) be a well-covering and decidable computable digit space
with approximable choice. Then K(X)c = Aeff

K .

6 Extracting digital trees from coinductive proofs

In this section we recast the theory of digit spaces and their hyper-spaces in a constructive
setting with the aim to extract programs that provide effective representations of certain
objects or transformations between different representations. One of the main results
will be effective transformations between the Cauchy–Hausdorff representation and
the digital tree representation of the hyper-space showing that the two representations
are effectively equivalent. The method of program extraction will be based on a
version of realizability, and the main constructive definition and proof principle will

Journal of Logic & Analysis 8:3 (2016)



A Coinductive Approach to Computing with Compact Sets 19

be coinduction. The advantage of the constructive approach lies in the fact that proofs
can be carried out in a representation-free way. Constructive logic and the Soundness
Theorem guarantee automatically that proofs are witnessed by effective and provably
correct transformations on the level of representations.

Regarding the theory of realizability and its applications to constructive analysis we
refer the reader to Schwichtenberg and Wainer [13], Berger and Seisenberger [3] and
Berger [2]. Here, we only recall the main facts. We work in many-sorted first-order
logic extended by the formation of inductive and coinductive predicates. Realizability
assigns to each formula A a unary predicate R(A) to be thought of as the set of realizers
of A. Instead of R(A)(a) one often writes a r A (“a realizes A”). The realizers a can be
typed or untyped, but for the understanding of the following, details about the nature of
realizers are irrelevant. It suffices to think of them as being (idealized, but executable)
functional programs or (Oracle-)Turing machines. The crucial clauses of realizability
for the propositional connectives are:

c r (A ∨ B) := ∃a(c = (0, a) ∧ a r A) ∨ ∃b(c = (1, b) ∧ b r B)

f r (A→ B) := ∀a (a r A→ f (a) r B)

c r (A ∧ B) := p0(c) r A ∧ p1(c) r B

c r⊥ := ⊥

Hence, an implication is realized by a function and a conjunction is realized by a pair
(accessed by left and right projections, p0(.),p1(.)).

Quantifiers are treated uniformly in our version of realizability:

a r (∀x A(x)) := ∀x a r A(x)

a r (∃x A(x)) := ∃x a r A(x)

This reflects the fact we allow variables x to range over abstract mathematical objects
without prescribed computational meaning. Therefore, the usual interpretation of
a r (∀x A(x)) to mean ∀x a(x) r A(x) doesn’t make sense since we would use the abstract
object x as an input to the program a.

For atomic formulas P(~t), where P is a predicate and~t are terms, realizability is defined
in terms of a chosen predicate P̃ with on extra argument place, that is,

a r P(~t) := P̃(a,~t).

The choice of the predicates P̃ allows us to fine tune the computational content of
proofs.
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So far, we have covered first-order logic. Now we explain how inductive and coinductive
definitions are realized. An inductively define predicate P is defined as the least fixed
point of a monotone predicate transformer Φ(X,~x), that is the formula ∀~x(X(~x) →
Y(~x))→ ∀~x(Φ(X,~x)→ Φ(Y,~x), with free predicate variables X and Y , must be provable.
Then we have the closure axiom

∀~x(Φ(P,~x)→ P(~x))

as well as the induction schema

∀~x(Φ(A,~x)→ A(~x))→ ∀~x(P(~x)→ A(~x))

for every predicate A defined by some formula A(~x) as A(~x)↔ A(~x). Realizability for
P is defined by defining P̃ inductively by the operator Φ̃(X̃, a,~x) := a r Φ(X,~x). This
means we have the closure axiom

∀a,~x(a r Φ(P,~x)→ P̃(a,~x))

as well as the induction schema:

∀a,~x(a r Φ(A, a,~x)→ A(a,~x))→ ∀a,~x(P̃(a,~x)→ A(a,~x))

Dually, Φ also gives rise to a coinductively defined predicate Q defined as the greatest
fixed point of Φ. Hence, we have the coclosure axiom

∀~x(Q(~x)→ Φ(Q,~x))

and the coinduction schema:

∀~x(A(~x)→ Φ(A,~x))→ ∀~x(A(~x)→ Q(~x))

Realizability for Q is defined by defining Q̃ coinductively by the same operator Φ̃ as
above, hence, the coclosure axiom

∀a,~x(Q̃(a,~x)→ a r Φ(Q,~x))

and the coinduction schema:

∀a,~x(A(a,~x))→ a r Φ(A, a,~x)→ ∀a,~x(A(a,~x)→ Q̃(a,~x))

The basis for program extraction from proofs is the Soundness Theorem.

Soundness Theorem From a constructive proof of a formula A from assumptions
B1, . . . ,Bn one can extract a program M(a1, . . . , an) such that M(a1, . . . , an) r A is
provable from the assumptions a1 r B1, . . . , an r Bn .
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If one wants to apply this theorem to obtain a program realizing the formula A one must
provide terms K1, . . . ,Kn realizing the assumptions B1, . . . ,Bn . Then it follows that
the term M(K1, . . . ,Kn) realizes A.

That realizers do actually compute witnesses is shown in Berger [1] and Berger and
Seisenberger [3] by a Computational Adequacy Theorem that relates the denotational
definition of realizability with a lazy operational semantics.

There is an important class of formulas where realizers do not matter: We call a formula
B non-computational if

∀a(a r B↔ B)

is provable. Now, if we have proven A from assumptions B1, . . . ,Bn , where B1, . . . ,Bk

are non-computable, then we can extract a realizer of A that depends only on realizers
of Bk+1, . . . ,Bn and whose correctness can be proven from the assumptions B1, . . . ,Bk .
We can simplify the definition of realizability for formulas with non-computational
parts: If A is non-computable, then:

a r A := A

b r (A ∧ B) := A ∧ a r B

b r (A→ B) := A→ b r B

Non-computational formulas can simplify program extraction drastically. Therefore, it
is important to have handy criteria for recognizing non-computable formulas. First of
all, realizability, and hence the question which formulas are non-computable, depends
on how the predicates P̃, defining realizability of atomic formulas P(~t), are axiomatized.
We call a predicate P non-computational if the axiom for P̃ is:

∀a,~x(P̃(a,~x)↔ P(~x))

Now, clearly, P(~t) is non-computable, if P is non-computable. Furthermore, ⊥ is
non-computable and it is easy to see that the set of non-computable formulas is closed
under implication, conjunction and universal and existential quantification. Moreover,
if A is a faithful formula, that is,

A↔ ∃a(a r A)

then A → B is non-computable, provided B is non-computable. In particular, the
negation of a faithful formula is non-computable. Clearly, every non-computable
formula is faithful and it is easy to see that the set of faithful formulas is closed under
conjunction, disjunction and existential quantification.

In our formalization and realizability interpretation of the theory of real numbers and
digit spaces, we regard the set R of real numbers as well as the carrier set X of an
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arbitrary but fixed metric space (X, µ) as sorts. All arithmetic constants and functions we
wish to talk about as well as the metric µ are admitted as constants or function symbols.
We declare the predicates =, < and ≤ on R as non-computational. Furthermore, we
admit all true non-computable statements about real numbers as well as the axioms of a
metric space (which are non-computable formulas) as axioms in our formalization.

In order to be able to formalize a digit space (X,D) and the hyper-space K(X) we add
to every sort s its powersort P(s), equipped with a non-computational element-hood
relation ε, as well as a function space sort s→ t to any two sorts r and t , equipped with
an application operation and operations such as composition and the like. Furthermore,
we add for every non-computable formula A(x) the comprehension axiom

∃u ∀x (xεu↔ A(x))

(A(x) may contain other free variables than x). We will use the notation { x | A(x) }
for the element u of sort P(s) whose existence is postulated in the comprehension
axiom above. Hence, we can define the empty set ∅ := { x | ⊥ } , singletons {y} :=
{ x | x = y } and the classical union of two sets u ∪ v := { x | ¬¬(xεu ∨ xεv) } .

The comprehension axiom above is an example of an non-computable formula which
we wish to accept as true. In general, we may admit any non-computable formula as
axiom which is true in an intended model or provable in some accepted theory (which
may be classical).

Our first example of an inductive definition is the predicate Pfin of finite subsets of a
predicate P

Pfin(∅)
If Pfin(v) and P(x), then Pfin(v ∪ {x})

(Here v is a variable of sort P(s) and x is a variable of sort s). More formally, Pfin is
defined as the least fixed point of the operator:

Φ(X, u) := u = ∅ ∨ ∃v ∃x (X(v) ∧ u = v ∪ {x})
Above, we may view ∅ and ∪ as a new constant and function symbol, or else eliminate
them with the usual technique (as in set theory).

The next example is a coinductive predicate that generalizes a corresponding definition
of a predicate C0 on the signed digit space (I,AV) introduced in Berger [2] and Berger
and Seisenberger [3].

Definition 6.1 Let (X,D) be a digit space. We define coinductively C0 as the largest
subset of X such that for all x ∈ X :

x ∈ C0 ⇒ ∃d ∈ D∃y ∈ C0 x = d(y)

Journal of Logic & Analysis 8:3 (2016)



A Coinductive Approach to Computing with Compact Sets 23

Lemma 6.2 C0 = X .

Proof By definition, C0 ⊆ X . For the proof of the converse inclusion it suffices to
observe that because of Proposition 2.7(1) and Lemma 2.5 the defining implication of
C0 remains correct if C0 is replaced by X .

Hence, classically, the set C0 is rather uninteresting, but, constructively, it is significant,
since from a constructive proof that x ∈ C0 one can extract a stream of signed
digits α such that x = [[α]]. Furthermore, as shown by Berger [2], in the case of
the signed digit (I,AV), one can extract from a constructive proof that C0 is closed
under, say, multiplication, a program for multiplication with respect to the signed digit
representation.

In this paper we investigate whether what was done for the points of I can be done
in a similar way for the nonempty compact subsets of I, (or, more generally, for the
nonempty compact subsets of the underlying space X of a digit space (X,D)).

Definition 6.3 Given a digit space (X,D), we define, coinductively, the set CK as the
largest subset of K(X) such that:

A ∈ CK ⇒ ∃E ⊆ D∃(Ad)d∈E ∈ K(X)E (A =
⋃
d∈E

d[Ad] ∧ ∀d ∈ E Ad ∈ CK)

Lemma 6.4 CK = K(X).

Proof By definition, CK ⊆ K(X). The converse inclusion follows by coinduction,
since the implication in the above statement holds by Lemma 4.7 and Corollary 4.4.

The proof of Lemma 6.4 is classical because the set E cannot be computed since, in
general, one cannot decide whether d[X] ∩ A 6= ∅. The significance of the definition
of CK stems from the fact that the realizers of a statement A ∈ CK are exactly the
digital trees representing A, as we will show below. It follows from the definition of
realizability in Berger [2] that the type τ of realizers of a statement A ∈ CK is defined
by the recursive type equation

τ = ΣE∈P+(D)τ
‖E‖

where P+(D) is the set of nonempty subsets of D and ‖E‖ is the cardinality of E . Using
constructive terminology one would call P+(D) the set of decidable inhabited subsets
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of D; since D is finite this set is finite as well and its cardinality exists constructively.
For example, if D has three elements i, j, k , then:

τ = {i}× τ +{j}× τ +{k}× τ +{i, j}× τ 2 +{i, k}× τ 2 +{j, k}× τ 2 +{i, j, k}× τ 3

One sees that τ is, essentially, the set TD of digital trees. Indeed, every digital tree
T can be identified with the pair (ET , (Td)d∈E) where ET := { d ∈ D | [d] ∈ T } and
Td := {~d ∈ D∗ | d~d ∈ T }. Note that [[Td]] = d−1[[[T]]] (since α is a path in Td

exactly if dα is a path in T , and [[dα]] = d([[α]])). What it means for a digital tree T to
realize that A ∈ CK , written T r (A ∈ CK), is defined coinductively as the largest subset
· r · of TD × K(X) such that if T r (A ∈ CK), then:

∃(Ad)d∈ET ∈ K(X)ET (A =
⋃

d∈ET

d[Ad] ∧ ∀d ∈ ET Td r (Ad ∈ CK))

Theorem 6.5 The realizers of a statement A ∈ CK are exactly the digital trees
representing A, that is:

T r (A ∈ CK)⇐⇒ [[T]] = A

In particular, from a constructive proof of A ∈ CK one can extract a digital tree
representation of A.

Proof We first show by coinduction that if [[T]] = A then T r (A ∈ CK). This means
we have to show that the implication defining the relation · r · holds if that relation is
replaced by the relation [[·]] = ·. Hence assume [[T]] = A. For d ∈ ET set Ad := d−1[A]
which is compact and nonempty (since d ∈ ET ). Furthermore, A =

⋃
d∈ET

d[Ad] and
[[Td]] = d−1[[[T]]] = d−1[A] = Ad . For the converse implication it suffices to show that
any realizer of a statement A ∈ CK has a value which is arbitrarily close to A in the
Hausdorff metric. More precisely we show

∀n ∈ N ∀T ∈ TX∀A ∈ K(X) ( T r (A ∈ CK)⇒ µH([[T]],A) ≤ M · qn)

by induction on n, where M is a bound for X and q < 1 is a common contraction factor
for the digits in D. The case n = 0 is trivial. For the step we assume T r (A ∈ CK)
and show µH([[T]],A) ≤ M · qn+1 . By the assumption we have (Ad)d∈ET ∈ K(X)ET

such that A =
⋃

d∈ET
d[Ad] and Td r (Ad ∈ CK) for all d ∈ ET . By the induction

hypothesis we have µH([[Td]],Ad) ≤ M · qn for all d ∈ ET . Since all digits are
contracting by the factor q, it follows that µH(d[[[Td]]], d[Ad]) ≤ M · qn+1 for all
d ∈ ET . Since [[T]] =

⋃
d∈ET

d[[[Td]]] and A =
⋃

d∈ET
d[Ad], we conclude that

µH([[T]],A) ≤ M · qn+1 .
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7 Extracting the Cantor Set

As an example, we prove that the Cantor set lies in CK and extract a program that
computes a digital tree representation of it. Of course, in this example, the digit space
under discussion is the signed digit space (I,AV) which was introduced in Sect. 2.
For convenience, we consider a scaled version of the Cantor set that fits better with
the signed digits. Therefore, we define the Cantor set C as the fractal defined by the
contractions:

f−(x) =
x− 2

3
, f+(x) =

x + 2
3

More precisely, C is the unique attractor of the iterated function system (IFS) {f−, f+}
and can be defined explicitly as

C :=
⋂
n∈N

Fn(I)

where F(A) := f−[A] ∪ f+[A]. Intuitively, this means that we start with the interval I,
remove the open middle third and repeat the process with the remaining parts1. The
only facts we will be using about the set C are that it is a nonempty subset of I and a
fixed point of F .

Theorem 7.1 C ∈ CK .

Proof By a positive affine linear map (palm) we mean a real function of the form
h(x) = ux + v where u, v ∈ R with u > 0. The set of all palms is a subgroup of the
permutation group of R, ie palms are closed under composition and they are bijective
with their inverses again being palms. The maps f− and f+ as well as the signed digit
maps avi ∈ AV are examples of palms that map I into itself. Note that for a palm
h(x) = ux + v we have h[I] ⊆ I exactly if u + |v| ≤ 1. A rational palm is a palm
with rational coefficients u, v. The rational palms form a subgroup of all palms. The
examples above are rational palms and in the following we will be working exclusively
with rational palms.

In order to show that C ∈ CK we show more generally, by coinduction that the set

C′ := { h[C] | h a rational palm with h[I] ⊆ I }

is a subset of CK . By the definition of CK we have to show:

A ∈ C′ ⇒ A 6= ∅ ∧ ∃E ⊆ AV∃(Ad)d∈E ∈ (C′)E A =
⋃
d∈E

d[Ad]

1Traditionally, one would start with the interval [0, 1] and use the maps x 7→ x/3 and
x 7→ (x + 2)/3.
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Since all elements of C′ are nonempty subsets of I (since C is nonempty), this amounts
to showing that for every rational palm h with h[I] ⊆ I we can find a set E ⊆ {−1, 0, 1}
and rational palms hi (i ∈ E) with hi[I] ⊆ I such that:

h[C] =
⋃
i∈E

avi[hi[C]]

We first consider the easy case that h[I] ⊆ avi[I] for some i ∈ {−1, 0, 1}. In that
case we can take E := {i} and hi := av−1

i ◦ h, since h[C] = avi[(av−1
i ◦ h)[C]] and

(av−1
i ◦ h)[I] = av−1

i [h[I]] ⊆ av−1
i [avi[I]] = I.

If we are not in that easy situation, we choose i, j ∈ {−1, 0, 1} such that (h ◦ f−)[I] ⊆
avi[I] and (h ◦ f+)[I] ⊆ avj[I] (that such i, j do exist will be shown later). We set
E := {i, j} and

hi := av−1
i ◦ h ◦ f−, hj := av−1

j ◦ h ◦ f+.

Using the fact that C is a fixed point of F , ie

C = f−[C] ∪ f+[C],

we obtain:

h[C] = (h ◦ f−)[C] ∪ (h ◦ f+)[C] = avi[hi[C]] ∪ avj[hj[C]]

Furthermore, by the choice of i, j, we have, as required,

hi[I] = av−1
i [(h ◦ f−)[I]] ⊆ av−1

i [avi[I]] = I,

and similarly, hj[I] ⊆ I.

It remains to be shown that i, j above can always be found. First, note

av−1[I] = [−1, 0], av0[I] = [−1/2, 1/2], av1[I] = [0, 1].

Assume h(x) = ux + v and let a := h(−1) = v− u ≥ −1 and b := h(1) = v + u ≤ 1.
Then h[I] = [a, b] ⊆ I. Since we are not in the easy case, we may assume a < 0 < b.
To determine i, note that

(h ◦ f−)[I] = [h(f−(−1)), h(f−(1))] = [a, v− u/3].

Consider the case a ≤ −1/2. Then we have v ≤ 1/4, since if v > 1/4 we would have
u = v−a > 3/4 and therefore b = v+u > 1. It follows that v−u/3 = (2v+a)/3 ≤ 0.
This means that we can take i = −1. In the case a ≥ −1/2 we can take i = 0 since
v− u/3 ≤ v ≤ 1/2 (if v > 1/2 we would have u = v− a ≥ v > 1/2 and therefore
b > 1). The calculation of j is symmetric: if b ≥ 1/2, we can take j = 1, otherwise
j = 0.
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8 Equivalence with the Cauchy representation

Let (X,D,Q) be a computable digit space. We define the predicate A ⊆ X by:

A(x) ≡ ∀n ∈ N ∃u ∈ Qµ(x, u) < 2−n

A realizer of A(x) is a fast Cauchy sequence in Q converging to x .

Theorem 8.1 C0 ⊆ A.

Proof Because of Lemma 5.8 it suffices to show that

∀n ∈ N ∀x ∈ X (C0(x)⇒ ∃u ∈ QD µ(x, u) ≤ M · qn ),

which will be done by induction on n. If n = 0, let u be any element in QD . For n + 1,
assume x ∈ C0 . Then there are d ∈ D and y ∈ C0 such that x = d(y). By induction
hypothesis, there exists v ∈ QD such that µ(y, v) ≤ M · qn . Set u := d(b) ∈ QD . Then,
µ(x, u) ≤ q · µ(y, v) ≤ M · qn+1 .

Theorem 8.2 Let (X,D,Q) be a well-covering and decidable computable digit space
with approximable choice. Then A ⊆ C0 .

Proof We prove the statement by coinduction. Hence assume A(x). We have to find
d ∈ D and y ∈ X such that x = d(y) and A(y). Let ε ∈ Q+ be a well-covering
number. Using A(x), pick û ∈ Q such that µ(x, û) < ε/2. Pick d ∈ D such that
Bµ(û, ε) ⊆ d[X]. Then x ∈ Bµ(û, ε).

By Proposition 5.13, d has a computable right inverse d′ . Set y := d′(x). Since d′ has
a computable modulus of continuity, we can, given n ∈ N, compute a number k(n)
so that for x′, x′′ ∈ d[X], if µ(x′, x′′) < 2−k(n) then µ(d′(x′), d′(x′′)) < 2−n−1 . Using
the assumption A(x) again, we find u ∈ Q such that µ(x, u) < 2−k(n) . It follows that
µ(d′(x), d′(u))) < 2−n−1 . By the computability of d′ we can moreover compute a basic
element v ∈ Q with µ(d′(u), v) < 2−n−1 . Hence, µ(y, v) < 2−n , which shows that
A(y).

Now we do for the hyper-space K(X) what we did for X above. We define the predicate
AK ⊆ K(X) by:

AK(A) ≡ ∀n ∈ N ∃U ∈ P+
fin(Q) µH(A,U) < 2−n

A realizer of AK(A) is a fast Cauchy sequence of nonempty finite subsets of Q converging
to A.
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Theorem 8.3 CK ⊆ AK .

Proof We show

∀n ∈ N ∀A ∈ K(X) (CK(A)⇒ ∃U ∈ P+
fin(Q)µH(A,U) ≤ M · qn ),

by induction on n. If n = 0, we can take U := {u}, for any u ∈ Q. For n + 1,
assume A ∈ CK . Then there are E ⊆ D and a family (Ad)d∈E ∈ K(X)E such that
A =

⋃
d∈E d[Ad] and Ad ∈ CK for all d ∈ E . By induction hypothesis, there exist

Vd ∈ P+
fin(Q) such that µH(Ad,Vd) ≤ M·qn , for all d ∈ E . Set U :=

⋃
{ d[Vd] | d ∈ E }.

Then it follows with Lemma 3.3 that µH(A,U) ≤ max{ q · µH(Ad,Vd) | d ∈ E } ≤
M · qn+1 .

Theorem 8.4 Let (X,D,Q) be a well-covering and decidable computable digit space
with approximable choice. Then AK ⊆ CK .

The proof will be based on a sequence of intermediate results.

We say that (X,D,Q) has property (P) if the following holds: For every K ∈ K(X) and
every sequence (Cn)n∈N of basic sets with µH(Cn,K) < 2−n for all n, one can compute
from (Cn)

- a decision procedure for a set E of digits in D,

- for every d ∈ E a sequence of basic sets (Cd
n)n∈N

such that there exist Kd ∈ K(X) for each d ∈ E , with K =
⋃
{ d[Kd] | d ∈ E } and

µH(Cd
n ,Kd) < 2−n for all n.

An equivalent way of stating the property (P) is to state constructively: if AK(A) holds,
then there exists a decidable set E ⊆ D and Ad ∈ K(X) with AK(Ad) for each d ∈ E .

Lemma 8.5 If (X,D,Q) has property (P), then AK ⊆ CK .

In terms of realizers this means: for every set K ∈ K(X) and every sequence (Cn) of
basic sets with µH(Cn,K) < 2−n for all n, one can compute from (Cn) a digital tree T
such that [[T]] = K .

Proof Immediate, by coinduction.

Alternatively, one can directly define a decision procedure for a tree defining a set
K ∈ K(X) from a Cauchy-sequence of basic sets converging to K . To this end, assume
that µH(K,Cn) < 2−n for all n ∈ N where the Cn are basic sets. We define a function

t : D≤ω → (K(X)× K0(X)ω) ∪ {∗}
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where K0(X) is the set of basic sets and ∗ is a new symbol meaning intuitively “not in
the tree”. The definition of t(~d) is by recursion on ~d and will be such that whenever
t(~d) = (K′, (C′n)n∈N), then µH(K′,C′n) < 2−n for all n ∈ N.

- t([]) := (K, (Cn)n∈N).

- If t(~d) = ∗, then t(~dd) := ∗.

- If t(~d) = (K′, (C′n)n∈N), then we use property (P), with K′ and (C′n)n∈N , to
compute E ⊆ D and for every d ∈ E a sequence of basic sets (C′dn )n∈N such that
there exist K′d ∈ K(X) for d ∈ E with K′ =

⋃
d∈E d[K′d] and µH(K′d,C

′d
n ) < 2−n

for all n ∈ N.

- If d 6∈ E , then t(~dd) := ∗.
- If d ∈ E , then t(~dd) := (K′d, (C

′d
n )n∈N).

Finally we define T := {~d ∈ Dω | t(~d) 6= ∗ }. Clearly, T is a digital tree that can be
computed from the sequence (Cn)n∈N (more precisely, a decision procedure for T can
be computed from (Cn)n∈N ). We show that [[T]] = K .

Let α be a path in T , that is, t(α<m) = (Km, (Cm
n )n∈N) for all m ∈ N. In order

to show [[α]] ∈ K it suffices to show that α<m[X] ∩ K 6= ∅ for all m ∈ N. We
show that α<m[Km] ⊆ K , by induction on m. α<0[K0] = K0 = K . α<m+1[Km+1] =

α<m[αm[Km+1]] ⊆ α<m[Km]] ⊆ K , by induction hypothesis, and since, by construction,
αm[Km+1] ⊆ Km .

Conversely, let x ∈ K . We define recursively α ∈ Dω , such that for all m ∈ N,
t(α<m) 6= ∗, hence t(α<m) is of the form (Km, . . .) and x ∈ α<m[Km]. It follows then
that α ∈ T and x = [[α]]. For m = 0 there is nothing to define since t(α<0) = t([]) =

(K, . . .) and x ∈ K , by assumption. Now suppose α<m has been defined such that
t(α<m) = (Km, . . .) and x ∈ α<m[Km]. Let y ∈ Km such that x = α<m(y). By the
definition of t , we have a set E ⊆ D such that α<md ∈ T exactly if d ∈ E , as well
as Km =

⋃
d∈E d[Kd] for some Kd ∈ K(X) such that for d ∈ E , t(α<nd) = (Kd, . . .).

Hence y ∈ d[Kd] for some d ∈ E . Set α(m) := d and Km+1 := Kd . It follows that
t(α<m+1) is of the form (Km+1, . . .) and x ∈ α<m+1[Km+1].

Lemma 8.6 Let (X, µ) be a compact metric space. Let K ∈ K(X) and Cn ∈ K(X)
such that µH(K,Cn) ≤ 2−n for all n ∈ N.

(a) For x ∈ X the following are equivalent:

(i) x ∈ K

(ii) ∀n ∈ N ∃y ∈ Cn µ(x, y) < 2−n

Journal of Logic & Analysis 8:3 (2016)



30 Ulrich Berger and Dieter Spreen

(iii) ∀n ∈ N ∃k ≥ n∃y ∈ Ck µ(x, y) < 2−n

(b) Let K′ ∈ K(X) and C′n ∈ K(X) such that µH(K′,C′n) ≤ 2−n for all n ∈ N. If for
every n ∈ N there exists k ≥ n with C′n ⊆ Ck , then K′ ⊆ K .

Proof (a) The implications from (i) to (ii) and from (ii) to (iii) are trivial. Assume
(iii) holds. For every n ∈ N let kn ≥ n and yn ∈ Ckn such that µ(x, yn) < 2−n (using
assumption (iii)) and also let xn ∈ K such that µ(yn, xn) < 2−kn (using the hypothesis
that µH(K,Ckn) ≤ 2−kn ). It follows µ(x, xn) ≤ 2−n + 2−kn ≤ 21−n . Hence x is a limit
of points in K and therefore in K, since K is closed.

(b) Let x ∈ K′ . From the assumptions it easily follows that condition (iii) of part (a)
holds. Therefore x ∈ K .

Lemma 8.7 Let (X, µ) be a compact metric space with dense subset Q. Let D be a
finite index set and Xd a nonempty closed subset of X for each d ∈ D. Assume that the
Xd well-cover X , ie there exists a rational ε > 0 such that for each x ∈ X there exists
d ∈ D with Bµ(x, ε) ⊆ Xd .

Let K ∈ K(X) and (Cn)n∈N a family of basic sets such that µH(K,Cn) ≤ 2−n for all
n ∈ N.

Then there exists E ⊆ D and for each d ∈ E a set Kd ∈ K(X) and a family of basic sets
(Cd

n)n∈N such that:

- Cd
n ⊆ Xd for all d ∈ E and n ∈ N

- µH(Kd,Cd
n) ≤ 2−n for all n ∈ N

- Kd ⊆ Xd for all d ∈ E

-
⋃

d∈E Kd = K

Moreover, if X is a computable metric space such that for y ∈ Q, ρ ∈ Q and d ∈ D
one can decide whether Bµ(y, ρ) ⊆ Xd , then from ε and (Cn)n∈N one can compute the
families (Cd

n)n∈N as well as a decision procedure for E .

Proof Let 2 < m ∈ N such that 2−m < ε/8. Define, using decidability,

E := { d ∈ D | ∃y ∈ Cm Bµ(y, ε/2) ⊆ Xd }.

For d ∈ E define Cd
n ⊆ Cm+n by recursion on n:

Cd
0 := { y ∈ Cm | Bµ(y, ε/2) ⊆ Xd }

Cd
n+1 := { y ∈ Cm+n+1 | ∃z ∈ Cd

n µ(y, z) ≤ 21−(m+n) }
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Claim 2 For all d ∈ E , n ∈ N and z ∈ Cd
n there exists y ∈ Cd

n+1 such that
µ(z, y) ≤ 21−(n+m) .

Proof: Let z ∈ Cd
n ⊆ Cm+n . Let x ∈ K such that µ(z, x) ≤ 2−(m+n) . Let y ∈ Cm+n+1

such that µ(y, x) ≤ 2−(m+n+1) . Then µ(z, y) ≤ 21−(m+n) , hence y ∈ Cd
n+1 .

Claim 3 For all d ∈ E and n ∈ N, Cd
n is a basic set and µH(Cd

n ,C
d
n+1) ≤ 21−(m+n) .

Proof: For the sets Cd
n to be basic, it suffices to show their nonemptyness, since,

by definition, they are finite subsets of Q. Nonemptyness follows by induction on
n using Claim 2 and observing that Cd

0 is nonempty, by definition. The inequality
µH(Cd

n ,C
d
n+1) ≤ 21−(m+n) follows from Claim 2 and the definition of Cd

n+1 .

Claim 4 Cd
n ⊆ Xd , for all d ∈ E and n ∈ N.

Proof: We show the stronger statement that B≤µ (Cd
n , 2

2−(m+n)) ⊆ Xd , by induction on
n. (Here, B≤µ (Cd

n , 2
2−(m+n)) =

⋃
{B≤µ (u, 22−(m+n)) | u ∈ Cd

n }.) For the base case
we have B≤µ (Cd

0 , 2
2−m) ⊆ Bµ(Cd

0 , ε/2) ⊆ Xd , since 22−m < ε/2. For the step, let
y ∈ Cd

n+1 and assume µ(y, x) ≤ 22−(m+n+1) . Let z ∈ Cd
n with µ(y, z) ≤ 21−(m+n) . Then

µ(z, x) ≤ 22−(m+n+1) + 21−(m+n) = 22−(m+n) . Hence x ∈ Xd , by induction hypothesis.
This ends the proof of Claim 4.

Since the space K(X) is complete and, by Claim 4, for every d ∈ E , (Cd
n) is a Cauchy

sequence in K(X), it has a limit, Kd ∈ K(X).

Claim 5 µH(Kd,Cd
n) < 2−n .

Proof: From Claim 3 it follows that µH(Kd,Cd
n) ≤ 22−(m+n) . But 22−(n+m) < 2−n ,

since m > 2.

Claim 6 Kd ⊆ K .

Proof: This follows from Lemma 8.6 (b), since Cd
n ⊆ Cm+n .

Claim 7 Kd ⊆ Xd .

Proof: Immediate, by Claim 4 and Lemma 8.6 (a).

Claim 8
⋃

d∈E Kd = K .
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Proof: By Claim 6, it suffices to show that K ⊆
⋃

d∈E Kd . Let x ∈ K . Let d ∈ D such
that Bµ(x, ε) ⊆ Xd . Then d ∈ E , since there exists y ∈ Cm with µ(x, y) < 2−m < ε/4,
hence Bµ(y, ε/2) ⊆ Xd . We show that x ∈ Kd . By Lemma 8.6 (a), it suffices to
show that for all n ∈ N there exists yn ∈ Cd

m+n such that µ(x, yn) ≤ 2−n . Since
µH(K,Cm+n) < 2−(m+n) , let yn ∈ Cm+n such that µ(x, yn) < 2−(n+m) . We show
that yn ∈ Cd

n , by induction on n: y0 ∈ Cm and µ(x, y0) < 2−m < ε/4, therefore
Bµ(y0, ε/2) ⊆ Xd (since ε/2 + ε/4 < ε). Hence y0 ∈ Cd

0 . For the induction step, we
use the fact that µ(x, yn+1) < 2−(n+m+1) , which implies that µ(yn, yn+1) < 21−(n+m) ,
hence yn+1 ∈ Cd

n+1 . This ends the proof of Claim 8 and the proof of the Lemma.

Proof of Theorem 8.4 By Lemma 8.5, it suffices to show that (X,D,Q) has property
(P). Therefore, let K ∈ K(X) and (Cn)n∈N be a sequence of basic sets such that
µH(Cn,K) < 2−n for all n. With Xd := d[X], for d ∈ D, clearly, the hypotheses of
Lemma 8.7 are satisfied. Hence we obtain E ⊆ D and for each d ∈ E a set K′d ∈ K(X)
and a family of basic sets (C′dn )n∈N such that:

- C′dn ⊆ d[X] for all d ∈ E and n ∈ N.

- µH(K′d,C
′d
n ) ≤ 2−n for all n ∈ N.

- K′d ⊆ d[X] for all d ∈ E .

-
⋃

d∈E K′d = K .

By Proposition 5.13, d has a computable right inverse d′ . Set Kd := d′[K′d]. Then
Kd ∈ K(X). Since d′ has a computable modulus of continuity, we can, given
n ∈ N, compute a number k(n) so that for x′, x′′ ∈ d[X], if µ(x′, x′′) < 2−k(n)

then µ(d′(x′), d′(x′′)) < 2−n−1 . It follows that µH(Kd, d′[C′dk(n)+1]) < 2−n−1 . By
the computability of d′ we can moreover, for any u ∈ C′dk(n)+1 , compute a basic
element vn

u ∈ Q with µ(d′(u), vn
u)) < 2−n−1 . Set Vn := { vn

u | u ∈ C′dk(n)+1 } . Then
µH(d′[C′dk(n)+1],Vn) < 2−n−1 . It follows that µH(Kd,Vn) < 2−n . This completes the
proof of Theorem 8.4.

An important special case is if all digits have uniformly continuous inverses.

Definition 8.8 A digit space (X,D,Q) is uniformly invertible if for all θ > 0 there
exists (constructively) θ′ > 0 such that for all d ∈ D and x, y ∈ X , if µ(d(x), d(y)) < θ′ ,
then µ(x, y) < θ .

Note that any continuous injection of a compact space into a Hausdorff space is a
homeomorphism on its image. Hence any injective digit of a digit space has a uniformly
continuous inverse. So the only extra condition of uniform invertibility beyond injectivity
is that the inverse digits have effective moduli of uniform continuity.

Journal of Logic & Analysis 8:3 (2016)



A Coinductive Approach to Computing with Compact Sets 33

Lemma 8.9 Let (X,D,Q) be a uniformly invertible constructively dense computable
digit space. Then (X,D,Q) has approximable choice.

Proof Because of Proposition 5.13 it remains to show that for every d ∈ D and
u ∈ Q ∩ d[X] we can compute a basic element v ∈ Q such that µ(d−1(u), v) < 2−n .
For given n ∈ N set θn := 2−n and pick θ′ ∈ Q+ according to uniform invertibility.
Moreover, for given u ∈ Q ∩ d[X], use computable density to pick v ∈ Q with
µ(u, d(v)) < θ′ . Then µ(d−1(u), v) < θn .

Corollary 8.10 Let (X,D,Q) be a well-covering, decidable, uniformly invertible and
constructively dense computable digit space. Then the following two statements hold:

(1) A = C0

(2) AK = CK
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