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Relative set theory: Internal view

KAREL HRBACEK

A nonstandard set theory with many levels of standardness was first proposed by
Yves Péraire [28]. The theory GRIST formulated here is an extension of Péraire’s
RIST. We prove that it is conservative and categorical over ZFC, and universal
among theories of its kind. Technically, the paper carries out detailed analysis of
the construction of internally iterated ultrapowers introduced in the author’s [13].
The objectives of an eventual extension of GRIST to a full relative set theory are
briefly discussed in the last section.
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Introduction.

Nonstandard analysis, a modern rigorous theory of infinitesimals, was erected on
model-theoretic foundations by Abraham Robinson. Axiomatic treatments of non-
standard analysis in the framework of set theory originated in the author’s [11] and
Nelson’s [27]; Kanovei and Reeken’s monograph [22] provides an exhaustive survey
and comparison of the currently established nonstandard set theories. A common fea-
ture of the model-theoretic approach and (most of) the axiomatic approaches is a fixed
classification of the objects of discourse into two or three kinds: standard, internal,
and usually also external. In an alternative approach, first proposed by Wallet, Péraire
and Gordon, infinitesimals and other “nonstandard” concepts are relative to a given,
but arbitrary, level of standardness, metaphorically interpretable as a “level of knowl-
edge.” Péraire [28] developed an axiomatic theory RIST (Relative Internal Set Theory)
that formalizes this outlook, and proved that it is a conservative extension of ZFC.
(See [10] for Gordon’s different approach.) The formulations of the axioms of RIST
are somewhat cumbersome, due to the fact that RIST does not admit quantification
over levels of standardness. The author’s theory FRIST [13] removes this limitation;
as a result, it is both more powerful and formally simpler than RIST.
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Theories with many levels provide the users of nonstandard methods with new tools (see
for example Péraire [30]) whose power needs to be further explored, but—somewhat
paradoxically—their main advantage may be in exposition. Nonstandard analysis
raised the hope that the familiar ε–δ definitions of the fundamental calculus concepts—
derivative, limit, integral—could be replaced by more intuitive ones using infinitesimals
in the style of Leibniz. In traditional nonstandard analysis one can do that only for
standard functions at standard points. For internal points and/or functions, definitions
of these concepts have to fall back on the ε–δ method, as there are no infinitesimals
relative to the internal level. For elementary expositions it is advantageous to adopt the
“internal picture” of Nelson, in which internal sets are identified with the “usual” ones;
this picture avoids the need to discuss nonarchimedean “hyperreals”, but the problem
of avoiding ε–δ for all internal functions and points then becomes particularly acute.
Theories with many levels solve this problem in a simple, natural way. Some of these
issues are discussed in detail in [16].

In a joint paper with O’Donovan and Lessmann [17] and a book manuscript in prepa-
ration [18], we attempt to demonstrate that elementary analysis at a beginner’s level
can be developed from a few very simple axioms that form a small fragment of FRIST
(but transcend RIST in some important aspects). Several high school level calculus
courses in Geneva have been successfully taught with this approach in Spring 2009.

This paper is concerned with metamathematics of internal relative set theories. The
experience with writing [18] showed that principles beyond those of FRIST are useful
for some more advanced arguments in analysis. Here we present an extension of
FRIST denoted GRIST, and prove that GRIST is a conservative extension of ZFC.
Moreover, GRIST is complete over ZFC in a technical sense (Corollary 12.7) and
universal among all theories of relative standardness satisfying some minimal axioms
(Corollary 12.6). The interpretation of GRIST in ZFC that we use is the same as the
one given in Section 6 of [13] for a version of FRIST. It is quite complicated, and the
proof that GRIST is valid in it even more so. In contrast, the axioms of GRIST are
fairly simple (see below). For these reasons, and unlike the usual practice in traditional
nonstandard analysis, use of GRIST as a foundation for development of mathematics
has to be based on its axioms rather than its models.

The language of GRIST has two primitive binary predicate symbols, ∈ and v. We
read x v y as “x is y-standard” or “x appears at the level of y”.

We define x vα y by x v α ∨ x v y. If P(x1, . . . , xk) is a formula in the ∈-v-
language and α a variable, Pα(x1, . . . , xk) is obtained from P(x1, . . . , xk) by replacing
every occurrence of v with vα .
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x < y means x v y ∧ ¬ y v x . PfinA is the set of all finite subsets of A.

We postulate all axioms of ZFC (with Separation and Replacement for ∈-formulas).
The remaining axioms are:

Relativization

v is a dense total pre-ordering with a least element 0 and no greatest element.

In detail, the conjunction of:

(∀x)(0 v x ∧ x v x); (∀x, y, z)(( y v x ∧ z v y)⇒ z v x);

(∀x, y)(x v y ∨ y v x); (∀x)(∃y)(x < y); (∀x, y)(x < y⇒ (∃z)(x < z < y)).

Transfer

If α v β , then, for all x1, . . . , xk v α ,

Pα(x1, . . . , xk)⇔ Pβ(x1, . . . , xk).

Standardization

For any α = 0 and any A, x1, . . . , xk , there exists β < α and B v β such that, for
every γ with β v γ < α ,

(∀y v γ)( y ∈ B⇔ y ∈ A ∧ Pγ( y,A, x1, . . . , xk)).

Idealization

For all A < β and all x1, . . . , xk ,

(∀a ∈ PfinA)[a < β ⇒ (∃y)(∀x ∈ a) Pβ(x, y,A, x1, . . . , xk)]

⇔ (∃y)(∀x ∈ A) [x < β ⇒ Pβ(x, y,A, x1, . . . , xk)].

Granularity

For any x1, . . . , xk , if (∃α)Pα(x1, . . . , xk), then

(∃α)[Pα(x1, . . . , xk) ∧ (∀β)(β < α⇒ ¬Pβ(x1, . . . , xk))].

An outline of the contents of the paper follows.

Our key objective is to show that every model M of ZFC can be extended to a model of
GRIST. It is also crucial that the extension be definable in M. To accomplish both of
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these purposes, it is more convenient to work with interpretations of GRIST (and other
extensions of ZFC) in ZFC, rather than directly with models. Section 1 summarizes
some facts about interpretations, and in particular focuses on those where the universe
of standard sets in the interpretation is isomorphic to the universe of ZFC; inspired by
the terminology of Kanovei and Reeken [21], we call them realizations. Section 1 also
establishes notational conventions for the rest of the paper. The material in this section
can be consulted for reference only, if/when needed.

Sections 2 – 5 deal with (internal) nonstandard set theories, that is, extensions of ZFC
that have two kinds of objects, standard and internal. We show that limit ultrapowers
of the universe V of set theory are precisely the realizations of a basic nonstandard
set theory ST. We then consider an extension of ST by the Back and Forth Property;
the resulting theory is equivalent to BST of Kanovei [20]. Here we prove that BST
is distinguished among nonstandard set theories by being categorical over ZFC in the
sense that for every countable model M of ZFC there is a unique countable model
of BST with M as its standard universe. BST is also universal in the sense that
every countable model of ST embeds into any model of BST with the same standard
universe. Most of this material is known in some form. In particular, we rely heavily on
Gordon’s notion of relative standardness captured by S[a], Gordon and Andreev’s use
of monads [2], Kanovei’s technique for defining an interpretation of BST in ZFC [22],
and ideas explicitly and implicitly contained in Andreev and the author’s [3]. We give
here a unified presentation in a form suitable for generalization to theories with many
levels of standardness. This generalization is worked out in Sections 6 – 11.

In Section 6 we define trees of ultrafilters, a framework for transfinite repetition of the
ultrapower construction (stratified ultrapowers) investigated in Section 7. Section 8
introduces a basic theory with many levels of standardness, the stratified set theory
SST. All stratified ultrapowers satisfy axioms of a stronger theory SST∗ . The technical
heart of the paper is in Sections 9 and 10. We define stratified ultrafilters (= canonical
trees of ultrafilters) and show, in SST∗ , that for every set x there is a standard stratified
ultrafilter U such that xMU , where xMU is a generalization to many-leveled context
of the notion “x is in the monad of U”. It is defined via the key concept of pedigree.
We then formulate the theory SST] = SST + Back and Forth Property. In Section 11
we prove that the interpretation for FRIST from Section 6 of [13] satisfies SST] .

The axioms of SST] are conceptually elegant, but quite unsuitable for development of
mathematics. In Section 12 we show that SST] is equivalent to GRIST. It then follows
that GRIST is distinguished among stratified set theories by properties analogous to
those that distinguish BST among nonstandard set theories. Section 12 concludes
with a number of consequences of GRIST, important because they have either already
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been found useful for mathematical applications of GRIST, or because they generalize
similar results for BST or RIST.

This paper is concerned only with internal sets, although a fully adequate theory of
nonstandard objects undoubtedly has to account for external sets as well; see the au-
thor’s [11, 14]. The concluding section contains some remarks on external sets and
GRIST; however, a detailed study of this topic raises a number of new issues that will
be addressed elsewhere.
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Péraire for helpful discussions related to the subject of this paper.

Journal of Logic & Analysis 1:8 (2009)



6 Karel Hrbacek

Contents.
Introduction.

1 Realizations.

2 Ultrafilters and Ultrapowers.

3 Nonstandard Set Theory.

4 Repeated Ultrapowers.

5 Limit Ultrapowers and BST.

6 Trees of Ultrafilters.

7 Stratified Ultrapowers.

8 Elementary Relative Set Theory.

9 Stratified Ultrafilters.

10 Pedigrees.

11 Stratified Limit Ultrapowers.

11.1 Stratified limit ultrapowers.

11.2 Internally iterated ultrapowers.

11.3 An interpretation for SST] .

12 GRIST.

12.1 Metamathematics of SST] .

12.2 Equivalence of GRIST and SST] .

12.3 Consequences of GRIST.

12.4 Variations of GRIST.

Conclusion: GRIST and External Sets.

References.

Journal of Logic & Analysis 1:8 (2009)



Relative set theory 7

1 Realizations.

We work in the Zermelo-Fraenkel set theory ZFC unless explicitly stated otherwise.
In particular, we often employ the following easy consequence of its axioms.

Selection: Let P(x, y, p̄) be a formula.
(∀p̄)(∀A)[(∀x ∈ A)(∃y)P(x, y, p̄)⇒ (∃f )( f is a function ∧ (∀x ∈ A)P(x, f (x), p̄))].

Here and elsewhere we use overbar as shorthand for a finite list; thus p̄ stands for
p1, . . . , pk . Jech’s monograph [19] is a reference for all undefined set-theoretic concepts
and all unproved results about them.

We use classes informally, as a way to speak about extensions of formulas, and usually
denote them by letters in blackboard, fractur, or uppercase Greek type. For example, if
P(x, p̄) is a formula (in the ∈-language) and p1, . . . , pk are sets, then C = {x : P(x, p̄)}
is a class. Occasionally, more complicated objects such as systems of classes are
convenient; they are interpretable as classes in standard ways. For example, if A is a
class, (A)i denotes the class {x : 〈i, x〉 ∈ A}, and the system of classes 〈(A)i : i ∈ I〉
is to be interpreted as {〈i, x〉 ∈ A : i ∈ I}.

The principal objects of our study are “structures” (usually, proper classes) for a first-
order language containing equality, the binary predicate symbol ∈, usually a unary
predicate symbol st, and possibly some other predicate symbols. Technically, such
objects are called interpretations.

An interpretation for the language {∈, st, . . .} is a list of classes (ie, formulas)
M := (M,=M,∈M, SM, . . .), where =M and ∈M are subclasses of M ×M, SM is
a subclass of M, . . .. If P(x̄) is a formula of the {∈, st, . . .}-language, PM(x̄) is the
formula obtained from P by replacing each occurrence of x = y, x ∈ y, st(x), . . .,
resp., by (the formula defining) x =M y, x ∈M y, SM, . . ., resp., and each occurrence
of the quantifier ∃x (∀x , resp.) by ∃x ∈ M (∀x ∈ M, resp.). [It may be necessary
to suitably rename some variables when doing the replacement. PM(x̄) may have
free variables other than x̄: the parameters of the formulas defining the components
of M.] See Shoenfield [33] and Kanovei–Reeken [22] for background material on
interpretations.

For x̄ ∈ M, PM(x̄) asserts that P(x̄) holds in M (or, M satisfies P(x̄)), and we use
the notation M � P(x̄) for the formula PM(x̄), when more convenient.

It is the mathematical practice to extend the language by new predicate, function and
constant symbols (defined in terms of ∈, st, . . . and previously defined symbols),
and we want to apply the notations PM(x̄) and M � P(x̄) also to formulas of the
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extended language. It is to be understood that all defined symbols in P are replaced by
their definitions before the construction of the formula PM . A notational ambiguity
threatens when writing expressions like M � P(τ (x)) where τ is a term. As written,
it should be interpreted as M � Q(x), where Q(x) is the formula obtained from
P(τ (x)) by eliminating all instances of τ (x) using its definition. However, we also
often want to state that M � P( y) where y = τ (x), that is, the value of the term τ (x)
in the ambient set theory, not in M, should be substituted for y in M � P( y). We
underline the terms that are to be interpreted in the latter sense, that is, evaluated
before being substituted into P . For example, M � y =

⋃
x means y =M

⋃M x ,
ie, (∀z ∈ M)(z ∈M y ⇔ (∃u ∈ M)(z ∈M u ∧ u ∈M x)). In contrast, M � y =

⋃
x

means y =M
⋃

x . To minimize the need for such underlining, we posit that terms
whose leftmost symbol denotes an embedding of interpretations are always evaluated
before substituting into P ; these symbols include F,G, ϕ∗, ψ∗, τ∗,Φ,Ψ,Ω, j, k. The
same applies to terms involving the symbol / defined in Section 7. A few exceptions
to these conventions occur for the symbols k and ∗. They should be obvious from
context, and are usually explicitly pointed out.

We require of an interpretation that =M is a congruence relation:
M � (∀x)(x = x)
M � (∀x, y)(x = y⇒ y = x)
M � (∀x, y, z)(x = y ∧ y = z⇒ x = z)
M � (∀x, y, x′, y′)(x = x′ ∧ y = y′ ∧ x ∈ y⇒ x′ ∈ y′)
M � (∀x, x′)((x = x′ ∧ st(x))⇒ st(x′))
. . ..
For example, the first formula is (∀x ∈M)(x =M x) when spelled out in detail.

The equivalence classes modulo =M , [x]M := {x′ ∈ M : x′ =M x}, are in general
proper classes. ZFC does not imply existence of a class of representatives for arbitrary
partitions into classes, and we prefer to avoid “Scott’s Trick” of taking the subset of
[x]M consisting of x′ of the least rank, and work with the congruences =M rather than
the true identity. 1 This necessitates some care with the definitions of embedding and
isomorphism of interpretations.

Let M1,M2 be interpretations, with the language of M1 included in the language of
M2 . An embedding of M1 to M2 is a subclass F of M1 ×M2 such that

1One reason for this decision is to avoid an additional layer of notation, such as having
to write xM in place of x . More fundamentally, almost all results of this paper remain valid
in ZFC with Regularity removed and Selection added; in this theory, Scott’s Trick is not
available. This observation is important for planned future work on extending Relative Set
Theory to external sets (see Conclusion).
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(i) (∀x1 ∈M1)(∃x2 ∈M2)(〈x1, x2〉 ∈ F)
(ii) (∀x1, y1 ∈ M1)(∀x2, y2 ∈ M2)((x1 =M1 y1 ∧ x2 =M2 y2) ⇒ (〈x1, x2〉 ∈ F ⇔
〈y1, y2〉 ∈ F))
(iii) (∀x1, y1 ∈ M1)(∀x2, y2 ∈ M2)((〈x1, x2〉 ∈ F ∧ 〈y1, y2〉 ∈ F) ⇒ (x1 =M1 y1 ⇔
x2 =M2 y2))
(iv) (∀x1, y1 ∈ M1)(∀x2, y2 ∈ M2)((〈x1, x2〉 ∈ F ∧ 〈y1, y2〉 ∈ F) ⇒ (x1 ∈M1 y1 ⇔
x2 ∈M2 y2))
(v) (∀x1 ∈M1)(∀x2 ∈M2)(〈x1, x2〉 ∈ F⇒ (SM1(x1)⇔ SM2(x2)))
. . .

An embedding is an isomorphism iff M1 and M2 are interpretations for the same
language and, in addition,
(vi) (∀x2 ∈M2)(∃x1 ∈M1)(〈x1, x2〉 ∈ F).

It is easy to check that =M is an isomorphism of M and M, that F2 ◦ F1 is an
embedding of M1 to M3 if F1 embeds M1 to M2 and F2 embeds M2 to M3 , and
that F−1 is an isomorphism of M2 and M1 if F is an isomorphism of M1 and M2 .

Embeddings, as we defined them, are relations. It is easier, and often natural, to work
with functions that “generate” embeddings.

Let G be a (class) function with dom G ⊆M1 , ran G ⊆M2 , and such that
(a) (∀y ∈M1)(∃x ∈ dom G)(x =M1 y)
(b) (∀x, y ∈ dom G)(x =M1 y⇔ G(x) =M2 G( y))
(c) (∀x, y ∈ dom G)(x ∈M1 y⇔ G(x) ∈M2 G( y))
(d) (∀x ∈ dom G)(SM1(x)⇔ SM2(G(x))).
Define F ⊆ M1 ×M2 by 〈x1, x2〉 ∈ F⇔ (∃x ∈ dom G)(x1 =M1 x ∧ x2 =M2 G(x)).
It is easy to verify that, if G has properties (a)-(d), then F is an embedding of M1 to
M2 ; moreover, if also
(e) (∀y ∈M2)(∃x ∈ dom G)( y =M2 G(x)),
then F is an isomorphism.

We often say that a function G is an embedding when meaning that the corresponding
F is an embedding. Also, G1 = G2 then stands for F1 = F2 , G3 = G2 ◦ G1 means
that F3 = F2 ◦ F1 , G[A] is F[A], and so on.

Most interpretations we work with are for a language that includes a (primitive or
defined) unary predicate symbol st, interpreted by a class isomorphic to V, the universe
of ZFC. Following Kanovei–Reeken [21], a realistic interpretation, or realization
for short, is an interpretation M = (M,=M,∈M, SM, . . .) and an isomorphism k of
V := (V,=,∈) and SM := (SM,=M ∩ (SM × SM),∈M ∩ (SM × SM)). [In this and
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similar situations, we often write (SM,=M,∈M), or even simply SM , for SM ; it being
understood that the relations are those of M, restricted to SM .]

Proposition 1.1 The isomorphism k in a realization is uniquely determined.

Proof Assume that (M, k1) and (M, k2) are realizations. Then F := k−1
2 ◦ k1 is an

automorphism of V . We note that =V is the true equality, and hence F is a function.
By induction on rank it follows immediately that F is the identity on V: if F( y) = y
for all y of rank less than the rank of x , then F(x) = {F( y) : y ∈ x} = {y : y ∈ x} = x .
Consequently, k1(x) =M k2(x) for all x ∈ V.

We say that an interpretation M := (M,=M,∈M,SM, . . .) is bounded iff

(∀x ∈M)(∃a ∈ SM)(x ∈M a).

We say that M satisfies Transfer iff, for any ∈-formula P(x1, . . . , xk),

(∀x1, . . . , xk ∈ SM)(M � P(x1, . . . , xk)⇔ SM � P(x1, . . . , xk)).

The latter definition involves quantification over formulas, but it turns out that, for
bounded realizations, validity of Transfer for a single formula suffices. This is an idea
going back to Robinson and Zakon [31]. Another proof of finite axiomatizability of
Transfer can be obtained by adapting Theorem 2, Theorem 1 and Remark 2 in Part II
of Gaifman [9].

Let Fi (i = 1, . . . , 10) be the Gödel operations (see Jech [19]). Each of these
operations has a natural defining restricted ∈-formula P i(x, y, z) such that (in ZFC,
or much less) one can prove (∀x, y) (∃!z) P i(x, y, z), and Fi is defined by postulating
(∀x, y)P i(x, y,Fi(x, y)).

Proposition 1.2 If M is a bounded realization,

M � (∀x, y) (∃!z) P i(x, y, z) and

(∀x, y, z ∈ SM)(M � P i(x, y, z)⇔ SM � P i(x, y, z)) (i = 1, . . . , 10),

then M satisfies Transfer. In particular, M satisfies ZFC.

Proof We first note that also SM � (∀x, y) (∃!z) P i(x, y, z), because SM is iso-
morphic to V . The assumptions say that, for i = 1, . . . , 10, and all x, y, z ∈ SM ,
SM � z = Fi(x, y) ⇔ M � z = Fi(x, y). Following the steps of the proof of Theo-
rem 30 in Jech [19], one shows that for every restricted formula P(x̄) there is a com-
position of Gödel operations F(X) such that (∀X)(∀x1 ∈ X1) . . . (∀xk ∈ Xk)(P(x̄) ⇔
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(x1, . . . , xk) ∈ F(X)) holds in M, as well as in SM . As for each x ∈ SM there is
X ∈ SM with x ∈M X [for example, X = {x}M ], we have, for x̄ ∈ SM , SM �
P(x̄)⇔ SM � (x1, . . . , xk) ∈ F(X)⇔M � (x1, . . . , xk) ∈ F(X)⇔M � P(x̄). This
proves Transfer for restricted formulas.

If M � (∃x)P(x, x̄) for x̄ ∈ SM and P(x, x̄) restricted, we use boundedness to fix
A ∈ SM such that M � (∃x ∈ A)P(x, x̄). Transfer for restricted formulas gives
SM � (∃x ∈ A)P(x, x̄), and hence SM � (∃x)P(x, x̄). As the other direction is trivial,
this proves Transfer for Σ1 (and Π1 ) formulas.

We now assume that Transfer holds for Σn and Πn formulas, n ≥ 1, and prove it
for Σn+1 formulas. Let M � (∃x)(∀y)P(x, y, x̄) where x̄ ∈ SM and P(x, y, x̄) is
Σn−1 . Again we fix A ∈ SM such that M � (∃x ∈ A)(∀y)P(x, y, x̄). It suffices to
show that SM � (∃x ∈ A)(∀y)P(x, y, x̄). If not, then SM � (∀x ∈ A)(∃y) ¬P(x, y, x̄).
SM satisfies ZFC, and in particular Selection; hence there exists f ∈ SM such that
SM � (∀x ∈ A) ¬P(x, f (x), x̄). The latter is a Πn formula, therefore transfers to M

and contradicts M � (∃x ∈ A)(∀y)P(x, y, x̄). The other direction is again trivial.

An embedding F of M1 into M2 is ∈-elementary iff, for any ∈-formula P(x̄),

(∀x1, . . . , xk ∈M1)(M1 � P(x1, . . . , xk)⇔M2 � P(F(x1), . . . ,F(xk))).

For bounded realizations this property is again expressible in ZFC.

Proposition 1.3 Let M1,M2 be bounded realizations such that

Mj � (∀x, y) (∃!z) P i(x, y, z) and

(∀x, y, z ∈ SMj)(Mj � P i(x, y, z)⇔ SMj � P i(x, y, z)) (j = 1, 2; i = 1, . . . , 10).

If F is an embedding of M1 into M2 and

(∀x, y, z ∈M1)(M1 � P i(x, y, z)⇔M2 � P i(F(x),F( y),F(z))) (i = 1, . . . , 10),

then F is an ∈-elementary embedding of M1 into M2 .

Proof According to Proposition 1.2, M1 satisfies ZFC. We observe that F maps SM1

onto SM2 ; otherwise, there would exist a nontrivial ∈-elementary embedding of V
into V , contradicting a famous theorem of Kunen (see Jech [19], Theorem 68). Hence
for every x ∈ M2 there is a ∈ M1 (in fact, a ∈ SM1 ) such that x ∈M2 F(a). One can
now repeat the argument from the proof of 1.2 with M2 in place of M and the image
of M1 by F in place of SM .
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Let M1,M2 be realizations, with the language of M1 included in the language of
M2 . F is a morphism of M1 to M2 iff F is an embedding of M1 into M2 and is
∈-elementary. We write M1 4M2 if M1 ⊆M2 and the identity on M1 is a morphism
of M1 to M2 , and read this “M2 is an elementary extension of M1 ”. Clearly, a
bounded realization M satisfies Transfer if and only if SM 4M.

Let M and N = (N,=N,∈N, SN, . . .) be interpretations and M � ZFC. Then one can
consider the interpretation NM for the language of N, “N in the sense of M”. It is
obtained by taking the classes ( formulas) that define N and interpreting them in M:

NM := (NM, (=N)M, (∈N)M, (SN)M, . . .).

The following proposition is easily verified by induction on complexity of formulas.

Proposition 1.4 Let P(x1, . . . , xk) be any formula in the language of N. For all
x1, . . . , xk ∈ NM , NM � P(x1, . . . , xk) iff M � (N � P(x1, . . . , xk)).

In particular, if Q is a sentence expressing the fact that = is a congruence (with respect
to the language of N), then (ZFC proves that) N �Q and, as M � ZFC is assumed,
M � (N � Q) and NM � Q. So NM is indeed an interpretation. [We note that it
need not be realistic even when M and N are.]

Let F be an embedding of N1 into N2 and M � ZFC. Then FM is an embedding of
NM

1 into NM
2 . If F is an isomorphism, then FM is an isomorphism.

Conversely, let M � “F is an embedding (resp., isomorphism) of N1 into N2 ”. Then
F � NM

1 induces an embedding (resp., isomorphism) of NM
1 into NM

2 in an obvious
way.

Another easy induction shows that L[NM] = [LN]M .

Let F be a morphism of a realization M1 to a realization M2 and M1 � ZFC (hence
M2 � ZFC as well). If N = (N,=N,∈N,SN, . . .) is an interpretation, we can form
NM1 and NM2 ; it is immediate that F � NM1 is a morphism of NM1 into NM2 . The
especially useful case is when M1 is SM , M2 is M, and F is the identity on SM ;
we get NSM = NM ∩ SM ; (=N)SM is (=N)M ∩ (SM1 × SM1); similarly for ∈N ;
(SN)SM = (SN)M ∩ SM .

We conclude this section with a list of some particular notational conventions.

As already mentioned, letters in blackboard, calligraphic, gothic, and uppercase Greek
types denote classes. k, `,m, n are natural numbers; κ, λ are infinite cardinals; IdA is
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Relative set theory 13

the identity function on A (IdA if A is a class); f , g, h,F,G,H are always functions.
f :⊆ I → J means that dom f ⊆ I and ran f ⊆ J . F � A is {〈x, y〉 ∈ F : x ∈ A}, the
restriction of F to A. 0 is the empty set as well as the number zero. V is the class
of all sets. VA = {f : dom f = A}; a special convention is introduced in Section 2
in case A is an ultrafilter. We maintain a distinction between ordered pairs (a, b) and
2-tuples 〈a, b〉; it is of course unimportant for most purposes. The elements of Vk

are k-tuples, and we denote them by 〈x1, . . . , xk〉. The projections πk
i : Vk → V are

defined for 1 ≤ i ≤ k by πk
i (〈x1, . . . , xk〉) = xi ; we omit k when it is clear from the

context. A1 × . . .× Ak is viewed as a subset of Vk .

The symbol := denotes “equal by definition”. Quotation marks in mathematical
context are used as parentheses.

2 Ultrafilters and Ultrapowers.

Ultrafilters are pervasive in set theory, and the ultrapower construction is one of the
key tools in the instrumentarium of model theory. The classic references are Comfort–
Negrepontis [7] and Chang-Keisler [6].

Definition 2.1 U is an ultrafilter over I iff U ⊆ P(I) and
(i) 0 /∈ U; I ∈ U
(ii) (∀X,Y ∈ U)(X ∩ Y ∈ U)
(iii) (∀X,Y ∈ U)(X ∪ Y ∈ U ⇒ X ∈ U ∨ Y ∈ U).

It follows that (∀X ∈ U)(∀Y ⊆ I)(X ⊆ Y ⇒ Y ∈ U) and (∀X ⊆ I)(X ∈ U
∨ I r X ∈ U). We note that I is determined by U : I =

⋃
U ; we call I the domain of

U and denote it dom U .

For X ∈ U , U � X := U ∩ P(X) is an ultrafilter over X

An ultrafilter is principal iff {x} ∈ U for some x ∈ dom U . If such x exists, it is
uniquely determined, and U � {x} = {{x}} is then an ultrafilter over {x}. We use
Wx,I to denote the principal ultrafilter over I that contains {x}.

Letters U,V , and W are reserved for ultrafilters. We write U ∼ V iff U ∩ V is an
ultrafilter, ie, (∃X ∈ U ∩ V)(U � X = V � X); ∼ is an equivalence relation.

The technical subject of this work is detailed study of ultrapowers of the universe V
of set theory, and of direct limits of systems of such ultrapowers. Constructions of this
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14 Karel Hrbacek

kind play an important role in numerous investigations in set theory; we mention only
Scott [32], Vopěnka [34], Gaifman [9] and Kunen [26].

We let VU := {f : f is a function, dom f ∈ U}, and for f , g ∈ VU define

f =U g iff {i ∈ I : f (i) = g(i)} ∈ U;

f ∈U g iff {i ∈ I : f (i) ∈ g(i)} ∈ U.

The ultrapower of V modulo U is the interpretation U`(V; U) := (VU,=U,∈U).

The universe of U`(V; U) is a proper class, and the satisfaction relation cannot be
defined for this “structure" (it would induce one for (V,∈)). But, if P(x̄) is any ∈-
formula, we let U`(V; U) � P(x̄) denote the formula PU`(V;U)(x̄) obtained from P by
restricting the range of all quantifiers to VU, and replacing all occurrences of = and ∈
by =U and ∈U , resp. [This may involve renaming some bound variables, if necessary
or convenient.] The fundamental fact about ultrapowers now takes the following form.

Proposition 2.2 (Łoś Theorem) Let P(x1, . . . , xk) be an ∈-formula.
For all f1, . . . , fk ∈ VU ,

U`(V; U) � P( f1, . . . , fk)⇔ {i ∈ I : P( f1(i), . . . , fk(i))} ∈ U.

Proof By induction on the complexity of P .
If P is an atomic formula x` = xm , U`(V; U) � f` = fm is the formula f` =U fm ,
which holds if and only if {i ∈ I : f`(i) = fm(i)} ∈ U .
The case of x` ∈ xm is similar, and propositional connectives (¬,∧) are trivial.
If P is of the form (∃y)Q(x1, . . . , xk, y), U`(V; U) � (∃y)Q( f1, . . . , fk, y) is the for-
mula (∃g ∈ VU)(U`(V; U) � Q( f1, . . . , fk, g)). Let g ∈ VU be such that U`(V; U) �
Q( f1, . . . , fk, g). By the inductive assumption, {i ∈ I : Q( f1(i), . . . , fk(i), g(i))} ∈ U ,
hence {i ∈ I : (∃x)Q( f1(i), . . . , fk(i), x)} ∈ U , ie, {i ∈ I : P( f1(i), . . . , fk(i))} ∈ U .
Using Selection, the argument can be reversed.

In particular, (U`(V; U) � P) ⇔ P holds for any sentence P , so U`(V; U) is an
interpretation for the ∈-language and satisfies all axioms of ZFC.

The ultrapower construction is easily extended to “structures” for richer languages.
For example, let R ⊆ V2 . We let RU := {〈f , g〉 ∈ VU × VU : {i ∈ I : 〈f (i), g(i)〉 ∈
R} ∈ U}, and define U`(V; R; U) := (VU,=U,∈U,RU). As the class R is defined by
some ∈-formula, Łoś Theorem is easily seen to hold for U`(V; R; U) and formulas in
the language with =,∈, and an additional binary relation symbol R interpreted as R.
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Our main emphasis is on ultrapowers of the universe, but occasionally we need the
more general concept of ultraproduct. Let M, I,E ⊆ I × V; we think of M as a
system of classes 〈Mi : i ∈ I〉 indexed by I , where Mi := (M)i = {x : 〈i, x〉 ∈ M};
similarly for 〈Ii : i ∈ I〉 and 〈Ei : i ∈ I〉. Assume that for each i ∈ I , (Mi, Ii,Ei) is an
interpretation for the ∈-language. We let∏

i∈I Mi/U := {f ∈ VU : {i ∈ dom f : f (i) ∈Mi} ∈ U},∏
i∈I Ii/U := {〈f , g〉 ∈ VU × VU : {i : 〈f (i), g(i)〉 ∈ Ii} ∈ U},

and similarly for
∏

i∈I Ei/U . Then the ultraproduct U`(〈Mi, Ii,Ei〉i∈I; U) is defined
as (

∏
i∈I Mi/U,

∏
i∈I Ii/U,

∏
i∈I Ei/U). Łoś Theorem holds in the form

U`(〈Mi, Ii,Ei〉; U) � P( f1, . . . , fk)⇔ {i : (Mi, Ii,Ei) � P( f1(i), . . . , fk(i))} ∈ U.

Lemma 2.3 Let U1 (U2 , resp.) be an ultrafilter over I1 (I2 , resp.) and let ϕ be a
function. The following statements are equivalent:

(∀X ∈ U1)(ϕ−1[X] ∩ I2 ∈ U2)(1)

(∀Y ∈ U2)(ϕ[Y] ∩ I1 ∈ U1).(2)

Proof (1) ⇒ (2):

Assume Y ∈ U2 and let X := ϕ[Y] ∩ I1 . If X /∈ U1 then I1 r X ∈ U1 , so by (1),
ϕ−1[I1 r X] ∩ I2 ∈ U2 . But ϕ−1[I1 r X] is disjoint with Y ∈ U2 , a contradiction.

(2) ⇒ (1):

Assume X ∈ U1 and let Y := ϕ−1[X] ∩ I2 . If Y /∈ U2 , then I2 r Y ∈ U2 , so by (2),
ϕ[I2 r Y] ∩ I1 ∈ U1 . But ϕ[I2 r Y] is disjoint with X ∈ U1 , a contradiction.

A morphism from U2 to U1 is a function ϕ :⊆ I2 → I1 such that (1) or (2) holds;
notation ϕ : U2 → U1 . Observe that domϕ = ϕ−1[I1] ∈ U2 .

If U2 is an ultrafilter and ϕ :⊆ I2 → I1 , we let

ϕ[U2] := {X ⊆ I1 : ϕ−1[X] ∈ U2} = {X ⊆ I1 : X ⊇ ϕ[Y] for some Y ∈ U2}.

We then have ϕ : U2 → ϕ[U2]; conversely, if ϕ : U2 → U1 , then U1 = ϕ[U2].

Evidently, if ϕ : U2 → U1 and ψ : U3 → U2 , then ϕ ◦ ψ : U3 → U1 . Hence
U1 ≤RK U2 iff (∃ϕ)(ϕ : U2 → U1) defines a preordering of ultrafilters, called the
Rudin-Keisler preordering. The well-known theorem first proved by Katětov (see
[7]) asserts that, if ϕ : U → U , then ϕ =U IdI . It follows that, if U1 ≤RK U2 and
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16 Karel Hrbacek

U2 ≤RK U1 , then there is a one-one function g :⊆ I1 → I2 such that g[U1] = U2 and
g−1[U2] = U1 . We call such g an isomorphism of U1 and U2 .

Every morphism of ultrafilters induces an ∈-elementary embedding of the correspond-
ing ultrapowers.

Let ϕ : U2 → U1 ; we define ϕ∗ : VU1 → VU2 by ϕ∗( f ) = f ◦ ϕ.

Evidently, if ϕ : U2 → U1 and ψ : U3 → U2 then (ϕ ◦ ψ)∗ = ψ∗ ◦ ϕ∗ .

If U1 ∼ U2 and ϕ = IdX where X ∈ U1∩U2 , then ϕ∗ is an isomorphism of U`(V; U1)
and U`(V; U2).

Proposition 2.4 Let P(x1, . . . , xk) be an ∈-formula. For all f1, . . . , fk ∈ VU1 ,

U`(V; U1) � P( f1, . . . , fk) ⇔ U`(V; U2) � P(ϕ∗( f1), . . . , ϕ∗( fk)).

Proof We have U`(V; U1) � P( f1, . . . , fk) iff {i ∈ I1 : P( f1(i), . . . , fk(i))} ∈ U1 iff
ϕ−1[{i ∈ I1 : P( f1(i), . . . , fk(i))}] ∈ U2 iff {j ∈ I2 : P( f1(ϕ(j)), . . . , fk(ϕ(j)))} ∈ U2

iff {j ∈ I2 : P(ϕ∗( f1)(j), . . . , ϕ∗( fk)(j))} ∈ U2 iff U`(V; U2) � P(ϕ∗( f1), . . . , ϕ∗( fk)).

The converse assertion, that every ∈-elementary embedding of U`(V; U1) to U`(V; U2)
is induced by some morphism from U2 to U1 , cannot be proved in ZFC (see [3,
15]). The induced embeddings are special, in that they commute with the natural
∈-elementary embeddings of V into U`(V; U1) and U`(V; U2).

Let I0 = {0} and let U0 be the principal ultrafilter over I0 ; ie, U0 = {{0}}. There is a
natural isomorphism k0 between (V,=,∈) and U`(V; U0) given by k0(x) = {(0, x)}.
If U is an ultrafilter over I and ϕU : U → U0 is defined by ϕU(i) = 0 for all i ∈ I ,
we call kU := ϕ∗U ◦ k0 the natural embedding of (V,=,∈) into U`(V; U).

Unraveling this definition shows that, for every x ∈ V, kU(x) = cx , where cx is the
constant function on I with value x: kU(x)(i) = cx(i) = x for all i ∈ I . [kU is also
known as the diagonal mapping.]

If ϕ : U2 → U1 , then ϕU1 ◦ϕ = ϕU2 , hence kU2 = ϕ∗U2
◦k0 = ϕ∗◦ϕ∗U1

◦k0 = ϕ∗◦kU1 .

In summary: The ∈-elementary embeddings induced by morphisms commute with the
natural embeddings.

Proposition 2.5 [Keisler; Lindstrom; [6]] Let Ψ : U`(V; U1) → U`(V; U2) be an
∈-elementary embedding such that Ψ ◦ kU1 = kU2 . Then there is ϕ : U2 → U1 such
that Ψ = ϕ∗ . If also ϕ̃ : U2 → U1 and Ψ = ϕ̃∗ , then ϕ =U2 ϕ̃.
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Proof Let d := IdI1 be the identity on I1 . We set e := Ψ(d) ∈ VU2 , and write k1, k2

in place of kU1 , kU2 .

Claim 1. A ∈ U1 implies e−1[A] ∈ U2 .

Proof d(i) = i ∈ A for all i ∈ A ∈ U1 , so d ∈U1 k1(A). Hence e = Ψ(d) ∈U2

Ψ(k1(A)) = k2(A), ie, {j ∈ I2 : e(j) ∈ A} = e−1[A] ∈ U2 .

We let ϕ := e � e−1[I1], so ϕ =U2 e and ranϕ ⊆ I1 . Claim 1 remains true with e
replaced by ϕ, and shows that ϕ : U2 → U1 .

Claim 2. ϕ∗( f ) =U2 Ψ( f ) for all f ∈ VU1 .

Proof We observe that, for all i ∈ dom f , f (i) = f (d(i)) = (k1( f )(i))(d(i)), so
U`(V; U1) � f = k1( f )(d). As Ψ is an ∈-elementary embedding, we get U`(V; U2) �
“Ψ( f ) = Ψ(k1( f ))(Ψ(d)) = k2( f )(ϕ) = f ◦ ϕ”, and conclude that Ψ( f ) =U2 f ◦ ϕ =
ϕ∗( f ). [We recall that the underlined composition f ◦ ϕ is evaluated in the ambient
set theory, not in U`(V; U2); hence the meaning is U`(V; U2) � Ψ( f ) = g where
g := f ◦ ϕ.]

If ϕ∗ = ϕ̃∗ , then in particular ϕ∗(d) =U2 ϕ̃
∗(d); but ϕ∗(d) = d ◦ ϕ = ϕ, ϕ̃∗(d) =

d ◦ ϕ̃∗ = ϕ̃∗ , so ϕ =U2 ϕ̃
∗ .

It is not clear a priori that Proposition 2.5 is a theorem of ZFC, because the notion of
elementary embedding is defined by a schema of equivalences: for every ∈-formula
P , U`(V; U1) � P( f1, . . . , fk) iff U`(V; U2) � P(Ψ( f1), . . . ,Ψ( fk)). However, an
inspection of its proof reveals that a single equivalence, for the formula P0(x, y, z):
“y is a function and z = y(x)” [with x = d , y = k1( f ) and z = f ] suffices to prove
that Ψ = ϕ∗ . As ϕ∗ is an ∈-elementary embedding, so is Ψ. Hence, “an embedding
Ψ : U`(V; U1)→ U`(V; U2) such that Ψ◦kU1 = kU2 and (∀f , g, h ∈ VU1)(U`(V; U1) �
P0( f , g, h)⇔ U`(V; U2) � P0(Ψ( f ),Ψ(g),Ψ(h))” can be taken as a definition of “∈-
elementary embedding” in Proposition 2.5.

Proposition 2.5 suggests that ultrapowers of V should be construed as realizations. To
that effect we add to the ∈-language a unary predicate symbol st, to be interpreted
by the class SU := kU[V] = {f ∈ VU : f =U kU(x) for some x ∈ V}, the range of
the natural embedding kU . From now on, the ultrapower of V modulo U is the
interpretation U`t(V; U) := (VU,=U,∈U,SU) for the {∈, st}-language. The natural
isomorphism kU of (V,=,∈) and (SU,=U ∩ (SU × SU),∈U ∩ (SU × SU)) witnesses
that (U`t(V; U), kU) is a realization. Proposition 1.1 tells us that, in ZFC, kU is
uniquely determined by the class SU .
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Let U`t(V; U1) and U`t(V; U2) be ultrapowers of V. Ψ : U`t(V; U1) → U`t(V; U2)
denotes that Ψ is a morphism in the sense of realizations; that is, Ψ is an ∈-elementary
embedding and Ψ ◦ kU1 = kU2 .

Proposition 1.3, or, alternatively, the remarks after the proof of Proposition 2.5, show
that this notion is expressible in ZFC. Moreover, every morphism is of the form ϕ∗

for some ϕ : U2 → U1 , so we have a “duality” between the category of ultrafilters and
that of ultrapowers of the universe. (This statement is not quite correct in the technical
sense of category theory, due—among other things—to the fact that ϕ is unique only
almost everywhere.)

3 Nonstandard Set Theory.

Our goal here is a sound and complete axiomatization of the interpretations U`t(V; U) =
(VU,=U,∈U,SU) for the language that has, in addition to = and ∈, also a unary
predicate symbol st, interpreted by SU . It is customary to read st(x) as “x is stan-
dard.” Elements of SU are the standard sets in U`t(V; U); if U is nonprincipal, then
IdI 6=U kU(x) for all x ∈ V, and U`t(V; U) � (∃x)(¬ st(x)). Hence nonstandard sets
exist in U`t(V; U). Nonstandard set theory axiomatizes ultrapowers of the universe. 2

We use (∃stx) . . . as shorthand for (∃x)(st(x) ∧ . . .), and (∀stx) . . . as shorthand for
(∀x)(st(x)⇒ . . .). Pst is a formula obtained from P by replacing each occurrence of
(∃x) . . . by (∃stx) . . ., and of (∀x) . . . by (∀stx) . . ..

Elementary nonstandard set theory ST− is the theory in the {∈, st}-language with
the following axioms:

ZFC for standard sets: Pst , where P is any axiom of ZFC.
Boundedness: (∀x)(∃sta)(x ∈ a).
Transfer: (∀stx1, . . . , xk)(Pst(x1, . . . , xk)⇔ P(x1, . . . , xk)),
where P is any ∈-formula.

2In a private conversation, J Väänänen asked, how does nonstandard set theory differ from
studying a κ-saturated ultrapower of Vκ where κ is inaccessible. During my talk at CUNY
Graduate Center on an early version of this material, G Liebman asked, how do models of
nonstandard set theory differ from nonstandard models of set theory. The discussion at the
end of the preceding section is the beginning of an answer to these questions: U`(V,U) is a
nonstandard “model” of set theory, while U`t(V; U) is a “model” of nonstandard set theory. In
other words, in nonstandard set theory one always considers also the primitive predicate st , or,
equivalently, a particular elementary embedding of V into VU .
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We let S := {x : st(x)} be the class of standard sets and V := {x : x = x} the class
of all sets, sometimes referred to as internal sets for emphasis. A consequence of
Transfer is that ZFC holds ( for internal sets).

ST is ST− plus

Inner Standardization: (∀x)(∃sta)(∀stz)(z ∈ a⇔ z ∈ x).

The standard set a in the Inner Standardization axiom is uniquely determined by x; we
denote it sh(x) and call it the shadow of x .

Remarks (1) Every realization of ST− is bounded.

(2) In ST, Boundedness is a consequence of the remaining axioms.

Proof The axiom of Regularity implies that for every set x there is an ordinal ξ such
that x ∈ Vξ , the ξ ’th level of the cumulative hierarchy. It suffices to show that there
is an ordinal η ∈ S, η ≥ ξ ; then x ∈ Vη ∈ S. If not, then ξ > η for all ordinals
η ∈ S and sh(ξ) ∈ S is a standard set containing all standard ordinals, contradicting
ZFCst .

Proposition 3.1 [6, 22] U`t(V; U) is a realization of ST.

Proof The natural embedding kU is the required isomorphism. Every realization
satisfies ZFCst . For every f ∈ VU with ran f ⊆ A, f ∈U kU(A). Transfer is provided
by Łoś Theorem. Every bounded realization trivially satisfies Inner Standardization.

Until further notice, we work in the elementary nonstandard set theory ST− .

If U is a class, PU is a formula obtained from P by replacing each occurrence
of (∃x) . . . [(∀x) . . ., resp.] by (∃x ∈ U) . . . [(∀x ∈ U) . . ., resp.]. In particular,
PS(x1, . . . , xk)⇔ Pst(x1, . . . , xk) and PV(x1, . . . , xk)⇔ P(x1, . . . , xk). We use U1 4
U2 (U2 is an ∈-elementary extension of U1 ) as shorthand for the assertion that, for any
∈-formula P(x1, . . . , xk), (∀x1, . . . , xk ∈ U1)(PU1(x1, . . . , xk) ⇔ PU2(x1, . . . , xk)).
In particular, Transfer is just the assertion that S 4 V.

Proposition 3.2 (ST−) Let S ⊆ U ⊆ V. The following statements are equivalent:

S 4 U(1)

U 4 V(2)

(∀x, y ∈ U)[(x, y) ∈ U ∧ (∀x ∈ U)(∀f ∈ S)( f (x) ∈ U )].(3)
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Proof (1) ⇒ (3):
ZFCst holds, so (∀x, y ∈ S)[(x, y) ∈ S ∧ (∀x ∈ S)(∀f ∈ S)( f (x) ∈ S )]. From (1) we
get that this statement holds with S replaced everywhere by U.

(2) ⇒ (1):
Let P(x̄) be an ∈-formula, x̄ ∈ S. If PS(x̄) holds, then P(x̄) holds by S 4 V, and
then PU(x̄) holds by U 4 V and S ⊆ U.

(3) ⇒ (2):

Claim. (∀x1, . . . , xk ∈ U)((∃y)P(x1, . . . , xk, y)⇒ (∃y ∈ U)P(x1, . . . , xk, y)).

Proof Assume x1, . . . , xk ∈ U and (∃y)P(x̄, y). By repeated application of (3)
we know that (x1, . . . , xk) ∈ U, and by Boundedness we obtain A ∈ S such that
(x1, . . . , xk) ∈ A. Axioms of Separation hold in S, so there is a set C ∈ S such
that (∀stz̄)[(z1, . . . , zk) ∈ C ⇔ (z1, . . . , zk) ∈ A ∧ (∃sty)Pst(z̄, y)]. By Transfer
then also (∀z̄)[(z1, . . . , zk) ∈ C ⇔ (z1, . . . , zk) ∈ A ∧ (∃y)P(z̄, y)], so in particular
(x1, . . . , xk) ∈ C . Axioms of Selection hold in S, so there is a function f ∈ S such
that (∀stz̄ ∈ C)Pst(z̄, f (z̄)). Again by Transfer, (∀z̄ ∈ C)P(z̄, f (z̄)), and in particular
P(x̄, f (x̄)) holds. But f (x̄) ∈ U by (3).

The proof that U 4 V now proceeds by induction on complexity of P . The only
nontrivial case is when P(x̄) is of the form (∃y)Q(x̄, y). We assume by induction that
(∀x̄, y ∈ U)(QU(x̄, y) ⇔ Q(x̄, y)) holds. Using the Claim in the second step and the
inductive assumption in the third one, we have, for x̄ ∈ U, P(x̄) ⇔ (∃y)Q(x̄, y) ⇔
(∃y ∈ U)Q(x̄, y)⇔ (∃y ∈ U)QU(x̄, y)⇔ PU(x̄).

Definition 3.3 S[a] := {f (a) : f ∈ S is a function}.

Corollary 3.4 (ST−)

S 4 S[a] 4 V, and if S 4 U and a ∈ U, then S[a] 4 U.

Proof If x = f (a) and y = g(a) for f , g ∈ S, then (x, y) = F(a) for F ∈ S defined by
F(z) = (f (z), g(z)). Hence S[a] satisfies (3) of Proposition 3.2.

S[a] is the least ∈-elementary extension of S containing a (as an element). It turns
out that S[a] is naturally isomorphic to an ultrapower of the standard universe S,
constructed inside S (Proposition 3.7).

Let a ∈ A ∈ S and let Wa,A := {X ⊆ A : a ∈ X} be the principal ultrafilter over A
containing {a}. If the standard set Va,A := sh(Wa,A) exists, then it has the property
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that X ∈ Va,A ⇔ a ∈ X , for X ∈ P(A) ∩ S. It is trivial to verify that Va,A is a
(standard) ultrafilter over A, and that Va,A is principal iff a ∈ S (iff Va,A = Wa,A ). We
say that a generates the standard ultrafilter Va,A over A. We also write aMU (a is in
the monad of U ) for (∀stX ∈ P(A))(X ∈ U ⇔ a ∈ X). Clearly, if a ∈ A ∩ B where
A,B ∈ S, then Va,A ∼ Va,B .

Proposition 3.5 (ST−) Assume A,B, f ∈ S, f :⊆ A→ B, a ∈ dom f and Va,A exists.
Then Vf (a),B = f [Va,A].

Proof The set f [Va,A] ∈ S and, for Y ∈ P(B)∩ S, Y ∈ f [Va,A]⇔ f−1[Y] ∈ Va,A ⇔
a ∈ f−1[Y]⇔ f (a) ∈ Y .

Proposition 3.6 (ST−) The following statements are equivalent:
(a) Inner Standardization
(b) For every a ∈ A ∈ S there exists the ultrafilter Va,A ∈ S generated by a over A.

Proof The proof of (a) ⇒ (b) is contained in the discussion above. For (b) ⇒ (a) it
suffices to show that sh(a) is ∈-definable from Va,A .
Let a ∈ A ∈ S; then a ⊆

⋃
A. For each y ∈

⋃
A let Xy := {x ∈ A : y ∈ x} ⊆ A; we

note that 〈Xy : y ∈
⋃

A〉 is a standard function; hence b := {y ∈
⋃

A : Xy ∈ Va,A} ∈ S.
For y ∈

⋃
A ∩ S we have y ∈ a ⇔ a ∈ Xy ⇔ Xy ∈ Va,A , so (∀sty)(y ∈ b ⇔ y ∈ a),

and b = sh(a).

We continue working in ST− ; let a ∈ A ∈ S be such that U := Va,A exists. S :=
(S,=,∈) is an interpretation of ZFC and S 4 (V,=,∈); we consider the ultrapower
of the universe modulo U constructed inside S :

[U`t(V; U)]S = ((VU)S , (=U)S , (∈U)S , (SU)S) =

(VU ∩ S, =U ∩ (S× S), ∈U ∩ (S× S), SU ∩ S)

(the second equality follows by Transfer; see also Section 1).

We define a mapping ja,A : VU ∩ S→ V by ja,A( f ) = f (a).

Proposition 3.7 (ST− ) ja,A is an isomorphism between [U`t(V; Va,A)]S and Sa :=
(S[a],=,∈, S), and ja,A(IdA) = a.

Proof Let j := ja,A . Clearly ran j = {f (a) : f ∈ S} = S[a]. For standard f , g we
have f =U g ⇔ {i ∈ A : f (i) = g(i)} ∈ U ⇔ a ∈ {i ∈ A : f (i) = g(i)} ⇔ f (a) =
g(a) ⇔ j( f ) = j(g). Similarly f ∈U g ⇔ j( f ) ∈ j(g). For x ∈ S, j(kU(x)) = x , so j

maps SU ∩ S onto S. Clearly j(IdA) = IdA(a) = a.
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Let STp be ST plus

Axiom of Primitivity: (∃a)(∀x)(∃stf )(x = f (a)).

Corollary 3.8 (STp) The trivial interpretation (V,=,∈,S) is isomorphic to an ul-
trapower of the universe constructed inside S .

There is a useful interpretation of this result in ZFC.

Corollary 3.9 (ZFC) Ultrapowers of V are precisely the realizations of STp .

Proof U`t(V; U) is a realization of ST by Proposition 3.1. To prove that primitivity
holds, take a = IdI .

If M is a realization of STp , Corollary 3.8 is true in M and, by remarks following
Proposition 1.4, M is isomorphic to [[U`t(V; U)]S]M = [U`t(V; U)]SM . But SM is
isomorphic to V via k, so [U`t(V; U)]SM is isomorphic to U`t(V; k−1(U)).

In this sense the nonstandard set theory STp axiomatizes ultrapowers of the universe.

Here are some further observations related to these ideas.

Lemma 3.10 ( ZFC) (a) U`t(V; U) � h = kU(g)( f ) if and only if h =U g ◦ f .

Assume that f ∈U kU(A).

(b) U`t(V; U) � Vf ,kU(A) = kU( f [U]).

(c) f ∈ SU if and only if U`t(V; U) � “Vf ,kU(A) is principal”.

Proof We write k for kU .

(a) U`t(V; U) � h = k(g)( f ) iff {i : h(i) = (k(g)(i))( f (i))} ∈ U iff {i : h(i) =
g( f (i))} ∈ U iff h =U g ◦ f .

(b) For X ⊆ A, U`t(V; U) � k(X) ∈ Vf ,k(A) iff f ∈U k(X) iff {i : f (i) ∈ X} ∈ U iff
f−1[X] ∈ U iff X ∈ f [U] iff k(X) ∈U k( f [U]).

(c) Using (b), U`t(V; U) � “Vf ,k(A) is principal” iff f [U] is principal. But {a} ∈ f [U]
for some a ∈ A iff f =U k(a) for some a ∈ A, ie, iff f ∈ SU .

We return to the theory ST.
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Proposition 3.11 (ST) If a ∈ S is finite, then a ⊆ S.

Proof We first show that (∀n ∈ ω)(n ∈ S⇒ n ⊆ S). Assume m ∈ n is nonstandard.
By Inner Standardization, there is y ∈ S such that (∀stz)(z ∈ y⇔ z ∈ m). By Transfer,
y ⊆ ω , y is nonempty (0 ∈ y) and bounded above (by n); let m0 be the greatest
element of y. As m0 is standard, m0 ∈ m; so either m0 + 1 ∈ m and m0 + 1 ∈ y, or
m0 + 1 = m and m is standard. Either way, we have a contradiction.

If now a ∈ S is finite, there is a one-one mapping f ∈ S of some n ∈ S onto a. Then
n ⊆ S and hence a = f [n] ⊆ S, by Transfer.

Let κ be a standard infinite cardinal.

κ-Idealization is the statement:

For all standard A,B with |A| < κ and all R ⊆ A× B,

(∀sta ∈ PfinA)(∃y)(∀x ∈ a)(〈x, y〉 ∈ R)⇔ (∃y)(∀stx ∈ A)(〈x, y〉 ∈ R).

It is well-known (see Chang–Keisler [6]) that if the ultrafilter U is κ-good 3, then
U`t(V; U) is κ-saturated, that is, in our terminology, U`t(V; U) � κ-Idealization.
[More accurately, we should say U`t(V; U) � kU(κ)-Idealization, etc.]

Proposition 3.12 (ST + κ-Idealization) Let U,V, f ∈ S, U = f [V] and aMU . If
|V| < κ, then there exists bMV such that f (b) = a.

Proof Let A := V , B := dom V , 〈X, y〉 ∈ R ⇔ y ∈ X ∧ f ( y) = a. If S ⊆ V is
standard finite, then

⋂
S = X0 for some X0 ∈ V ∩ S. Hence f [X0] ∈ U ∩ S and so

a ∈ f [X0], ie, a = f ( y) for some y ∈ X0 . It follows that 〈X, y〉 ∈ R for all X ∈ S ∩ S.
By κ-Idealization there exists b such that 〈X, b〉 ∈ R for all X ∈ V ∩ S, ie, bMV and
f (b) = a.

The special case where U is principal over {0} is also useful; the assertion then is that,
if |V| < κ, then there is bMV .

Proposition 3.13 (ZFC) (Amalgamation Lemma) Let U,V,W be ultrafilters, V =
f [U], V = g[W]. If Û is a κ-good ultrafilter and κ > |U|, |W|, then there exist f̂ such
that f̂ [Û] = U . For each such f̂ there exists ĝ such that ĝ[Û] = W and f ◦ f̂ =Û g ◦ ĝ.
That is, the following diagram commutes.

3In this paper, all κ-good ultrafilters are assumed to be ω1 -incomplete.
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Proof We write k for kÛ . U`t(V; Û) � “k(κ)-Idealization”, so Proposition 3.12 holds
in U`t(V; Û). When applied to k(U), this implies that there is f̂ ∈ VÛ such that
U`t(V; Û) � f̂ Mk(U); that is, f̂ ∈Û k(A) for all A ∈ U , ie, f̂−1[A] ∈ Û for all A ∈ U .
We then have U = f̂ [Û].

Given f̂ such that f̂ [Û] = U , we have V = h[Û] where h := f ◦ f̂ . Hence h ∈Û k(B),
for every B ∈ V , ie, U`t(V; Û) � hMk(V). Also U`t(V; Û) � k(V) = k(g)[k(W)] and
U`t(V; Û) � |k(W)| < k(κ). Applying Proposition 3.12 inside U`t(V; Û) once more,
we obtain ĝ ∈ VÛ such that U`t(V; Û) � “ ĝMk(W) ∧ h = k(g)(ĝ)”. This translates
into W = ĝ[Û] and h =Û g ◦ ĝ.

4 Repeated Ultrapowers.

Let U`(V; U) � “u is an ultrafilter”; we can then form the ultrapower of the universe
modulo u inside U`(V; U), ie, consider the interpretation

[U`t(V; u)]U`(V;U) = ((Vu)U`(V;U), (=u)U`(V;U), (∈u)U`(V;U), (Su)U`(V;U)).

We observe that u = 〈Ui : i ∈ dom u〉 is a function with dom u ∈ U , and for U -almost
all i, Ui is an ultrafilter; without loss of generality we can assume that dom u = I
and Ui is an ultrafilter for all i ∈ I . Now F ∈ (Vu)U`(V;U) iff U`(V; U) � “F is a
function ∧ dom F ∈ u” iff F is a function, dom F ∈ U and {i ∈ I : F(i) ∈ VUi} ∈ U
iff F ∈

∏
VUi/U . For F,G ∈ (Vu)U`(V;U) , U`(V; U) � F =u G iff {i ∈ I :

F(i) =Ui G(i)} ∈ U iff 〈F,G〉 ∈
∏

(=Ui)/U . Similarly for ∈u . F ∈ (Su)U`(V;U) iff
{i ∈ I : F(i) ∈ SUi} ∈ U iff F ∈

∏
SUi/U .

It follows from these observations that the interpretation [U`t(V; u)]U`(V;U) is nothing
but the ultraproduct U`(〈U`t(V; Ui) : i ∈ I〉; U).

Let U be an ultrafilter over I and 〈Ui : i ∈ I〉 a sequence of ultrafilters, with Ui over
Ii . Let K := Σ i∈IIi :=

⋃
i∈I{i} × Ii = {〈i, j〉 : i ∈ I, j ∈ Ii}.

The Rudin-Frolı́k sum Σ UUi is the ultrafilter V over K defined as follows:

X ∈ V ⇔ {i ∈ I : (X)i ∈ Ui} ∈ U ⇔ {i ∈ I : {j ∈ Ii : 〈i, j〉 ∈ X} ∈ Ui} ∈ U.
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The verification that V is indeed an ultrafilter over K and that π1[V] = U is trivial.

In the special case where Ui = U′ for all i ∈ I , we write U ⊗ U′ (product of U and
U′ ) in place of Σ UUi ; U ⊗ U′ is an ultrafilter over I × I′ , for I′ := dom U′ .

The relation ≤RF on ultrafilters, defined by U ≤RF V iff V is isomorphic to Σ UUi

for some 〈Ui : i ∈ I〉, is called the Rudin-Frolı́k preordering. Transitivity of
≤RF follows from the evident associativity of Rudin-Frolı́k sums: Given ultrafilters
Vi,j, 〈i, j〉 ∈ K , and V = Σ UUi , W = Σ VVi,j , we have also W ∼= Σ UWi where
Wi = Σ UiVi,j . Clearly U ≤RF V implies U ≤RK V (via U = π1[V]).

Let f ∈ VV ; we define the function f/I ∈ VU by ( f/I)(i) = ( f )i , where dom( f )i ⊆ Ii

and ( f )i(j) = f (i, j). Also Ω( f ) := f/I .

Proposition 4.1 (The Factoring Lemma) Ω is an isomorphism of U`(V; Σ UUi) and
U`(〈U`(V; Ui) : i ∈ I〉; U) = [U`(V; u)]U`(V;U) .
Moreover, for h ∈ VU , U`(V; U) � Ω(π∗1 (h)) =u ku(h).

Here ku is the natural embedding of the universe into its ultrapower modulo u, all
evaluated inside of U`(V; U).

An equivalent formulation of the Factoring Lemma is:
Ω is an isomorphism of (U`(V; Σ UUi), π∗1 [VU]) and U`(〈U`t(V; Ui) : i ∈ I〉; U) =
[U`t(V; u)]U`(V;U) .

Proof We first note that, for f ∈ VV , the set {i ∈ I : dom(( f/I)(i)) ∈ Ui} ∈ U , so
Ω( f ) ∈

∏
VUi/U .

We have f1 =V f2 ⇔ {〈i, j〉 ∈ K : f1(i, j) = f2(i, j)} ∈ Σ UUi ⇔
{i ∈ I : {j ∈ Ii : ( f1/I)(i)(j) = ( f2/I)(i)(j)} ∈ Ui} ∈ U ⇔
{i ∈ I : ( f1/I)(i) =Ui ( f2/I)(i)} ∈ U ⇔ U`(V; U) � Ω( f1) =u Ω( f2).

A similar calculation shows that Ω preserves ∈.

To show that Ω is “onto”, we observe that g ∈
∏

VUi/U implies that U -almost
everywhere g(i) is a function with dom g(i) ∈ Ui . We let f (i, j) := g(i)(j) where
defined; dom f ∈ V and {i ∈ I : ( f/I)(i) =Ui g(i)} ∈ U , so U`(V; U) � Ω( f ) =u g.

For h ∈ VU , π∗1 (h)(i, j) = h(i) for all i ∈ dom h ∈ U , j ∈ Ii . Hence Ω(π∗1 (h)) =
〈kUi(h(i)) : i ∈ dom h〉 where kUi(h(i)) is the constant function on Ii with value h(i).
This implies that U`(V; U) � Ω(π∗1 (h)) =u ku(h).

Proposition 4.1 gives an easy proof of an important fact.
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Proposition If U ≤RF V and U is κ-good, then V is κ-good.

Proof According to Chang-Keisler [6], the ultrafilter V over the set K is κ-good
if and only if U`(〈Ai, j : 〈i, j〉 ∈ K〉; V) is κ-saturated, for all structures Ai, j in any
language with less than κ symbols. By the Factoring Lemma, this ultraproduct is
isomorphic to U`(〈U`(〈Ai, j : j ∈ Ii〉; Ui) : i ∈ I〉; U), which is κ-saturated when U is
κ-good.

The interpretation U`(V; U) satisfies ZFC; consequently, Corollary 3.9 holds in
U`(V; U) and U`(V; U) � “U`t(V; u) � STp ”. By Proposition 1.4, [U`t(V; u)]U`(V;U) �
STp and, in view of the isomorphism provided by the Factoring Lemma, we have
(VV ,=V ,∈V , π

∗
1 [VU]) � STp . On the other hand, as for any ultrapower, we have also

(VV ,=V ,∈V , SV ) � STp , where SV = kV [V].

The point is that the repeated ultrapower has two candidates for a “standard universe”.
We consider the interpretation (VV ,=V ,∈V , kV [V], π∗1 [VU]) for the language with ∈
and two unary predicates, st0 and st1 , with st0(x) interpreted by “x ∈ kV [V]” and st1

by “x ∈ π∗1 [VU]”. This interpretation satisfies ST0 ∧ ST1 , where ST0 and ST1 are
obtained from ST by replacing st with st0 and st1 , respectively.

We now work in ST0 ∧ ST1 and let S0 := {x : st0(x)}, S1 := {x : st1(x)}. For
a ∈ A ∈ S0 there is the ultrafilter V0

a,A ∈ S0 such that

(∀X ∈ P(A) ∩ S0)(X ∈ V0
a,A ⇔ a ∈ X),

and the ultrafilter V1
a,A ∈ S1 such that

(∀X ∈ P(A) ∩ S1)(X ∈ V1
a,A ⇔ a ∈ X).

We have a ∈ S0 iff V0
a,A is principal, as well as a ∈ S1 iff V1

a,A is principal. Also,
[U`t(V; V0

a,A)]S0 is isomorphic to (S0[a],=,∈, S0), the least ∈-elementary extension
of S0 containing a, and [U`t(V; V1

a,A)]S1 is isomorphic to (S1[a],=,∈,S1), the least
∈-elementary extension of S1 containing a. Trivially, S0[a] is closed under sh0 , and
S1[a] is closed under both sh0 and sh1 ; but we need a finer result.

Proposition 4.2 (ST0 ∧ ST1 ) S0[[a]] := S0[〈V1
a,A, a〉] is the least ∈-elementary

extension of S0 containing a and closed under sh0 and sh1 .

In particular, it is independent of the choice of A. However, it is crucial that A ∈ S0 ,
although the notion of V1

a,A is defined for any a ∈ A ∈ S1 .
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Proof Trivially, S0[[a]] ⊇ S0 is closed under sh0 . We prove that it is also closed
under sh1 .

Let βA be the set of all ultrafilters over A, and V1 := V1
a,A ; 〈V1, a〉 ∈ βA × A ∈ S0 .

For X ∈ P(βA×A)∩S1 , 〈V1, a〉 ∈ X ⇔ a ∈ (X)V1 ⇔ (X)V1 ∈ V1 ⇔ {V1}×(X)V1 ∈
WV1,βA ⊗ V1 . We conclude that V1

〈V1,a〉,βA×A = WV1,βA ⊗ V1 ∈ S0[[a]].
For every x ∈ S0[[a]] there is f ∈ S0 such that x = f (〈V1, a〉). Let B := f [βA × A];
B ∈ S0 , and by Proposition 3.5, V1

x,B = f [V1
〈V1,a〉,βA×A] ∈ S0[[a]]. The argument in

the proof of Proposition 3.6 is easily modified to show that sh1(x) is ∈-definable from
V1

x,B , and hence (because S0[[a]] 4 V) it belongs to S0[[a]].

If S0 4 U, a ∈ U and U is closed under sh1 , then V1
a,A = sh1(W1

a,A) ∈ U and so
S0[[a]] ⊆ U.

The sequence 〈V1
a,A, a〉 is (essentially) an example of what, in later sections, we call

the pedigree for a over A.

The product of a finite number of ultrafilters is of course defined inductively.

Definition 4.3 Let U1, . . . ,Un be ultrafilters over I1, . . . , In , respectively.⊗0
i=1 Ui := {{0}},

⊗1
i=1 Ui := U1 ; and, for n ≥ 2,

⊗n
i=1 Ui is an ultrafilter over

I1 × . . .× In defined by

X ∈
n⊗

i=1

Ui ⇔ {i1 : {〈i2, . . . , in〉 : 〈i1, i2, . . . , in〉 ∈ X} ∈
n⊗

i=2

Ui} ∈ U1.⊗n
i=1 Ui is isomorphic to U1⊗

⊗n
i=2 Ui , via the map 〈x1, . . . , xn〉 7→ 〈x1, 〈x2, . . . xn〉〉.

If U1 = . . . = Un = U , we write
⊗n

i=1 Ui as
⊗n U .

If d = {s1, . . . , sk} ⊆ {1, . . . , n}, we define the canonical projection πd = πs1,...,sk :
I1× . . .× In → Is1× . . .× Isk by πd(〈i1, . . . , in〉) = 〈is1 , . . . , isk〉; π0(〈i1, . . . , in〉) = 0.
It is easy to verify that πd is a morphism from U1 ⊗ . . .⊗ Un to Us1 ⊗ . . .⊗ Usk (see
Section 6 for more general results).

By repeated appeals to Proposition 4.1 one can construe U`(V;
⊗n

i=1 Ui) as n-times
repeated ultrapower of the universe. But, for the construction of interpretations of
relative set theory, we need even “transfinite repetitions” of the ultrapower construction.
Here we give the simplest example, as a motivation for the general theory of such
repetitions that is developed in the subsequent sections.

Let U be a nonprincipal ultrafilter over ω and let V := Σ U
⊗n U . Each

⊗n U is
an ultrafilter over ωn , hence V is the ultrafilter over K :=

⋃
n∈ω{n} × ωn defined by
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X ∈ V ⇔ {n ∈ ω : (X)n ∈
⊗n U} ∈ U . By the Factoring Lemma, U`(V; V) is

isomorphic to [U`(V; u)]U`(V;U) for u = 〈
⊗n U : n ∈ ω〉. We note that U`(V; U) �

“u =
⊗d kU(U)” where d := Idω is a “hyperfinite integer”: Idω ∈U kU(ω), Idω 6=U

kU(n) for any n ∈ ω . The interpretation can thus be viewed as an ultrapower repeated
a “hyperfinite” number of times. This idea is presented in full generality in Sections 6
and 7.

5 Limit Ultrapowers and BST.

Many realizations of the nonstandard set theory ST are not (isomorphic to) ultrapowers
of the universe. They turn out to be (isomorphic to) limit ultrapowers of the universe,
if this concept is defined in sufficient generality.

Let (D,≤) be a directed preordering [that is, (∀d ∈ D)(d ≤ d), (∀d, d′, d′′ ∈ D)(d ≤
d′ ∧ d′ ≤ d′′ ⇒ d ≤ d′′), and (∀d, d′ ∈ D)(∃d′′ ∈ D)(d ≤ d′′ ∧ d′ ≤ d′′)].

Furthermore, let U = 〈Ud : d ∈ D〉 be a system of ultrafilters, and φ = 〈φd,d′ : d ≤ d′〉
be such that, for all d ≤ d′, φd,d′ 6= 0, ϕ ∈ φd,d′ ⇒ ϕ : Ud′ → Ud , ϕ,ϕ′ ∈ φd,d′ ⇒
ϕ =Ud′ ϕ

′ , and ϕ ∈ φd,d′ , ϕ
′ ∈ φd′,d′′ implies ϕ ◦ ϕ′ =Ud′′ ϕ

′′ for some ϕ′′ ∈ φd,d′′ ,
for d ≤ d′ ≤ d′′ . We refer to this data as a directed system of ultrafilters.

This data induces a system 〈U`t(V; Ud) : d ∈ D〉 of interpretations, and a system
Φ = 〈Φd,d′ : d ≤ d′〉 of morphisms Φd,d′ : U`t(V; Ud) → U`t(V; Ud′) [that is, ∈-
elementary embeddings that commute with the natural embeddings: Φd,d′ ◦kUd = kUd′ ]
such that d ≤ d′ ≤ d′′ ⇒ Φd,d′′ = Φd′,d′′◦Φd,d′ ; namely, Φd,d′ = ϕ∗ for any ϕ ∈ φd,d′ .

As we do not assume Global Choice, it is not in general possible to choose a unique
representative ϕd,d′ ∈ φd,d′ . However, in most applications such choice is possible. In
any case, we use ϕd,d′ as notation for a generic element of φd,d′ .

A limit ultrapower of the universe LU`t(V; U, φ) is the direct limit of this system.

A concrete description of the direct limit as a union of ultrapowers can be given as
follows. Without loss of generality we assume that dom Ud ∩dom Ud′ = 0 for d 6= d′ .
(Replace Id by {d} × Id and Ud by its image under the mapping x 7→ 〈d, x〉.)
We define f ∈ V∗ iff (∃d ∈ D)(f ∈ VUd ); that is, V∗ =

⋃
d∈D VUd . For f ∈ VUd , g ∈

VUd′ , f =∗ g iff (∃d′′ ∈ D)(d ≤ d′′ ∧ d′ ≤ d′′ ∧ Φd,d′′( f ) =U′′d
Φd′,d′′(g)); similarly

for ∈∗ ; f ∈ S∗ iff f =∗ kUd (x) for some x ∈ V; LU`t(V; U, φ) := (V∗,=∗,∈∗,S∗).

We also define Φd,∗ : VUd → V∗ by Φd,∗( f ) = f [ie, Φd,∗ is the inclusion of VUd in
V∗ ], and k : V → V∗ by k(x) = kU(x) where U = Ud for a fixed d ∈ D. Note that
d ≤ d′ ⇒ Φd,∗ = Φd′,∗ ◦ Φd,d′ [this amounts to f =∗ Φd,d′( f ), for f ∈ VUd ].
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Proposition 5.1 LU`t(V; U, φ) is a realization of ST.
For each d ∈ D, Φd,∗ : U`t(V; Ud)→ LU`t(V; U, φ) is a morphism.

Proof First we show that Φd,∗ is an embedding. For f , g ∈ VUd and d ≤ d′′ ,
f =Ud g ⇔ Φd,d′′( f ) =Ud′′ Φd,d′′(g), so f =Ud g ⇔ f =∗ g. Similarly for ∈.
f ∈ kUd [V] ⇔ f ∈ S∗ is immediate from the definition. It is straightforward to verify
that =∗ is a congruence. Φd,∗ commutes with the natural embeddings: for x ∈ V,
k(x) = kUd

(x) =∗ kUd (x) = Φd,∗(kUd (x)).

A well-known argument by induction on complexity of formulas shows that ϕd,∗ is
∈-elementary (hence, a morphism). The nontrivial case is when LU`t(V; U, φ) �
(∃g)P( f1, . . . , fk, g), for f1, . . . , fk ∈ VUd . We take d′ ≥ d such that LU`t(V; U, φ) �
P( f1, . . . , fk, g) for some g ∈ VUd′ . As fi =∗ Φd,d′( fi) and =∗ is a congru-
ence, we have also LU`t(V; U, φ) � P(Φd,d′( f1), . . . ,Φd,d′( fk), g). By the induc-
tive assumption then U`t(V; Ud′) � P(Φd,d′( f1), . . . ,Φd,d′( fk), g), ie, U`t(V; Ud′) �
(∃g)P(Φd,d′( f1), . . . ,Φd,d′( fk), g). As Φd,d′ is ∈-elementary, we get U`t(V; Ud) �
(∃g)P( f1, . . . , fk, g).

ZFC holds in (S∗,=∗,∈∗), which is isomorphic to (V,=,∈) via k. Boundedness
and Inner Standardization hold because they hold in each U`t(V; Ud). Finally, for
f1, . . . , fk ∈ S∗ (without loss of generality fi = kUd (xi) ∈ VUd for some d , where xi ∈
V), LU`t(V; U, φ) � Pst( f1, . . . , fk) ⇔ (V,=,∈) � P(x1, . . . , xk) ⇔ U`t(V; Ud) �
Pst( f1, . . . , fk) ⇔ U`t(V; Ud) � P( f1, . . . , fk) (Transfer holds in U`t(V; Ud)) ⇔
LU`t(V; U, φ) � P( f1, . . . , fk) (because Φd,∗ is ∈-elementary). Hence LU`t(V; U, φ)
satisfies ST.

Proposition 5.2 Every realization of ST is isomorphic to a limit ultrapower of the
universe.

Proof (Outline)

Let = := (I,==,∈=,S=) be such interpretation and let k be the natural isomorphism
of V onto S= . Theorem 3.7 holds in = � ST. Hence every x ∈ I, x ∈= k(A),
generates (S[x])= = {z ∈ I : = � “z = k( f )(x)” for some f ∈ VA}. There is a
unique ultrafilter Ux,A over A such that = � “k(Ux,A) is generated by x over k(A)”, ie,
(∀X ⊆ A)(X ∈ Ux,A ⇔ x ∈= k(X)).

Also, = � “jx,k(A) is an isomorphism of [U`t(V; k(Ux,A))]S onto (S[x],=,∈, S)”. An
examination of this statement in the light of discussions in Section 1 shows that (jx,k(A))=

is an isomorphism of [U`t(V; k(Ux,A))]S
=

onto ((S[x])=,==,∈=, S=). Also, k is the
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natural isomorphism of V onto S= , so it maps U`t(V; Ux,A) isomorphically onto
[U`t(V; k(Ux,A))]S

=
.

The idea of the proof is to observe that I is the union of the system of classes (S[x])= as
x ranges over I, directed by inclusion, and to construct an isomorphic directed system
of ultrapowers of V.

We let D := {〈x,A〉 : x ∈ I ∧ x ∈= k(A)}. For 〈x,A〉, 〈y,B〉 ∈ D we define
〈x,A〉 ≤ 〈y,B〉 ⇔ = � S[x] ⊆ S[y] ⇔ (∀f ∈ VA)(∃g ∈ VB)(= � k( f )(x) = k(g)( y)).
It is immediate that ≤ is a directed preordering (= � “S[x] ∪ S[y] ⊆ S[{x, y}]”). To
each 〈x,A〉 ∈ D we assign the ultrafilter Ux,A . Finally, for 〈x,A〉 ≤ 〈y,B〉 we let
Θ := k−1 ◦ ((jy,k(B))=)−1 ◦ (jx,k(A))= ◦ k. It is easily verified that Θ is a morphism of
U`t(V; Ux,A) into U`t(V; Uy,B), and hence Θ = ϕ∗ for some ϕ : Uy,B → Ux,A . We let
φ〈x,A〉,〈y,B〉 be the set of all such ϕ.

It is now a matter of tedious verification (which we skip) to show that the direct limit
of the system just described is isomorphic to =.

The enormous variety of limit ultrapowers leaves little hope for general results beyond
Propositions 5.1 and 5.2, which characterize limit ultrapowers as being precisely the
realizations of ST. However, we show that there is a realization of ST that is universal
in a well-defined sense, and that this universal realization singles out a particular
nonstandard set theory known as BST.

We use a particular kind of the limit ultrapower construction, known as the iterated
ultrapower.

Let (∆,≤) be a total ordering, that is, ≤ is reflexive, antisymmetric and transitive in ∆
and (∀δ, δ′ ∈ ∆)(δ ≤ δ′∨δ′ ≤ δ). Let 〈Uδ : δ ∈ ∆〉 assign an ultrafilter over Iδ to each
δ ∈ ∆. By replacing Uδ by U′δ over I′δ := {δ}× Iδ , where X ∈ Uδ ⇔ {δ}×X ∈ U′δ ,
we can and do assume that Iδ ∩ Iδ′ = 0 for δ 6= δ′ .

We let D := Pfin(∆) be the class of all finite subsets of ∆; the inclusion ⊆ is then
a directed ordering of D. To each d = {δ1, . . . , δn} ∈ D, where δ1 < . . . < δn , we
assign the ultrafilter Ud := Uδ1 ⊗ . . .⊗Uδn over Kd := Iδ1 × . . .× Iδn ; U0 := {{0}}.
Let U := 〈Ud : d ∈ D〉. For d ⊆ d′ we let ϕd,d′ be the canonical projection of Ud′

onto Ud (see Section 4); let φ = 〈{ϕd,d′} : d ⊆ d′〉. LU`t(V; U, φ) is called the
iterated ultrapower of the universe along 〈Uδ : δ ∈ ∆〉.

Iterated ultrapowers were introduced by Gaifman [9], see also Chang–Keisler [6],
and extensively used by Kunen [26] and others in the study of large cardinals. In
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such applications the ultrafilters Uδ are usually ω1 -complete. Our main interest here
is in constructing an iterated ultrapower along a total ordering ∆ that indexes all
ultrafilters. This is easy to do if one assumes Global Choice; such iterations were used
by the author to construct interpretations of nonstandard set theories in [11]. Kanovei
[23, 22] employed an observation of Shelah to define such iterations in ZFC; we follow
his method below.

Let κ be an infinite cardinal. The set P(κ) is totally ordered lexicographically:
for X,Y ∈ P(κ), X ≤ Y ⇔ X = Y ∨ σ ∈ Y , where σ is the least element of the
symmetric difference of X and Y . Furthermore, the set ∆κ := P(κ)2κ is totally ordered
lexicographically: for α, β : 2κ → P(κ) we let α ≤κ β ⇔ α = β ∨ α(ρ) < β(ρ),
where ρ is the least element of {τ < 2κ : α(τ ) 6= β(τ )}.

We let ∆ :=
⋃
κ{κ} ×∆κ and define a total ordering ≤ on ∆ by: 〈κ, α〉 ≤ 〈κ′, β〉

iff κ > κ′ ∨ (κ = κ′ ∧ α ≤κ β). Note the reversal of the order of cardinals!

To each δ = 〈κ, α〉 ∈ ∆ we assign an ultrafilter Uδ as follows: Uδ = ranα if ranα is
an ultrafilter over κ; Uδ = {{0}} otherwise. Note that every ultrafilter over κ occurs
(repeatedly) as Uδ for some δ = 〈κ, α〉 ∈ ∆.

Let M := (V∗,=∗,∈∗, S∗) be the iterated ultrapower of the universe along 〈Uδ : δ ∈
∆〉, and k the canonical embedding of V into V∗ . According to Proposition 5.1, M is
a realization of ST.

The Back and Forth Property is the conjunction of the following two statements in
the {∈, st}-language:

(∀x, y)(∀stU,F)[(ran F ⊆ dom U ∧ xMU ∧ x = F( y))⇒ (∃stV)(U = F[V] ∧ yMV)]
(B)

(∀x)(∀stU,V,F)[(ran F ⊆ dom U ∧ xMU ∧ U = F[V])⇒ (∃y)(yMV ∧ x = F( y))].
(F)

In particular, B implies that for every y there is a standard V such that yMV (take
U = {{0}}, x = 0). This V is nothing but Vy,dom V , and so B implies (over ST− ) that
Inner Standardization holds, by Proposition 3.6.

By a similar argument, F implies that for every standard V there is y that generates V
(over dom V ).

Proposition 5.3 M satisfies the Back and Forth Property.
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Proof M � ST, and B follows from ST, as shown in Propositions 3.6 and 3.5.

Let U,V be ultrafilters, U = F[V] and M � f Mk(U). Fix finite d ⊆ ∆ such that
f ∈ VUd (recall Ud = Uδ1 ⊗ . . .⊗Uδn where d = {δ1, . . . , δn} in ≤-increasing order,
and δi = 〈κi, αi〉). Let U be a λ-good ultrafilter over λ, for λ > κ1, |U|, |V|. We fix
α0 such that U = U〈λ,α0〉 . Let δ := 〈λ, α0〉 and d := {δ}∪ δ . Then Ud is isomorphic
to Uδ ⊗ Ud , hence it is λ-good, and U`(V; Ud) satisfies λ-Idealization. Of course,
also U`(V; Ud) � “ST ∧ f Mk(U) ∧ k(U) = k(F)[k(V)]”. It follows that there is
g ∈ VUd such that U`(V; Ud) � “gMk(V) ∧ f = k(F)(g)”, ie, U`(V; Ud) � g ∈ kUd

(Y)
for every Y ∈ V . Hence M � g ∈ k(Y) for every Y ∈ V , ie, M � gMk(V) (and
M � k(U) = k(F)[k(V)]). This proves that F holds in M.

Proposition 5.4 (ST + Back and Forth Property) (Normal Form Theorem)
There is an effective procedure that assigns to each {∈-st}-formula P(x1, . . . , xk) an
∈-formula Ps(U) such that, for all x1, . . . , xk and standard U with 〈x1, . . . , xk〉MU ,
P(x1, . . . , xk)⇔ Ps(U). In particular,

P(x1, . . . , xk)⇔ (∃stU)(〈x1, . . . , xk〉MU ∧ Ps(U))⇔
(∀stU)(〈x1, . . . , xk〉MU ⇒ Ps(U)).

It follows that each P(x̄) is equivalent to a formula in Σ st
2 form: P(x1, . . . , xk) ⇔

(∃stU)(∀stX)[U is an ultrafilter ∧ (X ∈ U ⇒ 〈x1, . . . , xk〉 ∈ X ∧ Ps(U))], and to a
formula in Πst

2 form: P(x1, . . . , xk) ⇔ (∀stU)(∃stX)[U is not an ultrafilter ∨ (X ∈
U ∧ 〈x1, . . . , xk〉 /∈ X) ∨Ps(U)].

The first result of this nature was proved by Nelson [27] for IST (Reduction Algorithm).
Kanovei adapted it to BST in [20] (see also [22]). The formulation of the Normal
Form Theorem given here is due to Andreev [1] (see also [2]), who proved it in BST
with only a weak version of Standardization. The proof below is in [3] (see also [15]).

Proof Let P(x1, . . . , xk) be an ∈-st-formula where all free variables are among
x1, . . . , xk . Renaming the bound variables if necessary, we can assume that all bound
variables are distinct from all free variables and from each other (ie, if Q1y1 and Q2y2

are distinct occurrences of quantifiers in P , then y1 and y2 are distinct variables).

We proceed by induction on the complexity of P . Let 1 ≤ i, j ≤ k .

(xi ∈ xj)s is the formula expressing “{〈a1, . . . , ak〉 ∈ dom U : ai ∈ aj} ∈ U”;

(xi = xj)s is the formula “{〈a1, . . . , ak〉 ∈ dom U : ai = aj} ∈ U”;

(st xi)s is “(∃a) {〈a1, . . . , ak〉 ∈ dom U : ai = a} ∈ U”;
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(P ∧Q)s is Ps ∧Qs ; (¬P)s is ¬Ps ;

((∃y)Q(x1, . . . , xk, y))s is (∃V) (π1,...,k[V] = U ∧ Qs(V)).
(Without loss of generality, we can assume that y is the last variable on the list.)
The Back and Forth Property makes the translation of existential quantifiers work
correctly.

Corollary 5.5 (ST+Back and Forth Property) (Boldface Normal Form Theorem)
Let P(a, x1, . . . , xk) be any {∈-st}-formula; there is an ∈-formula Q(a,U) such that,
for all x1, . . . , xk and standard U with 〈x1, . . . , xk〉MU ,

(∀sta)(P(a, x1, . . . , xk)⇔Q(a,U)).

Proof Let Q(a,U) be the formula Ps(Wa,A ⊗ U), where A := {a}.

Kanovei [20] formulated the nonstandard set theory BST (Bounded Set Theory), a
modification of Nelson’s IST.

Axioms of BST:

Pst , where P is any axiom of ZFC.

Boundedness: (∀x)(∃sty)(x ∈ y).

Transfer: (∀stx1, . . . , xk)(Pst(x1, . . . , xk)⇔ P(x1, . . . , xk))
where P(x1, . . . , xk) is any ∈-formula.

Standardization: (∀x̄)(∀stx)(∃sty)(∀stz)(z ∈ y⇔ z ∈ x ∧ P(z, x, x̄))
where P(z, x, x̄) is any ∈-st-formula.

Bounded Idealization:
(∀x̄)(∀stA)[(∀sta ∈ PfinA)(∃y)(∀x ∈ a) P(x, y,A, x̄) ⇔ (∃y)(∀stx ∈ A)P(x, y,A, x̄)]
where P(x, y,A, x̄) is any ∈-formula.

Proposition 5.6 BST is equivalent to ST−+ Back and Forth Property.

Proof =⇒

BST includes the axioms of ST− .

BST ` Inner Standardization:

For any x , there is a standard set A such that x ⊆ A (Boundedness, (Union)st ). By
Standardization, there is a standard set a such that, for all standard z, z ∈ a ⇔ z ∈
A ∧ z ∈ x⇔ z ∈ x .
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B now follows from Propositions 3.6 and 3.5. (If xMU and x = F( y), let A := dom U ,
B := F−1[A], and V the ultrafilter generated by y over B; then U = F[V].)

BST ` (∀stκ)(κ-Idealization):

Let P(x, y,A,R) be the formula “〈x, y〉 ∈ R” and apply Bounded Idealization.

Proposition 3.12 shows that (∀stκ)(κ-Idealization) implies F.

⇐=

ST− + B ` Inner Standardization:

As pointed out in the remark after the statement of the Back and Forth Property, B
implies that Inner Standardization holds.

ST− + Back and Forth Property ` Standardization ([3], Proposition 3):

Let P(z, x, x1, . . . , xk) be any formula. By the Normal Form Theorem, there is an
∈-formula Ps(U) such that P(z, x, x̄) ⇔ (∃stU)(〈z, x, x̄〉MU ∧ Ps(U)). We fix a
standard ultrafilter U0 such that 〈x, x̄〉MU0 . It is easy to verify that, for any standard
z and U , 〈z, x, x̄〉MU ⇔ (U0 ∩ π2,...,k+2[U]) is an ultrafilter ∧{〈w, v, v〉 ∈ dom U :
w = z} ∈ U . Using Transfer we have that, for standard z, P(z, x, x̄) ⇔ (∃U)[(U0 ∩
π2,...,k+2[U]) is an ultrafilter ∧{〈w, v, v〉 ∈ dom U : w = z} ∈ U ∧ Ps(U)], and the
formula on the right side is an ∈-formula.

ST + F � (∀stκ)(κ-Idealization):
Let R ⊆ A × B, A,B standard, and (∀sta ∈ PfinA)(∃y)(∀x ∈ a)(〈x, y〉 ∈ R). Let U
be the ultrafilter generated by R over P(A × B). For x ∈ A define Sx := {〈y, r〉 ∈
B×P(A×B) : 〈x, y〉 ∈ r}. The collection {Sx : x ∈ A}∪{B×Z : Z ∈ U} is standard.
The assumptions imply that it has the finite intersection property, so it extends to a
standard ultrafilter V over B× P(A× B); obviously, U = π2[V]. From RMU , using
F, we deduce the existence of 〈y, r〉MV such that π2(〈y, r〉) = R. Then r = R and
〈y,R〉 ∈ Sx , ie, 〈x, y〉 ∈ R, for all standard x ∈ A.

ST + Back and Forth Property ` Bounded Idealization:

Assume that the left side holds. Selection implies the existence of a set B such
that, for every a ∈ PfinA, if (∃y)(∀x ∈ a)P(x, y,A, x̄), then (∃y ∈ B)(∀x ∈ a)
P(x, y,A, x̄); by Boundedness, we can take B to be standard. Define R := {〈x, y〉 ∈
A× B : P(x, y,A, x̄)} and apply κ-Idealization to obtain the right side. The converse
implication is easy: by Proposition 3.11, if a ∈ PfinA ∩ S, then a ⊆ A ∩ S.

Corollary 5.7 (Kanovei) BST has a realization in ZFC.
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These results have interesting consequences for model theory of BST. In the rest of
this section we use model-theoretic terminology (Chang–Keisler [6]); in particular, a
model (of ZFC or BST) is a set, has a satisfaction relation, and satisfies all ( formal)
axioms (of ZFC or BST).

Corollary 5.8 Every model M of ZFC can be extended to a model N of BST with
SN = M.

Corollary 5.9 If N1,N2 are models of BST and N1 � SN1 = N2 � SN2 = M, then N1

and N2 are L∞,ω -elementarily equivalent (where L is the language with ∈, st and a
name for each x ∈ M). In particular, if also |N1| = |N2| = ℵ0 , then N1 and N2 are
isomorphic by an isomorphism which is the identity on M.

Proof Define a relation R on N<∞
1 × N<∞

2 by:

〈x1
1, . . . , x

1
k〉 R 〈x2

1, . . . , x
2
k〉 iff

(∃U ∈M)[N1 � 〈x1
1, . . . , x

1
k〉MU ∧ N2 � 〈x2

1, . . . , x
2
k〉MU].

(Here 〈x1
1, . . . , x

1
k〉 in the scope of � is understood to be evaluated in the model.)

By Boldface Normal Form Theorem, 〈x̄1〉R〈x̄2〉 implies that x̄1 and x̄2 satisfy the same
formulas of the language L. Back and Forth Property shows that 〈x̄1〉R〈x̄2〉 implies
(∀y1 ∈ N1)(∃y2 ∈ N2)(〈x̄1, y1〉R〈x̄2, y2〉) and (∀y2 ∈ N2)(∃y1 ∈ N1)(〈x̄1, y1〉R〈x̄2, y2〉).
It is well-known [8] that the existence of such a back-and-forth relation between two
structures implies their L∞,ω -elementary equivalence.

Corollary 5.10 Every countable model of ZFC has a unique (up to isomorphism)
extension to a countable model of BST.

Corollary 5.11 If N1 � ST, N2 � BST, N1 � SN1 = N2 � SN2 = M, and also
|N1| = |N2| = ℵ0 , then there is an ∈-elementary embedding of N1 into N2 which is
the identity on M.

Proof This is a “one-sided” version of Corollary 5.9.

Corollary 5.12 (Completeness of BST over ZFC) If T ⊇ ZFC is a complete
consistent theory (in the ∈-language), then T + BST is a complete consistent theory
(in the ∈-st-language).
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Proof Suppose that T1 := T+BST+P and T2 := T+BST+¬P are consistent
theories. Let N1 , N2 be models of T1 , T2 resp., and let Mi := Ni � SNi (viewed as
structures for the ∈-language); then Mi � T. By the Isomorphism Theorem of Shelah
[6, Theorem 6.1.15] there is an ultrafilter U such that U`(M1; U) and U`(M2; U) are
isomorphic. We let N1 := U`(N1; U) and N2 := U`(N2; U). Then N1 � T1 , N2 � T2 ,
so N1 and N2 are not elementarily equivalent, but N1 � SN1 = M1 is isomorphic to
N2 � SN2 = M2 . This contradicts Corollary 5.9.

Our goal in the rest of the paper is to obtain results analogous to those of Sections 2–5
for theories with many levels of standardness.

6 Trees of Ultrafilters.

The ultrapower construction can be repeated any finite number of times, by straightfor-
ward induction. However, the considerations in the subsequent chapters require “hyper-
finite” repetitions: if U is nonprincipal, U`(V; U) has “hyperfinite” or “nonstandard”
natural numbers; ie, there exist ν such that U`(V; U) � “ν ∈ k(ω) ∧ ν 6= k(n)”, for
all n ∈ ω ; and we have to construct “ν -times repeated” ultrapowers inside U`(V; U).
This chapter sets up notation and terminology to support this kind of construction.

Finite sequences are elements of V<ω :=
⋃

n∈ω Vn . If t ∈ Vn , |t| = n = dom t is
the length of t . 〈i〉 := {(0, i)} is the finite sequence of length 1 with value i. For
t, s ∈ V<ω , the concatenation t a s ∈ V<ω is defined by

(t a s)(k) =

{
t(k) for k < |t|;
s(`) for k = |t|+ `, ` < |s|.

A tree is a nonempty set T of finite sequences closed under subsequences (ie, t ∈ T ,
k < |t| ⇒ t � k ∈ T ) and well-founded under ⊇ [ie, ¬ (∃f )(dom f = ω ∧ (∀n ∈
ω)( f � n ∈ T))].

The requirement of well-foundedness assigns to each tree an ordinal number, its rank.
To make this explicit, we restate the definition of trees in recursive form.

(0) T = {0} is a tree of rank 0.

(1) If I 6= 0 and Ti is a tree for each i ∈ I , then T := {0} ∪
⋃

i∈I〈i〉 a Ti is a tree, and
rank(T) = sup{rank(Ti) + 1 : i ∈ I}.

It is routine to show that the smallest class closed under (0) and (1) is precisely the
class of all trees.
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t ∈ T is a leaf iff it is ⊆-maximal, ie, there is no t′ ∈ T with t ⊂ t′ .
Σ T is the set of all leaves of T .

For t ∈ T let
Tt := {s : t a s ∈ T} (the t-branch of T );
[T]t := {i : t a 〈i〉 ∈ T} (the t-level of T ).

It is clear that Tt is a tree and T = {0} ∪
⋃

i∈[T]0
〈i〉 a T〈i〉 . Also, t ∈ Σ T ⇔ Tt =

{0} ⇔ [T]t = 0.

If F is a function with dom F ⊆ T , we define Ft with dom Ft ⊆ Tt and [F]t with
dom[F]t ⊆ [T]t by Ft(s) = F(t a s) and [F]t(i) = F(t a 〈i〉), resp. Ft and [F]t are
“restrictions” of F to the branch Tt and the level [T]t , resp.

Similarly, for X ⊆ T , (X)t := {s : t a s ∈ X} and [X]t := {i : t a 〈i〉 ∈ X}.

If t = 〈i〉 and there is no danger of misunderstanding, we write Ti, [T]i,Fi, [F]i etc.
for T〈i〉, [T]〈i〉,F〈i〉, [F]〈i〉 , resp.
A↓:= {t � n : t ∈ A, n ∈ ω} is a tree, if 0 6= A ⊆ T .

Definition 6.1 Let T be a tree. A tree of ultrafilters (TOU) over T is a function U
with domU = T rΣ T such that, for each t ∈ domU , U(t) is a nonprincipal ultrafilter
over [T]t .

An equivalent recursive definition is:

(0) U = 0 is a TOU over {0};

(1) If T = {0} ∪
⋃

i∈I〈i〉 a Ti , domU ⊆ T , U(0) is a nonprincipal ultrafilter over I
and, for each i ∈ I , U〈i〉 is a TOU over Ti , then U is a TOU over T .

We note that the tree T is determined by U (t ∈ T ⇔ t ∈ domU ∨ t = s a 〈i〉 for
s ∈ domU , i ∈ domU(s)); we denote it TU if necessary for clarity. Also, Ut is a TOU,
for each t ∈ domU .

The ultrafilter ΣU over Σ T is defined recursively.

Definition 6.2 (0) If U = 0, ΣU is the principal ultrafilter {{0}} over Σ T = {0}.

(1) If T = {0} ∪
⋃

i∈I〈i〉 a Ti , then Σ T =
⋃

i∈I〈i〉 a Σ Ti , and for X ⊆ Σ T we let

X ∈ ΣU ⇔ {i ∈ I : (X)〈i〉 ∈ ΣU〈i〉} ∈ U(0)

⇔ {i ∈ I : {s ∈ Σ Ti : 〈i〉 a s ∈ X} ∈ ΣU〈i〉} ∈ U(0).
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Thus ΣU is isomorphic to the Rudin-Frolı́k sum of the ultrafilters ΣU〈i〉 modulo U(0),
Σ U (0)(ΣU〈i〉), via the one-one map 〈i〉 a s 7→ 〈i, s〉. In particular, if rank T = 1, ΣU
is isomorphic to U(0) via the one-one map 〈i〉 7→ i of Σ T onto [T]0 .

We reserve letters ϕ,ψ,θ for mappings from a tree to a tree. For mappings denoted
by these letters only, we modify our notational conventions as follows.

Let ϕ :⊆ T2 → T1 , t ∈ domϕ.
ϕt :⊆ T2

t → T1
ϕ(t) is defined by ϕ(t a s) = ϕ(t) a ϕt(s);

[ϕ]t :⊆ [T2]t → [T1]ϕ(t) is defined by ϕ(t a 〈i〉) = ϕ(t) a 〈[ϕ]t(i)〉.

We note that ϕt(s) is defined iff ϕ(t) ⊆ ϕ(t a s), and [ϕ]t(i) is defined iff ϕ(t a
〈i〉) = ϕ(t) a 〈j〉 for some j; when this is the case, [ϕ]t(i) = j.

Definition 6.3 ϕ is a morphism of U2 to U1 (notation ϕ : U2 → U1 ) iff domϕ ⊆ T2

is a tree, and
(i) ϕ(0) = 0;
(ii) for each t ∈ domϕr Σ T2 , [domϕ]t ∈ U2(t), and either
(c) ϕ(t a 〈j〉) = ϕ(t) for all j ∈ [domϕ]t , or
(p) [domϕ]t = dom[ϕ]t and U1(ϕ(t)) = [ϕ]t[U2(t)];
(iii) ϕ[Σ (domϕ)] ⊆ Σ T1 .
We say that t is collapsing [preserving, resp.] if case (c) [(p), resp.] occurs for t .

An equivalent definition goes by recursion on rank of T2 .
(i) If T2 = {0}, ϕ : U2 → U1 iff U1 = 0,T1 = {0}, ϕ(0) = 0.
(ii) If T2 = {0} ∪

⋃
j∈J〈j〉 a T2

〈j〉 , ϕ : U2 → U1 iff ϕ(0) = 0, [domϕ]0 ∈ U2(0),
and either
(c) for all j ∈ [domϕ]0 , ϕ(〈j〉) = 0 and ϕ〈j〉 : U2

〈j〉 → U
1 for all j ∈ [domϕ]0 , or

(p) T1 = {0} ∪
⋃

i∈I〈i〉 a T1
〈i〉 , [domϕ]0 = dom[ϕ]0 , U1(0) = [ϕ]0[U2(0)] and

ϕ〈j〉 : U2
〈j〉 → U

1
ϕ(〈j〉) = U1

〈ϕ0(j)〉 for all j ∈ [domϕ]0 .

Among the easy consequences of this definition are:
(1) For t1, t2 ∈ domϕ, t1 ⊆ t2 ⇒ ϕ(t1) ⊆ ϕ(t2); ranϕ is a subtree of T1 ; and
Σ (domϕ) ⊆ Σ T2 .
(2) IdT is a morphism of U to U .
(3) If ϕ : U2 → U1 and ψ : U1 → U0 , then ψ ◦ϕ : U2 → U0 .
(4) If t ∈ domϕ, then ϕt : U2

t → U1
ϕ(t) is a morphism.

Proposition 6.4 If ϕ : U2 → U1 , then ΣU1 = ϕ[ΣU2].
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It would be more correct to write ΣU1 = (ϕ � Σ T2)[ΣU2]; we take this notational
license here and elsewhere.

Proof By induction on rank of T2 .

The claim is trivial when T2 = {0}. Assume that T2 = {0} ∪
⋃

j∈J〈j〉 a T2
j .

Collapsing case: By inductive assumption, ΣU1 = ϕj[ΣU2
j ] for all j ∈ [domϕ]0 . For

X ∈ ΣU1 , ϕ−1[X] =
⋃

j∈[domϕ]0
〈j〉 a ϕ−1

j [X] ∈ ΣU2 because [domϕ]0 ∈ U2(0)
and each ϕ−1

j [X] ∈ ΣU2
j .

Preserving case: Then T1 = {0} ∪
⋃

i∈I〈i〉 a T1
i and U1(0) = [ϕ]0[U2(0)]. By

inductive assumption, ΣU1
ϕ(〈j〉) = ϕj[ΣU2

j ] for all j ∈ [domϕ]0 . For X ∈ ΣU1 ,

X0 := {i ∈ I : (X)i ∈ ΣU1
i } ∈ U1(0) and ϕ−1[X] ⊇

⋃
{ϕ−1

j [(X)ϕ(〈j〉)] : j ∈
[ϕ]−1

0 [X0]} ∈ ΣU2 because [ϕ]−1
0 [X0] ∈ U2(0) and each ϕ−1

j [(X)ϕ(〈j〉)] ∈ ΣU2
j .

Definition 6.5 Let T ′,T be trees; the projection πT′,T of T to T ′ is defined as
follows:

πT′,T (t) =

{
t if t ∈ T ∩ T ′;

s if t ∈ T r T ′, s ∈ Σ T ′, s ⊆ t.

We note that πT′,T is defined on a subset of T in general, even when T ′ ⊆ T . Also
note that T ′ ∩ T is a tree and πT′,T = πT′∩T,T .

Lemma 6.6 Let T ′′ ⊆ T ′ ⊆ T be trees. Then πT′′,T (t) = πT′′,T′(πT′,T (t)) for all
t ∈ T where πT′,T is defined.

Proof Let πT′,T (t) = s ∈ T ′ . If t = s, the claim is obvious. Otherwise, s ∈ Σ T ′ .
If s ∈ T ′′ , then s ∈ Σ T ′′ and πT′′,T′(s) = s, t /∈ T ′′ and πT′′,T (t) = s. Otherwise,
πT′′,T′(s) = r where r ⊆ s, r ∈ Σ T ′′ . Then also r ⊆ t , t /∈ T ′′ , so πT′′,T (t) = r .

The projection πT′,T (t) may be undefined while πT′′,T (t) is defined. This is the price
we pay for defining projections as partial mappings. If the obvious alternative definition
of π as a total mapping is used, π may not be a morphism, according to our definition
of morphism.

Definition 6.7 T ′ ⊆ T is a U -subtree of T (notation: T ′ 4U T ) iff [T ′]t ∈ U(t) for
all t ∈ T ′ r Σ T ′ .
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The equivalent recursive definition is:

(0) T ′ 4U {0} iff T ′ = {0};

(1) T ′ 4U {0} ∪
⋃

i∈I〈i〉 a Ti iff either T ′ = {0} or [T ′]0 ∈ U(0) and T ′i 4Ui Ti for
all i ∈ [T ′]0 .

We say that T ′ is maximal iff Σ T ′ ⊆ Σ T . If ϕ : U2 → U1 , then domϕ is a maximal
U2 -subtree of T2 .

If T ′ 4U T , we define U � T ′ = U ′ on T ′ r Σ T ′ by U ′(t) := U(t) � [T ′]t . Clearly
U ′ is a TOU over T ′ and πT′,T : U → U ′ is a morphism. In particular, Σ (U � T ′) =
πT′,T [ΣU]. If T ′ is maximal, πT′,T � Σ T ′ = IdΣ T′ and Σ (U � T ′) = ΣU � Σ T ′ .

Proposition 6.8 (The Factoring Lemma for TOUs)

Let T ′ 4U T ; then Σ ΣU�T′(ΣUt) (t ranges over Σ T ′ ) is isomorphic to ΣU via the
mapping 〈t, s〉 → t a s.

Proof By induction on rank of T .

(0) If T = {0}, all is trivial [see the first part of step (1)].

(1) Let T = {0} ∪
⋃

i∈I〈i〉 a Ti . If T ′ = {0}, ΣU ′ = {{0}}, the only value of t is
t = 0, and U0 = U . The claim is trivial.

Let I′ := [T ′]0 ∈ U(0), where T ′i 4Ui Ti for all i ∈ I′ . By the inductive assumption,
ΣUi is isomorphic to Σ ΣU ′i (Σ (Ui)s) where s ranges over Σ T ′i , U ′i := Ui � T ′i = (U �
T ′)i , and (Ui)s = U〈i〉as .

We note [see the definition of ΣU ] that Σ (U ′) = Σ U (0)(ΣU ′i ) (i ranges over I′ );
hence X ∈ ΣU ⇔ {i ∈ I′ : (X)i ∈ ΣUi} ∈ U(0) [by definition of ΣU and I′ ∈ U(0)]
⇔ {i ∈ I′ : {s ∈ Σ T ′i : (Xi)s ∈ Σ (Ui)s} ∈ ΣU ′i } ∈ U(0) [inductive assumption]
⇔ {i ∈ I′ : {s ∈ Σ T ′i : X〈i〉as ∈ ΣU〈i〉as} ∈ Σ (U � T ′)i} ∈ U(0)
⇔ {t ∈ Σ T ′ : Xt ∈ ΣUt} ∈ ΣU ′ [let 〈i〉 a s = t ; apply definition of ΣU ′ ].

Definition 6.9 For T ′ 4U T we define λT′ :⊆ Σ T → ω by λT′(t) = |πT′,T (t)|.

We note that domλT′ = Σ T ∩ π−1
T′,T [Σ T ′] ∈ ΣU .

Proposition 6.10 For every λ :⊆ Σ T → ω such that {t ∈ Σ T : λ(t) ≤ |t|} ∈ ΣU
there is T ′ 4U T with λT′ =ΣU λ.

Proof Let T ′ := {s ∈ T : (∃t ∈ Σ T)(∃n ≤ λ(t))(λ(t) ≤ |t| ∧ s = t � n).
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Definition 6.11 For T ′,T ′′ 4U T we let T ′′ 4U T ′ iff λT′′ ≤ΣU λT′ , T ′′ ≺U T ′ iff
λT′′ <ΣU λT′ , and T ′′ ≡U T ′ iff λT′′ =ΣU λT′ .

Thus T ′′ 4U T ′ iff {t ∈ Σ T : πT′′,T (t) ⊆ πT′,T (t)} ∈ ΣU , and similarly for ≡U .
Also, T ′ ≡U T iff T ′ is a maximal U -subtree of T . Another useful observation is:
T ′′ 4U T ′ iff either T ′′ ≡U {0} or {i ∈ I : T ′′i 4Ui T ′i} ∈ U(0). It is now easy to
verify that, for T ′ = T , this definition agrees with 4U as defined in 6.7.

The relation 4U is reflexive, transitive and total. Also (T ′′ 4U T ′ and T ′ 4U T ′′ ) iff
T ′ ≡U T ′′ , and T ′′ ≺U T ′ iff (T ′′ 4U T ′ and T ′′ 6≡U T ′ ).

Proposition 6.12 If T ′,T ′′ 4U T , then T ′′ ∩ T ′ 4U T , and also T ′′ 4U T ′ iff
T ′′ ∩ T ′ ≡U T ′′ iff T ′′ ∩ T ′ 4U T ′ .

Proof For the first claim, t ∈ (T ′′ ∩ T ′) r Σ (T ′′ ∩ T ′) implies t /∈ Σ T ′, t /∈ Σ T ′′ , so
[T ′]t ∈ U(t), [T ′′]t ∈ U(t) and [T ′′ ∩ T ′]t = [T ′′]t ∩ [T ′]t ∈ U(t).

Next, let A := domλT′ ∩ domλT′′ ∈ ΣU . The chain of equivalences follows from the
observation that, for t ∈ A, λT′′∩T′(t) = min{λT′(t), λT′′(t)}.

Proof Let for example λT′′(t) ≤ λT′(t); then s′ := πT′,T (t) ∈ Σ T ′, s′′ := πT′′,T (t) ∈
Σ T ′′ and s′′ ⊆ s′ . Hence s′′ ∈ T ′′ ∩ T ′ , in fact, s′′ ∈ Σ (T ′′ ∩ T ′). We conclude s′′ =
πT′′∩T′,T (t) and λT′′∩T′(t) = |s′′| = min{|s′|, |s′′|} = min{λT′(t), λT′′(t)}.

Proposition 6.13 Let T ′,T ′′ 4U T ; then T ′′ 4U T ′ iff πT′′,T′ : U ′ → U ′′ .

Proof Let π := πT′′,T′ . If π is a morphism of U ′ to U ′′ , then A := Σ (domπ) ∈
ΣU ′ . Let B := π−1

T′,T [A] ∈ ΣU . By Lemma 6.6, for t ∈ B, πT′′,T (t) = π(πT′,T (t)),
so λT′′(t) = |πT′′,T (t)| ≤ |πT′,T (t)| = λT′(t), and we conclude that λT′′ ≤ΣU λT′ .

If T ′′ 4U T ′ , we verify the requirements for π to be a morphism. From the definition
of projections, domπ is a tree, π(0) = 0, and t ∈ Σ (domπ) implies π(t) ∈ Σ T ′′ .
The key is to verify (ii). Let t ∈ domπ r Σ T ′ . If t ∈ T ′′ r Σ T ′′ , then [domπ]t =
[T ′′]t ∩ [T ′]t ∈ U(t). Also [π]t is the identity on [domπ]t , so (p) holds. Otherwise,
s := π(t) ∈ Σ T ′′ . Then [domπ]t = [T ′]t ∈ U(t) and π(t a 〈j〉) = s for all j ∈ [T ′]t ,
so (c) holds.

Proposition 6.14 Let ϕ : U2 → U1 be a morphism.
(a) If T̃1 4U1 T1 , then T̃2 := ϕ−1[T̃1] 4U2 T2 .
(b) If T̃2 4U2 T2 , then T̃1 := ϕ[T̃2] 4U1 T1 .
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Proof (a) Let t ∈ T̃2 r Σ T̃2 ; then there is j0 such that t a 〈j0〉 ∈ T̃2 ⊆ domϕ.
Hence [domϕ]t ∈ U2(t) and either
(c), in which case ϕ(t a 〈j〉) = ϕ(t) ∈ T̃1 for all j ∈ [domϕ]t and [domϕ]t ⊆ [T̃2]t ,
so [T̃2]t ∈ U2(t); or
(p), in which case [domϕ]t = dom[ϕ]t and [ϕ]t : dom[ϕ]t → [T1]ϕ(t) . In particular,
ϕ(t a 〈j0〉) = ϕ(t) a 〈i0〉 ∈ T̃1 , hence ϕ(t) /∈ Σ T̃1 and C := [T̃1]ϕ(t) ∈ U1(t),
D := [ϕ]−1

t [C] ∈ U2(t), and D ⊆ [T̃2]t , so again [T̃2]t ∈ U2(t).

(b) Let s ∈ T̃1 r Σ T̃1 ; then there is i0 such that s a 〈i0〉 ∈ T̃1 . Let t′ ∈ T̃2 be
such that ϕ(t′) = s a 〈i0〉; we then can find t, j0 such that t a 〈j0〉 ⊆ t′, ϕ(t) = s,
ϕ(t a 〈j0〉) = s a 〈i0〉. This means that t ∈ T̃2 r Σ T̃2 , so [T̃2]t ∈ U2(t), t ∈ domϕ,
and case (p) occurs at t , so D := [domϕ]t∩[T̃2]t ∈ U2(t), hence C := [ϕ]t[D] ∈ U1(s)
and C ⊆ [T̃1]s . We conclude that [T̃1]s ∈ U1(s).

Corollary 6.15 (a) If T̂1 4U1 T̃1 , then ϕ−1[T̂1] 4U2 ϕ−1[T̃1].
(b) If T̂1 ≺U1 T̃1 , then ϕ−1[T̂1] ≺U2 ϕ−1[T̃1].
(c) If T̂2 4U2 T̃2 , then ϕ[T̂2] 4U1 ϕ[T̃2], but (c) may fail if 4 is replaced by ≺.

Clearly T (0) := {0} 4U T ′ for every T ′ 4U T . If T ′ 6≡U T (0) , the function λ(t) :=
λT′(t)− 1 is defined ΣU -almost everywhere, and there is a U -subtree T ′− of T such
that λT′−

=ΣU λ (Proposition 6.10). We say that T ′− is a predecessor of T ′ (in the
preordering 4U ). Indeed, T ′− 4U T ′ , T ′− 6≡U T ′ , and if T ′′ 4U T ′ , then either
T ′′ 4U T ′− or T ′′ ≡U T ′− .

Analogously, if T ′ 6≡U T , λ(t) := λT′(t) + 1 ≤ |t| holds ΣU -almost everywhere, and
there is a U -subtree T ′+ of T such that λT′+

=ΣU λ. We say that T ′+ is a successor
of T ′ ; indeed, T ′ 4U T ′+ , T ′ 6≡U T ′+ , and if T ′ 4U T ′′ then either T ′+ 4U T ′′ or
T ′′ ≡U T ′ .

It is also clear that (T ′−)+ ≡U T ′ and (T ′+)− ≡U T ′ , as long as all these trees are
defined. In particular, T (1) := {0} ∪ {〈i〉 : i ∈ I} 4U T ′ for every T ′ 6≡U T (0) , and
T (1) ≡U T (0)

+ is a successor of T (0) . For U (1) := U � T (1) , ΣU (1) is isomorphic to U(0)
via the map 〈i〉 7→ i. Hence U`t(V; ΣU (1)) is naturally isomorphic to U`t(V;U(0)),
and we sometimes identify these two interpretations in order to simplify notation.

We conclude this section with a result showing that morphisms are uniquely determined
by their behavior on leaves.

Proposition 6.16 If ϕ,ψ : U2 → U1 and ϕ � Σ T2 =ΣU2 ψ � Σ T2 , then there is a
maximal tree T̃ 4U2 T2 such that T̃ ⊆ domϕ ∩ domψ and ϕ � T̃ = ψ � T̃ .
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Proof By induction on the rank of T2 it is easy to show that for every S ∈ ΣU2 there
is a maximal T̃ 4U2 T2 such that Σ T̃ ⊆ S . Now let S := {t ∈ Σ T2 : ϕ(t) = ψ(t)}
and consider the corresponding T̃ . We prove that ϕ(s) = ψ(s) for all s ∈ T̃ .

Assuming the contrary, fix s ∈ T̃ of minimal length such that ϕ(s) 6= ψ(s); without
loss of generality ϕ(s) ⊂ ψ(s) [note ϕ(s),ψ(s) are compatible, because ϕ(s) ⊆
ϕ(t) = ψ(t) ⊇ ψ(s), for some t ∈ Σ T̃ ]. Then s is collapsing for ϕ and preserving for
ψ ; ie, ϕ(s a 〈i〉) = ϕ(s) for all i ∈ [T̃]s , while U1(ψ(s)) = [ψ]s[U2(s)]. For every
i ∈ [T̃]s there is s′ ⊇ s a 〈i〉 preserving for ϕ [otherwise, for s a 〈i〉 ⊆ t ∈ Σ T̃ ,
ϕ(t) = ϕ(s) ⊂ ψ(s) ⊆ ψ(t)]. Fix i1, i2 ∈ [T̃]s such that [ψ]s(i1) 6= [ψ]s(i2), and
s′ ⊇ s a 〈i1〉, s′′ ⊇ s a 〈i2〉 of minimal length preserving for ϕ. Now [ϕ]s′[U2(s′)] =
U1(ϕ(s)) = [ϕ]s′′[U2(s′′)]; so there are i′1, i

′
2 such that [ϕ]s′(i′1) = [ϕ]s′′(i′2) =: j; ie,

ϕ(s′ a 〈i′1〉) = ϕ(s′′ a 〈i′2〉) = ϕ(s) a 〈j〉. Let t′ ⊇ s′ a 〈i′1〉, t′′ ⊇ s′′ a 〈i′2〉,
t′, t′′ ∈ Σ T̃ , and let k := |ϕ(s)|.

On one hand, ϕ(t′)k = ϕ(s′ a 〈i′1〉)k = j = ϕ(s′′ a 〈i′2〉)k = ϕ(t′′)k . On the other
hand, ψ(t′)k = ψ(s a 〈i1〉)k = [ψ]s(i1) 6= [ψ]s(i2) = ψ(s′′ a 〈i2〉)k = ψ(t′′)k . But
ϕ(t′) = ψ(t′), ϕ(t′′) = ψ(t′′), a contradiction.

Corollary 6.17 If ϕ : U → U , then there is a maximal tree T̃ 4U T such that
T̃ ⊆ domϕ and ϕ(t) = t for all t ∈ T̃ .

Proof Proposition 6.4 asserts that ϕ � Σ T is a morphism of ΣU to ΣU ; from this,
ϕ � Σ T =ΣU IdT � Σ T follows by the theorem of Katětov.

7 Stratified Ultrapowers.

Every TOU U has an associated ultrafilter ΣU over Σ TU , and hence an associated
ultrapower U`(V; ΣU).

The universe of this interpretation is the class VΣU of functions defined ΣU -almost
everywhere, and = and ∈ are interpreted by =ΣU and ∈ΣU , resp.

If ϕ : U2 → U1 is a morphism of TOUs, then ϕ � Σ T2 is a morphism of ul-
trafilters. For f ∈ VΣ U1

we let ϕ∗( f ) := (ϕ � Σ T2)∗( f ) = ( f ◦ ϕ) � Σ T2 ;
ϕ∗ : U`(V; ΣU1)→ U`(V; ΣU2) is a morphism.

If now T ′ 4U T and U ′ := U � T ′ , the projection πT′,T is a morphism of ΣU
onto ΣU ′ , and hence induces an elementary embedding π∗T′,T of U`(V; ΣU ′) into
U`(V; ΣU), defined by π∗T′,T ( f ) = ( f ◦ πT′,T ) � Σ T , for f ∈ VΣU ′ . More than that;
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for u := 〈ΣUt : t ∈ Σ T ′〉, U`(V; ΣU ′) � “u is an ultrafilter”, and, by Propositions 4.1
and 6.8, (U`(V; ΣU),π∗T′,T [VΣU ′]) is isomorphic to [U`t(V; u)]U`(V;ΣU ′) . It follows
that (U`(V; ΣU),π∗T′,T [VΣU ′]) is an interpretation of a nonstandard set theory satis-
fying all the axioms of ST. In particular we note that there are many ways in which
the standardness predicate can be interpreted so that ST holds, one for each T ′ 4U T ;
the universe of U`(V; ΣU) is stratified into multiple levels of standardness. We use a
binary predicate vU to describe this stratification.

To simplify the notation, we “identify” f ∈ VΣU ′ with π∗T′,T ( f ) ∈ VΣU when there
is (hopefully) no danger of misunderstanding. This allows us to regard VΣU ′ as a
subclass of VΣU : for g ∈ VΣU , the statement “g ∈ VΣU ′ ” is to be interpreted as
“there exists h ∈ VΣU ′ such that π∗T′,T (h) =ΣU g ”.

Definition 7.1 For f , g ∈ VΣU , we define:

f vU g iff (∀T ′ 4U T)[g ∈ VΣU ′ ⇒ f ∈ VΣU ′].

It is clear that vU is reflexive and transitive. It is also total: (∀f , g ∈ VΣU )( f vU
g ∨ g vU f ).

Proof Suppose that neither f vU g nor g vU f holds. Then there is T ′ 4U T such
that g ∈ VΣU ′∧f /∈ VΣU ′ , and also T ′′ 4U T such that f ∈ VΣU ′′∧g /∈ VΣU ′′ . Either
T ′ 4U T ′′ or T ′′ 4U T ′ . In the first case, π∗T′,T′′(g) ∈ VΣU ′′ , and hence (Lemma 6.6
and Proposition 6.13) π∗T′,T (g) =ΣU π

∗
T′′,T (π∗T′,T′′(g)) ∈ VΣU ′′ , a contradiction. The

second case is similar.

Interpretations (U`(V; ΣU),vU ), that is, (VΣU ,=ΣU ,∈ΣU ,vΣU ), for the {∈,v}-
language will be called stratified ultrapowers of the universe and denoted U`t(V;U).

Proposition 7.2 For every f ∈ VΣU there is a unique (modulo ≡U ) tree T( f ) 4U T
such that, for all T ′ 4U T , f ∈ VΣU ′ ⇔ T( f ) 4U T ′ .

Proof By induction on rank of T .

(0) If T = T (0) , T( f ) := T (0) .

(1) If T = {0} ∪
⋃

i∈I〈i〉 a Ti , we distinguish two cases.

(a) f =ΣU kΣU (c) for some c ∈ V. Then T( f ) := T (0) again clearly works.
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(b) Otherwise, we let I0 := {i ∈ I : dom fi ∈ ΣUi} (note I0 ∈ U(0)) and use the
inductive assumption to choose, for each i ∈ I0 , a particular T( fi) 4Ui Ti . We let
T( f ) := {0} ∪

⋃
i∈I0
〈i〉 a T( fi); clearly T( f ) 4U T and f ∈ VΣUT( f ) .

Assume f ∈ VΣU ′ for some T ′ 4U T . Then T (0) ≺U T ′ because f 6=ΣU kΣU (c)
for any c, and I′ := {i ∈ I0 : fi ∈ VΣU ′i } ∈ U(0). By the inductive assumption,
T( fi) 4Ui T ′i for i ∈ I′ . Hence T( f ) 4U T ′ .

Conversely, assume T( f ) 4U T ′ 4U T . Then T (0) ≺U T ′ and I′ := {i ∈ I0 :
T( fi) 4Ui T ′i} ∈ U(0). By the inductive assumption, fi ∈ VΣU ′i for all i ∈ I′ , and
hence f ∈ VΣU ′ .

Corollary 7.3 (a) f vU g⇔ T( f ) 4U T(g), for all f , g ∈ VΣU .
(b) Let DT′(t) = t for all t ∈ Σ T ′ , where T ′ 4U T ; then T(DT′) ≡U T ′ .
(c) Let ET′(t) = tk for all t = 〈t0, . . . , tk〉 ∈ Σ T ′ , where T (0) ≺U T ′ 4U T ; then
T(ET′) ≡U T ′ .

Proposition 7.4 Let ϕ : U2 → U1 ; then T(ϕ∗( f )) ≡U2 (ϕ−1[(T( f ))−])+ , for any
f ∈ VΣU1

such that T (0) ≺U1 T( f ).

Proof Let f ∈ VΣU1
, T (0) ≺U1 T( f ), and T( f ) 4U1 T ′ . Let U( f ) := U � T( f ).

The fact that f ∈ VΣU ( f ) means that there is a set X ∈ ΣU1 such that, for t′, t′′ ∈ X ,
πT( f ),T′(t′) = πT( f ),T′(t′′) ⇒ f (t′) = f (t′′). Let T̃ := (ϕ−1[(T( f ))−])+ and Ũ :=
U � T̃ . We note that T( f )− ≺U1 T( f ), so ϕ−1[T( f )−] ≺U2 ϕ−1[T( f )], T̃ 4U2

ϕ−1[T( f )] is defined, and Z := {s ∈ Σ T2 : λϕ−1[(T( f ))−] < λϕ−1[(T( f ))]} ∈ ΣU2 . Let
Y := ϕ−1[X] ∩ π−1

T̃,T2[Σ T̃] ∩ Z ; then Y ∈ ΣU2 . If s′, s′′ ∈ Y and s̃ := πT̃,T2(s′) =

πT̃,T2(s′′), then s̃ = s a 〈 j〉 for some s ∈ ϕ−1[(T( f ))−]. Hence ϕ(s) ∈ (T( f ))− and
ϕ( s̃ ) ∈ T( f ). Also ϕ( s̃ ) = πT( f ),T′(ϕ(s′)) = πT( f ),T′(ϕ(s′′)). As ϕ(s′),ϕ(s′′) ∈ X ,
we have f (ϕ(s′)) = f (ϕ(s′′)). This proves that ϕ∗( f ) = ( f ◦ ϕ) � Σ T2 ∈ VΣ Ũ , ie,
T(ϕ∗( f )) 4U2 T̃ .

Now assume that T(ϕ∗( f )) ≺U2 T̃ ; then T(ϕ∗( f )) 4U2 T̃− = ϕ−1[(T( f ))−]. Hence
there is a set Y ∈ ΣU2 , Y ⊆ π−1

T̃−,T2[Σ T̃−], such that t′, t′′ ∈ Y , πT̃−,T2(t′) =

πT̃−,T2(t′′) ⇒ f (ϕ(t′)) = f (ϕ(t′′)). By the Factoring Lemma for TOUs, there is

Ỹ ∈ Σ (U2 � T̃−) and for every t̃ ∈ Ỹ a set Y t̃ ∈ ΣU t̃ such that
⋃

t̃∈Ỹ t̃ a Ỹt ⊆ Y .
[We note in particular that v′, v′′ ∈ Ỹt ⇒ f (ϕ( t̃ a v′)) = f (ϕ( t̃ a v′′)).] The set
X̃ := ϕ[Ỹ] ∈ Σ (U1 � T( f )−). For every s̃ ∈ X̃ pick one t̃ ∈ Ỹ such that s̃ = ϕ(̃t ),
and let Xs̃ := ϕ t̃[Ỹt]; Xs̃ ∈ ΣU1

s̃ . Hence X :=
⋃

s̃∈X̃ s̃ a Xs̃ ∈ ΣU1 . Let
s̃ a u′, s̃ a u′′ ∈ X . Fix v′, v′′ ∈ Ỹt such that u′ = ϕ t̃ (v′), u′′ = ϕ t̃ (v′′). Then
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s̃ a u′ = ϕ( t̃ a v′), s̃ a u′′ = ϕ( t̃ a v′′) and f ( s̃ a u′) = f (ϕ( t̃ a v′)) = f (ϕ( t̃ a
v′′)) = f ( s̃ a u′′). Hence f ∈ VΣ (U1�T( f )−) , ie, T( f ) 4U1 T( f )− , a contradiction.

Definition 7.5 Φ : VΣU1 → VΣU2
is a premorphism of U`t(V;U1) to U`t(V;U2)

iff Φ is a morphism of U`(V; ΣU1) to U`(V; ΣU2) and Φ preserves v, ie,
f vU1 g⇔ Φ( f ) vU2 Φ(g) holds for all f , g ∈ VΣU1

.

Proposition 7.6 If ϕ : U2 → U1 , then ϕ∗ is a premorphism of U`t(V;U1) to
U`t(V;U2).

Proof Propositions 6.4 and 2.4 show that ϕ∗ is a morphism of U`(V; ΣU1) to
U`(V; ΣU2); we have to prove that ϕ∗ preserves v.

If T( f ) ≡U1 T (0) , then f =ΣU1 k1(c) for some c ∈ V, so ϕ∗( f ) =ΣU2 k2(c) and
T(ϕ∗( f )) ≡U2 T (0) . Both f vU1 g and ϕ∗( f ) vU2 ϕ

∗(g) hold for all g.

So let us assume that T (0) ≺U1 T( f ). If f vU1 g, then T( f ) 4U1 T(g), and T (0) ≺U1

T(g); we get T( f )− 4U1 T(g)− ; hence, using Corollary 6.15(a), ϕ−1[T( f )−] 4U2

ϕ−1[T(g)−]; and, applying + and Proposition 7.4 on both sides, finally T(ϕ∗( f )) 4U2

T(ϕ∗(g)), ie, ϕ∗( f ) vU2 ϕ∗(g).

The same calculation shows that f <U1 g implies ϕ∗( f ) <U2 ϕ∗(g) (use Corol-
lary 6.15(b) in place of (a)) and completes the proof.

We already used the Factoring Lemma, Proposition 4.1, as a motivation for the intro-
duction of v. We now want to show that factoring preserves v. First some notation.

Let U be a TOU over T and let T ′ 4U T . We define T/T ′ and U/T ′ : Σ T ′ → V by
(T/T ′)(t) := Tt , (U/T ′)(t) := Ut , and note that U`(V; ΣU ′) � “T/T ′ is a tree and
U/T ′ is a TOU over T/T ′”. [Recall that terms with the leading symbol / are evaluated
in the ambient set theory, and need not be underlined.] For f :⊆ Σ T → V we define
f/T ′ : Σ T ′ → V by ( f/T ′)(t) = ft . [Recall that ft is defined by ft(s) = f (t a s); we
have ft :⊆ Σ Tt → V here.] Finally, we let Ω( f ) := ΩT′,U ( f ) := f/T ′ , for f ∈ VΣU .

Proposition 7.7 (The Factoring Lemma) Ω is an isomorphism between
(U`(V; ΣU),VΣU ′) = (VΣU ,=ΣU ,∈ΣU ,π

∗
T′,T [VΣU ′]) and

U`(〈U`t(V;Ut) : t ∈ Σ T ′〉,ΣU ′) = [U`t(V;U/T ′)]U`(V;ΣU ′) .
Moreover, U`(V; ΣU ′) � “Ω(πT′,T (g)) =Σ (U/T′) kΣ (U/T′)(g)” for all g ∈ VΣU ′ .
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We stress that here kΣ (U/T′) is to be evaluated in U`(V; ΣU ′), ie, U`(V; ΣU ′) �
“kΣ (U/T′)(g) is a constant function on Σ (T/T ′) with value g”, ie, if U`(V; ΣU ′) �
kΣ (U/T′)(g) = f , then {t ∈ Σ T ′ : f (t)(s) = g(t) for all s ∈ Σ (Tt)} ∈ ΣU ′ . We
summarize the “Moreover” part by saying that “Ω is the identity on VΣU ′ ”.

Proof This is Proposition 4.1 for U = ΣU ′ , I = Σ T ′ , Ui = ΣUt for i = t ∈ I .

The isomorphism Ω in the Factoring Lemma takes VΣU ′ , the “coarsest level of stan-
dardness” of the ultrapower U`(V; ΣU), onto the “coarsest level of standardness” of
[U`t(V; Σ (U/T ′))]U`(V;ΣU ′) . Our next task is to show that the ordering v of the “finer
levels of standardness” is also preserved by Ω.

For T ′ 4U T ′′ 4U T we let T ′′/T ′ :⊆ Σ T ′ → V be defined by (T ′′/T ′)(t) = T ′′t ,
whenever t ∈ T ′′ .

Proposition 7.8 U`(V; ΣU ′) � T ′′/T ′ 4U/T′ T/T ′ . If also T ′ 4U T ′′′ 4U T , then
T ′′ 4U T ′′′ iff U`(V; ΣU ′) � T ′′/T ′ 4U/T′ T ′′′/T ′ .

Proof These are easy consequences of the definition of 4U , Łoś Theorem, and the
Factoring Lemma for TOUs, Proposition 6.8.

Proposition 7.9 For f /∈ VΣU ′ , U`(V; ΣU ′) � T( f/T ′) ≡U/T′ T( f )/T ′ .

Proof Let T ′′ := T( f ); we have T ′ 4U T ′′ . Also, f =ΣU π
∗
T′′,T (g) for some

g :⊆ Σ T ′′ → V. Then {t ∈ Σ T ′ : ft =ΣUt π
∗
T′′t ,Tt

(gt)} ∈ ΣU ′ and U`(V; ΣU ′) �
“f/T ′ =U/T′ π

∗
T′′/T′,T/T′(g/T ′)”. (Here ∗ is evaluated in U`(V; ΣU ′).) We conclude

that U`(V; ΣU ′) � T( f/T ′) 4U/T′ T( f )/T ′ .

Conversely, assume U`(V; ΣU ′) � “f/T ′ ∈ Vτ ∧ τ 4U/T′ T/T ′”. Then L := {t ∈
Σ T ′ : τ (t) 4Ut Tt} ∈ ΣU ′ ; we let T ′′ := (L↓) ∪

⋃
t∈L{t a s : s ∈ τ (t)} and note that

T ′′ is a tree, T ′ 4U T ′′ 4U T , and U`(V; ΣU ′) � “T ′′/T ′ = τ ”. It follows easily that
f ∈ VU ′′ , hence T( f ) 4U T ′′ and U`(V; ΣU ′) � “T( f )/T ′ 4U/T′ T ′′/T ′ = τ ”.

Corollary 7.10 For f , g /∈ VΣU ′ , f vU g iff U`(V; ΣU ′) � Ω( f ) vU/T′ Ω(g).

Proof f vU g iff T( f ) 4U T(g) iff U`(V; ΣU ′) � T( f )/T ′ 4U/T′ T(g)/T ′ iff
U`(V; ΣU ′) � T( f/T ′) 4U/T′ T(g/T ′) iff U`(V; ΣU ′) � Ω( f ) vU/T′ Ω(g).
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In order to summarize these results in a compact form we define a relativized version
of v:

f vU ;h g iff f vU h ∨ f vU g, for f , g, h ∈ VΣU .

The Factoring Lemma and Corollary 7.10 combine into the following key theorem.

Theorem 7.11 (The Factoring Theorem)
ΩT′,U is an isomorphism between (U`(V; ΣU),vU ;DT′ ) and
U`(〈(U`(V; ΣUt),vUt ) : t ∈ Σ T ′〉,ΣU ′) = [U`t(V;U/T ′)]U`(V;ΣU ′)

which is the identity on VΣU ′ .

Finally, we show that factoring commutes with ϕ∗ .

Theorem 7.12 (The Factoring Theorem for Morphisms)

Given ϕ : U2 → U1 and T̃2 4U2 T2 , let Ũ2 := U2 � T̃2 , T̃1 := ϕ[T̃2],
Ũ1 := U1 � T̃1 , and ϕ̃ := ϕ � T̃2 . Then

(*) U`(V; Ũ2) � “ϕ/T̃2 : U2/T̃2 → ϕ̃∗(U1/T̃1)” and

(**) U`(V; Ũ2) � “(ϕ/T̃2)∗ : U`t(V;U2/T̃2)→ U`t(V; ϕ̃∗(U1/T̃1)”.

For all f ∈ VΣU1
also

(***) U`(V; Ũ2) � “ ΩT̃2,U2(ϕ∗( f )) =U2/T̃2 (ϕ/T̃2)∗(ϕ̃∗(ΩT̃1,U1( f )))”,

ie, the following diagram commutes.

(U`(V; ΣU1),vU1;DT̃1
)

(U`(V; ΣU2),vU2;DT̃2
)

[U`t(V;U1/T̃1)]U`(V;Ũ1)

[U`t(V;U2/T̃2)]U`(V;Ũ2)

ϕ∗ [(ϕ/T̃2)∗]U`(V;Ũ2) ◦ ϕ̃∗

ΩT̃1,U1

ΩT̃2,U2

-�

-�

6 6

The ∗ in (ϕ/T̃2)∗ is here to be evaluated in U`(V; Ũ2)!

Proof From Definition 6.3 we get immediately that ϕ̃ : Ũ2 → Ũ1 . For t ∈ Σ T̃2 ∩
domϕ ∈ Σ Ũ2 we have ϕ̃∗(U1/T̃1)(t) = (U1/T̃1)(ϕ(t)) = U1

ϕ(t) , and ϕt : U2
t → U1

ϕ(t)
is a morphism. This is precisely the meaning of (*).

(**) follows from (*) by Proposition 7.6, which is satisfied in U`(V; Ũ2).

Finally, for t ∈ Σ T̃2 ∩ domϕ ∈ Σ Ũ2 and s ∈ Σ T2
t ∈ ΣU2

t , ΩT̃2,U2(ϕ∗( f ))(t)(s) =
ϕ∗( f )t(s) = ϕ∗( f )(t a s) = f (ϕ(t a s)) = f (ϕ(t) a ϕt(s)) = fϕ(t)(ϕt(s)) and
[(ϕ/T̃2(t))∗(ϕ̃∗(ΩT̃1,U1( f )))(t)](s) = ϕ∗t (ϕ̃∗( f/T̃1)(t))(s) = ϕ∗t (( f/T̃1)(ϕ(t))(s) =
ϕ∗t ( fϕ(t))(s) = fϕ(t)(ϕt(s)). This proves (***).
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8 Elementary Relative Set Theory.

Our goal in this section is to axiomatize stratified ultrapowers of the universe, in
imitation of Section 3. Stratified ultrapowers are interpretations for the {∈,v}-
language; therefore the desired theory SST is formulated in this language.

We define Sα := {x : x v α}, the class of sets at level α , or α-standard sets;
V := {x : x = x} is the class of all sets. In particular, S0 = {x : x v 0} is the class of
all standard sets, and the unary predicate st is defined by: st(x) iff x v 0.

The axioms of SST are:

v is a total preordering of V with a least element 0;

(∀α)[ (V,=,∈,Sα) � ST ].

Explicitly:

Relativization:

(∀x)(x v x); (∀x, y, z)(x v y ∧ y v z⇒ x v z); (∀x, y)(x v y ∨ y v x); (∀x)(0 v x).

ZFC for Sα : (∀α)PSα , where P is any axiom of ZFC.

Transfer from/into Sα : (∀α)(∀x1, . . . , xk ∈ Sα)(PSα(x1, . . . , xk)⇔ P(x1, . . . , xk)),
where P(x1, . . . , xk) is any ∈-formula.

Inner Standardization into Sα : (∀α)(∀x)(∃a ∈ Sα)(∀z ∈ Sα)(z ∈ a⇔ z ∈ x).

Remarks We use Greek letters α, β, γ as variables over sets when we are interested
only in their level of standardness.

In terms of the levels Sα , the Relativization Axiom states that (∀α)(α ∈ Sα),
(∀α, β)(α ∈ Sβ ⇒ Sα ⊆ Sβ), (∀α, β)(Sα ⊆ Sβ ∨ Sβ ⊆ Sα), and (∀α)(S0 ⊆ Sα).

It suffices to postulate ZFC for S0 . Indeed, an axiom P of ZFC has no free variables,
hence PS0 implies P , by Transfer from S0 , and P implies PSα , by Transfer into Sα .
In particular, SST implies ZFC.

The set a in Inner Standardization is uniquely determined by x and α; we denote it
shα(x) and call it the α-shadow of x .

Proposition 8.1 U`t(V;U) � SST, for any TOU U .
Moreover, if U(t) is κ-good for all t ∈ domU and U`t(V;U) � “α < β for some β”,
then U`t(V;U) � (κ-Idealization)Sα .
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Proof The fact that vU has the properties required by Relativization is pointed out
following its definition 7.1. Let T ′ := T( f ); by Corollary 7.3 then g vU f ⇔
T(g) 4U T( f ) ⇔ g ∈ π∗T′,T [VΣU ′]. By Factoring Lemma, (U`(V;U),π∗T′,T [VΣU ′])
is isomorphic to [U`t(V; Σ (U/T ′))]U`(V;ΣU ′) � ST (Corollary 3.9 and Proposition 1.4).
So ST relativizes to every level of U`t(V;U).

Let T ′ := T( f ) ≺U T ; under the assumptions of κ-goodness, U`(V; ΣU ′) � “Σ (U/T ′)
is kΣU ′(κ)-good”, hence U`(V; ΣU ′) � “U`t(V;U/T ′) � κ-Idealization”, and there-
fore U`t(V;U) � (κ-Idealization)Sf .

More notation:

We write x < y for x v y ∧ ¬ y v x , and x� y for x v y ∧ y v x .

x vα y iff (x v α ∧ y v α) ∨ x v y iff x v α ∨ x v y.

x <α y and x�α y have the expected meaning.

We note that x vα 0 ⇔ x v α ⇔ x ∈ Sα , so vα is a “relative” version of v, where
Sα rather than S0 is taken as the coarsest level of standardness, and the finer levels
remain unchanged.

If P is any ∈-v-formula, Pα denotes the formula obtained from P by replacing
each occurrence of v by vα .

Proposition 8.2 (SST)

If β v α , then (x vβ y)α ⇔ x vα y. If α v β , then (x vβ y)α ⇔ x vβ y.

If P is an ∈-formula, then (PSα)β ⇔ PSα if β v α and (PSα)β ⇔ PSβ if α v β .

In particular, (∀x1, . . . , xk)(P0(x1, . . . , xk)⇔ P(x1, . . . , xk)).

Proof (x vβ y)α ⇔ (x v β ∨ x v y )α ⇔ (x vα β ∨ x vα y)⇔ (x v α ∨ x v β

∨ x v α ∨ x v y). This is equivalent to x vα y if β v α , and to x vβ y if α v β .

Definition 8.3 A set L is a level set iff L is finite, v� L is a set and (∀x, y ∈ L)
(x� y⇒ x = y). It follows that v� L is a well-ordering.

For each level set L 6= 0 there is a unique sequence 〈xn : n ≤ ν〉 (ν ∈ ω ) such that
L = {xn : n ≤ ν} and for m, n ≤ ν , m < n ⇔ xm < xn ; we call 〈xn : n ≤ ν〉
a sequence of levels. In Section 10 we study in great detail particular sequences of
levels, called there pedigrees.

Strong Support Principle: Let P(x̄) be any ∈-v-formula.
For every x̄ there is a level set L such that (∀α)[Pα(x̄)⇔ (∃β ∈ L)(α� β)].
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Theorem 8.4 U`t(V;U) satisfies the Strong Support Principle.

Proof Without loss of generality we assume that P has one free variable. It suffices
to prove:

For every x there is a level set M such that

(∀α)[Pα(x) ∧ α = 0⇔ (∃β ∈ M)(α� β)].(*)

We then let L := M ∪ {0} if P0(x) (⇔ P(x)) holds; L := M otherwise.

We proceed by induction on rank T .

(0) If T = T (0) , then U`t(V;U) � (∀α)(α� 0) and we let M = kΣU (0).

(1) Let T = {0} ∪
⋃

i∈I〈i〉 a Ti , x = f ∈ VΣU . We recall that T (1) = {0} ∪ {〈i〉 :
i ∈ I} 4U T , T (0) ≺U T (1) , and T (0) ≺U T ′ ⇒ T (1) 4U T ′ for every T ′ 4U T .
Let γ := DT (1) . In terms of v, these observations amount to: U`t(V;U) � 0 < α

iff U`t(V;U) � γ v α . Let Ĩ := {i ∈ I : dom fi ∈ Ui}; Ĩ ∈ U(0). By the
inductive assumption, for each i ∈ Ĩ there is Mi ∈ VΣUi such that (U`(V; ΣUi),vUi) �
“Mi is a level set ∧ (∀α)[Pα( fi) ∧ α = 0⇔ (∃β ∈ Mi)(α� β)]”.

Let U (1) := U � T (1) ; we recall that ΣU (1) is isomorphic to U(0) via the mapping
〈i〉 7→ i. Let M̃ ∈ VΣU be defined by M̃(〈i〉 a s) = Mi(s) for i ∈ Ĩ , s ∈ Σ Ti ,
so that Ω(M̃) = M̃/T (1) =ΣU (1) 〈Mi : i ∈ Ĩ〉. By the Factoring Theorem 7.11 (with
T ′ = T (1) ), (U`(V; ΣU),vU ;γ) � “M̃ is a level set ∧ (∀α)[Pα( f ) ∧ α = 0⇔ (∃β ∈
M̃)(α� β)]”. We have α vU ;γ β ⇔ α vU β for γ <U α, β , and [(U`(V; ΣU),vU ;γ

)� Pα( f )] ⇔ [U`t(V;U) = (U`(V; ΣU),vU ) � Pα( f )] for γ <U α . Hence
U`t(V;U) � “M̃ is a level set ∧ (∀α)[Pα( f ) ∧ α = γ ⇔ (∃β ∈ M̃)(α � β)]”. If
also U`t(V;U) � Pγ( f ), we take M ∈ VΣU such that U`t(V;U) � M = M̃ ∪ {γ};
otherwise, we let M = M̃ . It is easy to verify that (*) holds in U`t(V;U) for x = f
and this M .

SST∗ is the theory obtained by adding the following axioms to SST:

Block Standardization: (∀x = 0)(∃a < x)(∀z < x)(z ∈ a⇔ z ∈ x).

Granularity: Let P(x̄) be any ∈-v-formula.
For all x1, . . . , xk , if (∃α)Pα(x1, . . . , xk), then

(∃α)[Pα(x1, . . . , xk) ∧ (∀β)(β < α⇒ ¬Pβ(x1, . . . , xk))].
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Remarks Block Standardization is equivalent to

(∀α = 0)(∀x)(∃a < α)(∀z < α)(z ∈ a⇔ z ∈ x).

To prove the new version, apply the original version to shα(x) in place of x to obtain
a if shα(x)� α; if shα(x) < α , let a = shα(x). For the converse, let α = x .

Corollary 8.5 U`t(V;U) satisfies SST∗ , for any TOU U .

Proof If L is a level set for P as in the Strong Support Principle and (∃α)Pα(x̄)
holds, then L 6= 0. To prove Granularity, we take α to be the v-least element of L .
Another consequence of the Strong Support Principle is the existence of a level set L
such that for every α there is β ∈ L with α � β [take P(x) to be x = x and fix any
x]. As L is finite and well-ordered by v, every level α except the least one has an
immediate predecessor level; we denote it α− . Block Standardization follows from
Inner Standardization into Sα− .

Proposition 8.6 (SST∗ ) If (∀x, y ∈ M)(x� y⇒ x = y), then M is a level set.

Proof Claim 1. M ⊆ Sα0 , where α0 �M .

Proof of Claim 1. Suppose some m ∈ M r Sα0 There is a one-one mapping f ∈ Sα0

of µ onto M , where µ is a ( finite or infinite) cardinal. If µ = 1, M = {m} and
m ∈ Sα0 by Transfer. So µ > 1 and m = f (ξ) for ξ < µ. Either η := ξ + 1 < µ or
η := ξ − 1 < µ [the second case is needed if µ = ξ + 1]. In either case, η 6= ξ and
η � ξ . As f , f−1 ∈ Sα0 , it follows that m′ := f (η) vα0 m and m vα0 m′ , so m � m′

while m 6= m′ , a contradiction.

Let Pα(M) be the statement

“There exists L ⊆ M such that L is finite, (∀x, y ∈ L)(x �α y ⇒ x = y), vα� L is a
set, (∀x /∈ Sα)(x ∈ M ⇔ x ∈ L), and (∀x ∈ L)(x /∈ Sα)”.

It is immediate from Claim 1 that Pα0(M) holds: let L = 0. Let L′ be a witness to the
validity of Pα(M) where 0 < α . If there is x ∈ M such that x�α , let L := L′ ∪ {x};
otherwise let L := L′ . By Block Standardization, there is a set B < α such that
(∀z < α)(z ∈ B⇔ z ∈ M r L); then M r L ⊆ B.

Claim 2. M r L ⊆ Sβ , where β � B.

Proof of Claim 2. Suppose some m ∈ M r L , m = β . Let f ∈ Sβ be a one-one
mapping of a cardinal µ onto B. Since M r L ⊆ B, we have m = f (ξ) for some
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ξ < µ. As in the proof of Claim 1, we find η 6= ξ such that m′ := f (η)� m < α . We
have m′ ∈ B, so m′ ∈ M r L; but m′ 6= m, a contradiction.

The set L witnesses the validity of Pβ(M) where β < α . By Granularity, P0(M)
holds. If L′ is a witness to P0(M), and there is x ∈ M such that x�0, let L := L′∪{x};
otherwise let L := L′ . It is clear that L is a level set and M = L .

9 Stratified Ultrafilters.

We recall that βX is the set of all ultrafilters over X—the Stone-Čech space over X ,
and U ∼ V means that U ∩ V is an ultrafilter. For an arbitrary nonempty set A we
define by recursion on ordinals:

(0) β0A := A

(1) For ξ > 0, β<ξA :=
⋃
η<ξ βηA and βξA := β<ξA ∪ {U ∈ β(β<ξA) : U is

nonprincipal and β<ηA /∈ U for any η < ξ} = β<ξA ∪ {U ∈ β(β<ξA) : U is
nonprincipal and there is no V ∈ β<ξA such that U ∼ V}.

Elements of β∞A :=
⋃
ξ∈On βξA are called stratified ultrafilters over A. For

U ∈ β∞A we let Dom U := A. As usual, the recursive definition assigns to each
stratified ultrafilter an ordinal rank.

We are taking a terminological liberty by calling elements of A stratified ultrafilters.
There is a natural identification of each a ∈ β0A with the principal ultrafilter Wa,A it
generates over A. We choose not to make this identification formally, as it would lead
to technical complications elsewhere.

Stratified ultrafilters of rank 1 are the nonprincipal ultrafilters over A; stratified ultrafil-
ters of rank 2 are the nonprincipal ultrafilters over βA that concentrate on nonprincipal
ultrafilters over A [ie, such that (βA r A) ∈ U ], and so on.

Proposition 9.1 For U,V ∈ β∞A r A, U ∼ V implies U = V .

Proof Assume without loss of generality that rank V ≤ rank U = ξ . If rank U =
rank V , then U and V are ultrafilters over the same domain β<ξA, and U ∼ V implies
U = V . If rank V < rank U , then U ∼ V is impossible by the definition of βξA.

Proposition 9.2 For every ultrafilter W with dom W ⊆ β∞A there is a unique
V ∈ β∞A such that either W ∼ V /∈ β0A or W is principal and V is its generator.
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Proof If W is nonprincipal, fix ξ such that dom W ⊆ β<ξA and extend W to W ∼ W
with dom W = β<ξA. Then either W ∈ βξA, and we let V := W , or there is
V ∈ β<ξA r β0A such that W ∼ V . Uniqueness of V follows from the preceding
proposition.

We let m(W) := V . Note that W1 ∼ W2 implies m(W1) = m(W2).

Definition 9.3 Let f : A → B. We define its extension f : β∞A → β∞B by recur-
sion.

(0) For a ∈ β0A we let f 0(a) = f (a) ∈ β0B.

(1) Assume ξ > 0 and f<ξ :=
⋃
η<ξ f η : β<ξA → β<ξB is already defined. We

let f ξ(U) = f<ξ(U) for U ∈ β<ξA. For U ∈ βξA r β<ξA we let W := f<ξ[U] ∈
β(β<ξB) and f ξ(U) := m(W) ∈ βξB. Finally f :=

⋃
ξ∈On f ξ .

We often write f [U] in place of f<ξ[U]. Note that the rank of f (U) is less than or
equal to the rank of U , and f (U) = f [U] if and only if the equality holds.

Proposition 9.4 If f : A → B and g : B → C , then g ◦ f = g ◦ f . Trivially also
IdA = Idβ∞A .

Proof By induction on rank of U ∈ β∞A. The claim is trivial if U ∈ β0A. Let
U ∈ βξA r β<ξA and W = f<ξ[U]; then f ξ(U) = m(W).

If W is principal, say generated by V ∈ β<ξB, then g<ξ[W] is generated by gξ(V) =
g<ξ(V) ∈ β<ξC and g ◦ f (U) = g ◦ f ξ(U) = m(g ◦ f<ξ[U]) = m(g<ξ[W]) =
gξ(V) = gξ(m(W)) = gξ(f ξ(U)) = g(f (U)).

If W is nonprincipal, we have f<ξ[U] = W ∼ m(W) = f ξ(U). Hence g<ξ[W] ∼
g<ξ[ f ξ(U)] = g<η[ f ξ(U)] where η ≤ ξ is the rank of f ξ(U). We get g ◦ f (U) =
g ◦ f ξ(U) = m(g ◦ f<ξ[U]) = m(g<ξ[W]) = m(g<η[ f ξ(U)]) = gη( f ξ(U)) = g( f (U)).
[The third equality is true by the inductive assumption.]

Definition 9.5 For C ⊆ A we define βξA/C ⊆ βξA (stratified ultrafilters concen-
trated on C) by recursion:

(0) β0A/C := C

(1) For ξ > 0, β<ξA/C :=
⋃
η<ξ βηA/C and

βξA/C := β<ξA/C ∪ {U ∈ βξA r β<ξA : β<ξA/C ∈ U}.

Of course, β∞A/C :=
⋃
ξ∈On βξA/C .
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Remarks By induction on rank it is easily seen that β∞A/C1 ∩ β∞A/C2 =
β∞A/(C1 ∩ C2). In particular, if C1 ∩ C2 = 0, then β∞A/C1 ∩ β∞A/C2 = 0.

Proposition 9.6 Let A ∩ B = C 6= 0 and let ρ : A→ B and σ : B→ A be such that
ρ(x) = σ(x) = x for all x ∈ C . If U ∈ βξA/C and V ∈ βξB/C , then ρ(U) ∈ βξB/C ,
σ(V) ∈ βξA/C , and σ(ρ(U)) = U , ρ(σ(V)) = V .

Remarks The assertion implies that ρ maps βξA/C one-one onto βξB/C , and σ

maps βξB/C one-one onto βξA/C . Also, for U ∈ βξA/C , ρ(U) has the same rank
as U , and so ρ(U) = ρ[U]. Similarly, for V ∈ βξB/C , σ(V) = σ[V].

Proof (0) For a ∈ C , ρ(a) = ρ(a) = a, and similarly σ(a) = a.

(1) Assume that the assertion is true for all η < ξ . By the preceding remarks, ρ
maps β<ξA/C one-one onto β<ξB/C . If U ∈ βξA/C r β<ξA/C , then β<ξA/C ∈
U , U is nonprincipal, and β<ηA/C = β<ηA ∩ β<ξA/C /∈ U for any η < ξ .
Hence ρ[β<ξA/C] = β<ξB/C ∈ ρ[U], ρ[U] is nonprincipal, and ρ[β<ηA/C] =
β<ηB/C /∈ ρ[U] for any η < ξ ; hence β<ηB /∈ ρ[U] (note β<ηB/C = β<ηB ∩
β<ξB/C). We conclude that ρ(U) = ρ[U] ∈ βξB/C r β<ξB/C .

By a symmetric argument, if V ∈ βξB/C rβ<ξB/C , then σ(U) = σ[U] ∈ βξA/C r
β<ξA/C . For such U,V we then have σ(ρ(U)) = σ[ρ[U]] = U because σ ◦ ρ is the
identity on β<ξA/C ∈ U , and ρ(σ(V)) = ρ[σ[V]] = V because ρ ◦ σ is the identity
on β<ξB/C ∈ V .

Proposition 9.7 For every a ∈ A and U ∈ βξB there is a unique Ua ∈ βξ(A × B)
such that π1(Ua) = a and π2(Ua) = U .

Proof By induction on ξ .

If ξ = 0, then U = b for some b ∈ B, and Ua := 〈a, b〉 has the required properties.

If W ∈ β0(A×B), then W = 〈c, d〉. From π1(W) = a and π2(W) = U = b it follows
that c = a, d = b, so W = Ua .

Let now ξ > 0 and U ∈ βξB \ β<ξB.

Existence. By inductive assumption, there is the function t : β<ξB → β<ξ(A × B)
defined by t(V) = Va . We let Ua := t[U]; ie, for X ⊆ β<ξ(A× B),

X ∈ Ua ⇔ Y := {V ∈ β<ξB : t(V) = Va ∈ X} ∈ U.(*)
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Clearly Ua ∈ β(β<ξ(A×B)). We note that π2[Ua] = U : If X ∈ Ua , then X ⊇ t[Y] ∈
Ua , and so π2[X] ⊇ π2[t[Y]] = Y ∈ U [by inductive assumption, π2(Va) = V for all
V ∈ Y ]. So Ua is nonprincipal, and not equivalent to an ultrafilter of smaller rank
(otherwise, U would be as well); hence Ua ∈ βξ(A× B) and π2(Ua) = m(π2[Ua]) =
m(U) = U .

It remains to show that π1(Ua) := m(π1[Ua]) = a. But X ∈ Ua implies Va ∈ X for
some V ∈ dom U , by (*); hence a = π1(Va) ∈ π1[X]. We conclude that π1[Ua] is a
principal ultrafilter generated by a, hence π1(Ua) = m(π1[Ua]) = a.

Uniqueness. Let W ∈ βξ(A×B)rβ<ξ(A×B) and π1(W) = a; we prove that W = U′a
for some U′ ∈ βξB. Uniqueness follows: if also π2(W) = U , then U = U′(= π2(U′a))
and W = Ua .

The assumption π1(W) = m(π1[W]) = a means that π1[W] is principal generated by
a; ie, {a} ∈ π1[W]; ie, there is X ∈ W such that (∀V ∈ X)(π1(V) = a). Hence,
by inductive assumption, for each V ∈ X there is a unique V ′ ∈ βrank (V)B such that
V = V ′a . We define s on X by s(V) = V ′ and let U′ = s[W] ∈ β(β<ξB). We have to
prove that U′ ∈ βξB and W = U′a .

We note that t(s(V)) = t(V ′) = V ′a = V [t is one-one and preserves rank because
π2(t(V)) = V ]. Hence s is one-one and preserves rank. It follows that U′ ∈ βξB, and
U′a = t[U′] = t[s[W]] = W .

With each stratified ultrafilter U we associate a TOU U, and consequently also a
stratified ultrapower U`t(V; U).

Definition 9.8 (0) If U ∈ β0A, then U = 0.

(1) If U ∈ βξA r β<ξA for ξ > 0 and, for each V ∈ dom U = βξA, V is the TOU
associated to V , we let TU := {0} ∪ {〈V〉 a TV : V ∈ dom U}, U(0) = U , and
U(〈V〉 a t) = V(t) for all V ∈ dom U and t ∈ TV r Σ TV . Note in particular that
U(〈V〉) = V , for all V ∈ dom U .

It is easy to check that U is indeed a TOU according to Definition 6.1, and that the
rank of U (as TOU) equals the rank of U (as a stratified ultrafilter).

We also have the following explicit description of U, easily verified by induction.

If U ∈ β0A, then U = 0; otherwise, let L be the set of all finite sequences 〈U1, . . . ,Un〉
where U1 ∈ dom U , U`+1 ∈ dom U` for 1 ≤ ` < n, and Un ∈ β0A. Then TU = L↓,
Σ TU = L , U(0) = U and U(〈U1, . . . ,U`〉) = U` whenever 〈U1, . . . ,U`〉 ∈ TUrΣ TU
(ie, whenever U` is nonprincipal).
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Proposition 9.9 Every f : A1 → A2 induces a canonical morphism ϕ : U1 → U2

for any U1 ∈ β∞A1 and U2 := f (U1) ∈ β∞A2 . If f = IdA1 , then ϕ = IdTU1 . If
g : A2 → A3 induces ψ : U2 → U3 where U3 := g(U2), then ψ ◦ ϕ : U1 → U3 is
equal, everywhere on its domain, to the canonical morphism θ induced by g◦ f : A1 →
A3 .

Proof We describe ϕ recursively. If U1 ∈ β0A1 , then U2 = f (U1) = f (U1) ∈ β0A2 ,
U1 = U2 = 0 and ϕ is the trivial morphism ϕ(0) = 0.

If U1 ∈ βξA1 r β<ξA1 , let W := f [U1].

Case (i): W is principal, generated by U2 ∈ β<ξA2 . Then S := {V1 ∈ β<ξA1 :
f (V1) = U2} ∈ U1 . By the inductive assumption, for every V1 ∈ S we have the
canonical morphism ϕV1

: V1 → U2 . We let ϕ(〈V1〉 a t) := ϕV1
(t) for all t ∈ TV1 ,

V1 ∈ S . Note in particular that ϕ(〈V1〉) = 0 for all V1 ∈ S—this is the collapsing
case in the definition of morphism.

Case (ii): W is nonprincipal, W ∼ U2 ∈ βξA
2 . Then S := {V1 ∈ β<ξA

1 :
f (V1) ∈ dom U2} ∈ U1 . By the inductive assumption, for every V1 ∈ S we have
the canonical morphism ϕV1

: V1 → V2 where V2 := f (V1) ∈ β<ξA2 . We let
ϕ(〈V1〉 a t) := 〈f (V1)〉 a ϕV1

(t) for all t ∈ TV1 . Note that this is the preserving
case in the definition of morphism. The verification that ϕ is a morphism of TOUs is
routine.

Finally, we prove that ψ ◦ ϕ agrees with the canonical morphism θ of U1 to U3

induced by h := g ◦ f , again by induction; we use the notation from the corresponding
steps in the first part of this proof.

The case when U1 ∈ β0A1 is clear. If not, we have

Case (i): W is principal, generated by U2 . Then g ◦ f [U1] = g[W] is principal,
generated by U3 = g(U2) ∈ β<ξA3 . We see that, for all V1 ∈ S and t ∈ TV1 ,
ψ(ϕ(〈V1〉 a t)) = ψ(ϕV1

(t)) = θV1
(t) = θ(〈V1〉 a t) [the penultimate step is by

inductive assumption applied to ϕV1
: V1 → U2 , ψ : U2 → U3 ].

Case (ii): W is nonprincipal, W ∼ U2 ∈ βξA2 . There are two subcases, depending
on whether g[U2] is principal or not; note that g[U2] ∼ g[W] = g[f [U1]] = h[U1],
so the same case applies to h[U1]. We have, for V1 ∈ S , t ∈ TV1 , ϕ(〈V1〉 a t) =
〈 f (V1)〉 a ϕV1

(t), hence, depending on the case that applies to g,

ψ(ϕ(〈V1〉 a t)) =

{
ψ f (V1)(ϕV1

(t)) in the principal case;

〈g( f (V1))〉 a ψ f (V1)(ϕV1
(t)) otherwise.
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On the other hand, for θ we have

θ(〈V1〉 a t) =

{
θV1

(t) in the principal case;

〈h(V1)〉 a θV1
(t) otherwise.

But h(V1) = g( f (V1)) by Proposition 9.4, and ψ f (V1)(ϕV1
(t)) = θV1

(t) by the inductive
assumption.

10 Pedigrees.

In this section we work in the theory SST, unless explicitly stated otherwise.

Definition 10.1 Let x ∈ A ∈ Sα . An α-pedigree for x over A is a sequence
~u = 〈un : n ≤ ν〉 where ν ∈ ω and
(i) every un is a stratified ultrafilter over A [ie, un ∈ β∞A]
(ii) u0 v α; uν = x
(iii) (∀n < m ≤ ν)(un <α um)
(iv) (∀z ∈ un)(z <α un+1 ⇒ un+1 ∈ z), for all n < ν .

The ultrafilter u0 is called the α-type of x over A; we denote it tpα(x; A). We also
use ~u+ := 〈un : 0 < n ≤ ν〉. Pedigree and type mean 0-pedigree and 0-type, resp.

The definition as stated is clearly of the form Pα(x,A) [where P(x,A) is P0(x,A)],
but it is useful to note that
(iii) holds iff α < u1 ∧ (∀n,m)(1 ≤ n < m ≤ ν ⇒ un < um), for ν > 0, and
(iv) holds iff (∀z ∈ un)(z < un+1 ⇒ un+1 ∈ z), for all n < ν .

The condition (iv) perhaps becomes more meaningful when stated in terms of monads.

Definition 10.2 For U ∈ Sα we write xMαU iff (∀X ∈ U ∩ Sα)(x ∈ X).
The class MαU =

⋂
(U ∩ Sα) is the α-monad of U .

In general, MαU is a proper class. Also, it can be empty. Here is a list of some useful
elementary facts about monads.
(1) If U is principal and generated by a, then a ∈ Sα and MαU = {a} is a set.
Conversely, if MαU ∩ Sα 6= 0, then U is principal. Hence U is nonprincipal if and
only if MαU ∩ Sα = 0.
(2) α v β implies MαU ⊇MβU .
(3) Let U,V ∈ Sα . If U ∼ V , then MαU = MαV . If MαU∩MαV 6= 0, then U ∼ V .

The condition (iv) in Definition 10.1 can be restated as:
(iv) If un v β < un+1 , then un+1Mβun .
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Proposition 10.3 (SST) Every x ∈ A ∈ Sα has at most one α-pedigree over A.
More generally: Let x ∈ A ∈ Sα0 , α0 v α1 . Let ~u = 〈un : n ≤ ν〉 be an α0 -pedigree
for x over A, and let ~v = 〈vm : m ≤ µ〉 be an α1 -pedigree for x over A. Then µ ≤ ν

and vm = u(ν−µ)+m for all m ≤ µ.

Proof We begin by noticing that uν = x = vµ. Let j be the largest integer such that
j ≤ min{ν, µ} and uν−i = vµ−i holds for all i ≤ j. If j = µ, then µ ≤ ν and we are
done. If j = ν , then ν ≤ µ. As u0 ∈ Sα0 ⊆ Sα1 , we have u0 = uν−ν = vµ−ν , so
vµ−ν ∈ Sα1 and µ − ν = 0 [if not, vµ−ν−1 <α1 vµ−ν , but this is impossible], hence
µ = ν , and again we are done.

It remains to show that the remaining case j < ν, j < µ leads to a contradiction. We
consider uν−j−1 and vµ−j−1 . Let us assume that uν−j−1 v vµ−j−1 . We let β� vµ−j−1

and ũ := vµ−j = uν−j , so that β < ũ. By clause (iv) in the definition of pedi-
grees, ũMβvµ−j−1 and also ũMβuν−j−1 . By the property (3) of monads, this implies
uν−j−1 ∼ vµ−j−1 and hence [Proposition 9.1] uν−j−1 = vµ−j−1 , a contradiction with
the choice of j.

The argument for the case vµ−j−1 v uν−j−1 is analogous.

Proposition 10.4 (SST) Let A,B ∈ Sα , x ∈ A ∩ B. If there is an α-pedigree for x
over A, then there is an α-pedigree for x over B.

Proof Let ~u = 〈u0, . . . , uν〉 be an α-pedigree for x over A. Let C := A ∩ B.

Claim. un ∈ β∞A/C , for all n ≤ ν .

Proof of Claim. We proceed by induction. The claim is clearly true for uν = x .
Let ξ be the rank of un and η the rank of un+1 . Assume that un+1 ∈ βηA/C ; then
un+1 ∈ β<ξA/C , as ξ > η . For β � un we have β<ξA/C ∈ Sβ and un+1Mβun ; so
β<ξA/C ∈ un and un ∈ βξA/C .

We now fix ρ, σ ∈ Sα as in the assumptions of Proposition 9.6, and prove that
ρ ◦~u = 〈ρ(u0), . . . , ρ(uν)〉 is an α-pedigree for x over B.

Conditions (i) and (ii) from Definition 10.1 are clearly satisfied by ρ◦~u. As ρ(un) vα un

and un = σ(ρ(un)) vα ρ(un), we have un �α ρ(un); this implies (iii).

In order to prove (iv), we note that ρ(un) = ρ[un] for all n < ν , by the remark following
Proposition 9.6. Given β such that un v β < un+1 , and Y v β , Y ∈ ρ[un], there
is some X ∈ un such that ρ[X] ⊆ Y . By Transfer into Sβ , we can assume X ∈ Sβ .
Hence un+1 ∈ X [by (iv) for ~u] and ρ(un+1) ∈ ρ[X] ⊆ Y . This shows (iv) holds for
ρ ◦~u.
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Proposition 10.5 (SST∗ ) Let ~u be the α-pedigree for x over A ∈ Sα .
If α v β < x , then there is a unique n < ν such that un v β < un+1 . The sequence
~u � β := 〈un, un+1, . . . , uν〉 is then the β -pedigree for x over A. If x v β , we let
~u � β := 〈uν〉 = 〈x〉; it is again the β -pedigree for x over A.

Proof The set ran~u = {u0, . . . , uν} is a level set by Proposition 8.6. Hence v� ran~u
is a well-ordering, and there is a least n such that un v β < un+1 .

Corollary 10.6 (SST∗ ) Let A ∈ Sα and α v β ; if tpβ(x,A) = tpβ( y,A), then
tpα(x,A) = tpα( y,A).

Proof Let ~u = 〈u0, . . . , uν〉 and ~v = 〈v0, . . . , vµ〉 be the α-pedigrees for x and y
over A, resp., and let un v β < un+1 , vm v β < um+1 . Then un = tpβ(x,A) =
tpβ( y,A) = vm . It is easy to check that the sequence 〈u0, . . . , un = vm, . . . , vµ〉 is an
α-pedigree for y over A. By Proposition 10.3 now v0 = u0 .

Theorem 10.7 (SST∗ ) If x ∈ A ∈ Sα , then an α-pedigree for x over A exists.

Proof Let Pα(x) be the statement “For every A ∈ Sα , if x ∈ A, then there exists
an α-pedigree for x over A.” By Proposition 10.4, Pα(x) is equivalent to “For some
A ∈ Sα such that x ∈ A, there exists an α-pedigree for x over A.” Our goal is to prove
that Pα(x) holds for all α .

Pα(x) holds for all α w x , because 〈u0〉 with u0 = x is then clearly an α-pedigree
for x over A.

By Granularity, there is a least α for which Pα(x) holds. Let us assume 0 < α . We
fix A ∈ S0 such that x ∈ A, and an α-pedigree ~u = 〈un : n ≤ ν〉 for x over A, and
obtain a contradiction by showing that there is a β -pedigree for x over A for some
β < α . If u0 ∈ S0 , then ~u is also a 0-pedigree for x over A, and we let β = 0.

Otherwise we fix ξ ∈ S0 such that u0 ∈ β<ξA. Let W := Wu0,β<ξA be the principal
ultrafilter generated by u0 ; we note W � u0 = 0. By Block Standardization, there is
u′ < u0 such that (∀X < α)(X ∈ u′ ⇔ X ∈ W); we let β � u′ . Then u′ ∈ Sβ is
an ultrafilter over β<ξA, u0Mγu′ for all β v γ < α , and u′ is nonprincipal [because
u0 /∈ Sβ ]. By Proposition 9.2, u′ ∼ u for some u ∈ βξA ∩ Sβ . Then also u0Mγu for
all β v γ < α , and the sequence 〈u〉 a ~u is a β -pedigree for x over A, a contradiction.
Hence α� 0 and P0(x) holds. Proposition 10.5 now implies that Pα(x) holds for all
levels α .
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Definition 10.8 An α-pedigree ~u for x over A is a good α-pedigree if, for u :=
tpα(x; A), ~u+Mα(Σ u) and

(j) f vu g⇔ f (~u+) vα g(~u+) for all f , g ∈ VΣ u ∩ Sα.

An equivalent statement of the property (j) is that jα;x,A : VΣ u ∩ Sα → Sα[~u+],
defined by jα;x,A( f ) = f (~u+), is an isomorphism of interpretations [U`t(V; Σ u)]Sα

and (Sα[~u+],=,∈,vα) [see Theorem 3.7]. Of course, Sα[~u+] = Sα[~u], because
u ∈ Sα . Also Sα[~u] = Sα[ran~u], because un <α um iff rank un > rank um , and so the
sequence 〈u0, . . . , uν〉 is ∈-definable from the set {u0, . . . , uν}.

Theorem 10.9 (SST∗ ) For any x ∈ A ∈ Sα , the α-pedigree for x over A is good.

Proof We fix an α0 -pedigree ~u = 〈u0, . . . , uν〉 for x over A ∈ Sα0 , and use Granu-
larity to prove that α0 is the least level α w α0 for which ~u � α is α-good. We write
jα for jα;x,A .

If α w x , then all is trivial: ~u � α = 〈uν〉 where uν = x = tpα(x; A) =: u, ~u+ = 0,
Σ u = {{0}} is the principal ultrafilter over {0}, Sα[~u+] = Sα , vα is the identity
on Sα , and for any f = {(0, a)} ∈ Sα , jα( f ) = f (~u+) = f (0) = a; evidently, jα
preserves vα .

Let α w α0 be the least level such that ~u � α is α-good. Then α < x , there is a unique
n < ν such that un v α < un+1 , and ~u � α = 〈un, un+1, . . . , uν〉. If α � α0 , we are
done; otherwise, we obtain a contradiction by showing that ~u � β is β -good, for some
β < α . There are two cases to consider.

Case 1. un < α .

Then, for every un v β < α , ~u � α = ~u � β is also the β -pedigree for x over A and
u := tpβ(x; A) = tpα(x; A) = un .

By the inductive assumption, (~u � α)+MαΣ u, hence also (~u � β)+MβΣ u, and
f vu g ⇔ f (~u+) vα g(~u+) for all f , g ∈ VΣ u ∩ Sβ . It remains to show that the last
statement holds with vα replaced by vβ .

It suffices to prove that, for f ∈ Sβ , f ((~u � β)+) vα 0 implies f ((~u � β)+) vβ 0.
[Indeed, from (z vα 0⇒ z vβ 0) it follows that, for all y, z vα y⇔ z vα 0 ∨ z v
y⇔ z vβ 0 ∨ z v y⇔ z vβ y.]

But f ((~u � β)+) vα 0 means [apply j−1
α ] that U`t(V; u) � f = kΣ u(c), for some c ∈

Sα . As f ∈ Sβ , we have c ∈ Sβ , hence f ((~u � β)+) = c ∈ Sβ , ie, f ((~u � β)+) vβ 0.

Journal of Logic & Analysis 1:8 (2009)



62 Karel Hrbacek

Case 2. un � α .

Then n > 0 and we consider all β w α0 such that un−1 v β < un . We have
~u � β = 〈un−1, un, . . . , uν〉 = 〈un−1〉 a ~u � α , (~u � β)+ = ~u � α , and u :=
tpβ(x; A) = un−1 . We note that unMγu for all β v γ < α; by the inductive
assumption, also (~u � α)+MαΣ un .

We first prove that (~u � β)+MβΣ u.

By Definitions 9.8 and 6.2, Σ u = Σ u(Σ u′), where u′ ranges over the domain of
u. Let X ∈ Sβ , X ⊆ dom Σ u =

⋃
u′∈u〈u′〉 a dom Σ u′ , and X ∈ Σ u; then

Y := {u′ ∈ dom u : (X)〈u′〉 ∈ Σ u′} ∈ u. As Y ∈ Sβ and unMβu, we get un ∈ Y ,
ie, (X)〈un〉 ∈ Σ un . As un ∈ Sα , (X)〈un〉 ∈ Sα , and so (~u � α)+ ∈ (X)〈un〉 , ie,
(~u � β)+ = 〈un〉 a (~u � α)+ ∈ X . This proves (~u � β)+MβΣ u.

By the inductive assumption we have the isomorphism jα of [U`t(V; un)]Sα and
(Sα[(~u � α)+],=,∈,vα).

From Sβ[un] 4 Sα we get that jα , restricted to Sβ[un], is an isomorphism of
[U`t(V; un)]Sβ [un] and (Sβ[un][(~u � α)+],=,∈,vα) = (Sβ[(~u � β)+],=,∈,vα) [the
ultrapower is defined because un ∈ Sβ[un]].

We also have the isomorphism j of [U`(V; u)]Sβ and (Sβ[un],=,∈) 4 (Sα,=,∈) given
by j( f ) = f (un); especially, j(Iddom u) = un [Theorem 3.7].

j induces an isomorphism [also denoted j] of

[U`t(V; j−1(un))][U`(V;u)]Sβ and [U`t(V; un)]Sβ [un].(*)

Observing that [U`(V; u)]Sβ = (Vu ∩ Sβ, . . .) and Iddom u ∈ Sβ , and using j−1(un) =
Iddom u = 〈u′ : u′ ∈ dom u〉, we get j−1(un) = 〈u′ : u′ ∈ dom u〉 = 〈u〈u′〉 : u′ ∈
dom u〉 [recall the definition of u, the TOU associated to u].

If T (1) = {0} ∪ {〈u′〉 : u′ ∈ dom u} denotes the u-subtree of Tu of level 1, we have
further 〈u〈u′〉 : u′ ∈ dom u〉 = 〈(u/T (1))(u′) : u′ ∈ dom u〉. [For the last step, recall
that Σ T (1) is identified with dom u(0) = dom u via the map 〈u′〉 7→ u′ .]

We can thus write u/T (1) for j−1(un) in (*). Furthermore, by the Factoring The-
orem, ΩT (1),u [restricted to Sβ ] is an isomorphism of (U`(V; Σ u),vu;IdT(1) )

Sβ and

[[U`t(V; u/T (1))]U`(V;u)]Sβ = [U`t(V; u/T (1))][U`(V;u)]Sβ .

The composition Ψ := jα ◦ j ◦ ΩT (1),u is an isomorphism of (U`(V; Σ u),vu;IdT(1) )
Sβ

and (Sβ[(~u � β)+],=,∈,vα); it remains to show that Ψ = jβ;x,A , and that, for
f , g ∈ VΣ u ∩ Sβ , f vu g⇔ Ψ( f ) vβ Ψ(g).
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Let f ∈ VΣ u ∩ Sβ ; we show that Ψ( f ) = f ((~u � β)+). First, ΩT (1),u( f ) = f/T (1) =
〈f〈u′〉 : u′ ∈ dom u〉, where u-almost everywhere dom f〈u′〉 ∈ Σ u〈u′〉 and f〈u′〉(t) =
f (〈u′〉 a t). Hence [U`(V; u)]Sβ � “dom f/T (1) ∈ Σ u/T (1) ”, so, second, j( f/T1) =
( f/T (1))(un) = f〈un〉 ∈ Sβ[un] and Sβ[un] � “dom f〈un〉 ∈ Σ un ”, hence also [as
Sβ[un] 4 Sα ], Sα � “dom f〈un〉 ∈ Σ un ”. Finally, Ψ( f ) = jα( f〈un〉) = f〈un〉((~u �
α)+) = f (〈un〉 a (~u � α)+) = f ((~u � β)+).

This argument also shows that if f =Σ u kΣ u(c), then Ψ( f ) = c ∈ Sβ , and if f 6=Σ u
kΣ u(c) for any c, then Ψ( f ) /∈ Sβ . That is, Ψ preserves the level 0: f vu kΣ u(0) if
and only if Ψ( f ) vβ 0. Moreover, since the last equivalence is true for all β′ such that
β v β′ < α , we have f vu kΣ u(0) if and only if Ψ( f ) vα 0.

If kΣ u(0) <u f , g, then f vu g iff Ψ( f ) vα Ψ(g) iff Ψ( f ) vα 0 ∨ Ψ( f ) v Ψ(g) iff
Ψ( f ) vβ 0 ∨ Ψ( f ) v Ψ(g) iff Ψ( f ) vβ Ψ(g).

Theorem 10.10 (SST∗ ) Let ~u be the α-pedigree for x over A and let ~v be the
α-pedigree for y over B, where y = f (x) and A,B, f ∈ Sα , f : A → B. Let
u := tpα(x; A) and v := tpα( y; B) Then v = f (u) and ran~v = f [ran~u].
If ϕ : u → v is the morphism canonically induced by f , then the following diagram
commutes.

[U`t(V; v)]Sα

[U`t(V; u)]Sα

(Sα[~v],=,∈,vα)

(Sα[~u],=,∈,vα)

ϕ∗ � Sα ⊆
jα;y,B

jα;x,A

-�

-�

6 6

Proof We fix α0 -pedigrees ~u for x over A and ~v for y over B, where y = f (x) and
A,B, f ∈ Sα0 , and prove that α0 is the least level α w α0 such that the assertions hold
for ~u � α and ~v � α .

If x v α , then also y v α , u := tpα(x; A) = x , v := tpα( y; B) = y, v = f (u),
Σ u = Σ v = {{0}}, ϕ(0) = 0, ϕ∗ = Id , and Sα[~u] = Sα[~v] = Sα . The diagram
commutes trivially.

By Granularity, there is a least α w α0 such that the assertion is true for ~u � α and
~v � α . We assume that α = α0 and obtain a contradiction. Let un v α < un+1 .

Case 1. un < α .

We consider any β w α0 such that un v β < α . Then u := tpβ(x; A) = tpα(x; A) = un

and f (u) v β , so ~u � β = ~u � α and ~v � β = ~v � α are β -pedigrees and v :=
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tpβ( y; B) = tpα( y; B). The diagram commutes for α , by the inductive assumption.
We have to prove that it commutes with β in place of α . As jβ;x,A( f ) = f ((~u � β)+) =
f ((~u � α)+) = jα;x,A( f ), we have jβ;x,A = jα;x,A � Sβ ; similarly jβ;y,B = jα;y,B � Sβ .
As ran(~v � β) = f [ran(~u � β)] and f ∈ Sβ , we have Sβ[~v � β] = Sβ[ran(~v �
β)] ⊆ Sβ[ran(~u � β)] = Sβ[~u � β]. The morphism ϕ : u → v is ∈-definable from
A,B, f ∈ Sβ , and so it belongs to Sβ . It follows, by Transfer between Sα and Sβ , that
ϕ∗ � Sβ is a morphism of [U`t(V; u)]Sβ into [U`t(V; v)]Sβ . The commutativity of the
diagram is of course preserved.

Case 2. un � α .

Then n > 0 and we consider any β w α0 such that un−1 v β < un , so u :=
tpβ(a; A) = un−1 . Let v0 := tpα( y; B).

Subcase A: v0 ∈ Sβ .

Claim. Then f (u) = v0 .

Proof of Claim.

According to Definition 9.3 of f (u), one considers w := f<ξ[u] for the appropriate ξ .

If Y ∈ w ∩ Sβ , then f−1
<ξ[Y] ∈ u ∩ Sβ , hence un ∈ f−1

<ξ[Y] and v0 = f (un) ∈ Y . We
conclude that w is a principal ultrafilter generated by v0 , and f (u) = m(w) = v0 .

Returning to the proof of Subcase A, we have f (u) = v0 as well as f (un) = v0 ,
~v � α = ~v � β , and v := v0 = tpβ( y; B). As in Case 1, ran(~v � β) = f [ran(~u � β)],
Sβ[~v � β] ⊆ Sβ[~u � β], and jβ;y,B is the restriction of jα;y,B to Sβ . In the definition of
the induced canonical morphism ϕ : u→ v [proof of Proposition 9.9] this is the case
(i); ie, for u-almost all u′ , ϕ(〈u′〉) = 0 and ϕ〈u′〉 = ϕu′ , where ϕu′ : u′ → v are the
induced canonical morphisms. Consider g ∈ VΣ v ∩ Sβ . On the one hand,

jβ;y,B(g) = jα;y,B(g) = jα;x,A((ϕun)∗(g))(*)

by the inductive assumption.

On the other hand, ϕ∗(g)(〈u′〉 a t) = g(ϕ(〈u′〉 a t)) = g(ϕu′(t)) = (ϕu′)∗(g)(t)
u-almost everywhere, so [proof of Theorem 10.9] ΩT (1),u(ϕ∗(g))(u′) = (ϕu′)∗(g),
j(ΩT (1),u(ϕ∗(g))) = (ϕun)∗(g), and

jβ;x,A(ϕ∗(g)) = jα;x,A((ϕun)∗(g)).(**)

Comparing (*) and (**) gives jβ;y,B(g) = jβ;x,A(ϕ∗(g)), ie, the commutativity of the
diagram for β .

Subcase B. v0 ∈ Sα r Sβ .
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We let v := f (u); then v ∈ Sβ ∩ β∞B.

Claim. v0Mβv.

Proof of Claim. u ∈ βξA, v ∈ βηB, for suitable ξ, η ∈ Sβ . Let w = f<ξ[u]; from
unMβu we get v0 = f (un)Mβw [Proposition 3.5], so w is nonprincipal [v0 /∈ Sβ ],
w ∼ f (u) by definition of the latter, and, consequently, v0Mβv.

It follows that ~v � β = 〈v〉 a ~v � α . As in Case 1 now, ran(~v � β) = f [ran(~u � β)] and
Sβ[~v � β] ⊆ Sβ[~u � β].

Consider g ∈ VΣ v ∩ Sβ . On the one hand, jβ;y,B(g) = jα;y,B(jy(ΩT (1),v(g)), where
jy is the j from the proof of Theorem 10.9, Case 2, for y, v in place of x, u, and
ΩT (1),v(g)(v′) = g〈v′〉 for v′ ∈ v; then jy(ΩT (1),v(g)) = g〈v0〉 and

jβ;y,B(g) = jα;y,B(g〈v0〉) = g〈v0〉((~v � α)+) = g(~v � α).(*)

On the other hand, ϕ∗(g)(〈u′〉 a t) = g(ϕ(〈u′〉 a t)) = g(〈f (u′)〉 a ϕu′(t)) =
g〈f (u′)〉(ϕ

u′(t)) = (ϕu′)∗(g〈f (u′)〉)(t) u-almost everywhere, so ΩT (1),u(ϕ∗(g))(u′) =
(ϕu′)∗(g〈f (u′)〉) u-almost everywhere, and then, by definition of j = jx and Trans-
fer, jx(ΩT1,u(ϕ∗(g))) = (ϕun)∗(g〈f (un)〉). But f (un) = v0 and ϕun is the naturally
induced morphism of un to v0 . Hence [note that g〈v0〉 ∈ Sα , so we can use the
inductive assumption to justify the second equality]

jβ;x,A(ϕ∗(g)) = jα;x,A((ϕun)∗(g〈v0〉)) = jα;y,B(g〈v0〉) = g〈v0〉((~v � α)+) = g(~v � α).
(**)

By comparing (*) and (**) we get jβ;y,B(g) = jβ;x,A(ϕ∗(g)), the commutativity of the
diagram for β .

The theory SST∗ is used in this paper mainly as a technical tool. Our main interest is
in two related theories that are introduced next.

We write xMαU as shorthand for:

“There exists a good α-pedigree ~u = 〈un : n ≤ ν〉 for x over some A ∈ Sα such that
U = u0 ”.

We note that U is then an α-type of x .

The theory SST[ is SST plus (∀α)(Bα), where

(Bα) (∀x, y)(∀U,F ∈ Sα)[(ran F ⊆ Dom U ∧ xMαU ∧ x = F( y))⇒

(∃V ∈ Sα)(U = F(V) ∧ yMαV)].
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Later, we consider one more axiom:

(Fα) (∀x)(∀U,V,F ∈ Sα)[(ran F ⊆ Dom U ∧ xMαU ∧ U = F(V))⇒

(∃y)( yMαV ∧ x = F( y))].

The theory SST[ + (∀α)(Fα) is denoted SST] . It is equivalent to GRIST [see Sec-
tion 12]. We refer to the conjunction of (∀α)(Bα) and (∀α)(Fα) as the Back and
Forth Property.

Theorems 10.7, 10.9, and 10.10 establish the following.

Corollary 10.11 SST∗ ` SST[ .

In particular, every stratified ultrapower satisfies SST[ [Corollary 8.5].

Corollary 10.12 (ZFC) Every realization of SST[,p := SST[ + Axiom of Primi-
tivity is isomorphic to a stratified ultrapower of the universe.

In this sense, SST[,p [or SST∗,p ] axiomatizes stratified ultrapowers.

Proof Working in SST[,p , let aM0U , where a ∈ A ∈ S0 , be such that (∀x)(∃f ∈
S0)(x = f (a)). By Theorem 10.9, j0;a,A is an isomorphism between [U`t(V; Σ U)]S0

and (V,=,∈,v) [because S0[~u+] = S0[a] = V].

Working now in ZFC; if M is a realistic interpretation of SST[,p , the previous statement
holds in M, and there is an isomorphism of interpretations [[U`t(V; Σ k(U))]S0]M and
[(V,=,∈,v)]M = M, for a suitable U . As S0

M is isomorphic to V, M is isomorphic
to U`t(V; Σ U).

Definition 10.13 (SST[) Sα[[x]] := Sα[~u], where ~u is some good α-pedigree for x .

If ~u and ~v are α-pedigrees for x , then Sα[~u] = Sα[~v] by Proposition 10.4, so this class
is uniquely determined by x . From the isomorphism property (j) and Corollary 8.5 it
follows that (Sα[[x]],=,∈,vα) � SST∗ .

As an immediate consequence we have:

Inner Standardization into Sα is a consequence of the remaining axioms of SST[ .

Proposition 10.14 Proposition 10.5, Corollary 10.6 and Theorems 10.7, 10.9 and 10.10
hold in SST[ .
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Proof Theorems 10.7 and 10.9 are immediate consequences of Bα .

Proposition 10.5: Let ~u = 〈u0, . . . , uν〉 be an α-pedigree for x and α v β . Trivially,
Sα[[〈~u, β〉]] � “~u is a pedigree for x”. As Sα[[〈~u, β〉]] � SST∗ , Proposition 10.5 holds
in Sα[[〈~u, β〉]], yielding n ∈ ω such that un v β < un+1 [or n = ν and uν v β ].
Then ~u � β is defined, and it is a β -pedigree for x .

Theorem 10.10: Given α-pedigrees ~u and ~v for x and y, resp., and f as in Theo-
rem 10.10, consider Sα[[〈~u,~v〉]]. Note that ~u and ~v are α-pedigrees in Sα[[〈~u,~v〉]],
and Theorem 10.10 holds in Sα[[〈~u,~v〉]], yielding ϕ ∈ Sα and a diagram that has the
required properties in Sα[[〈~u,~v〉]]. It is easy to check that these properties remain true
in V.

Proposition 10.15 (ZFC)
If ϕ : U2 → U1 is a morphism and U`t(V;U1) �“~u is a pedigree for f over kΣU1(A)”,
then U`t(V;U2) �“ϕ∗(~u) is a pedigree for ϕ∗( f ) over kΣU2(A)”.

Proof ϕ∗ : U`t(V;U1) → U`t(V;U2) is an ∈-elementary embedding, preserves v,
and ϕ∗(kΣU1(A)) = kΣU2(A) for all A ∈ V. [In this proof, we identify k(A) and
A when there is no danger of misunderstanding.] It follows immediately that ϕ∗(~u)
satisfies the conditions (i) and (ii) from Definition 10.1. We prove (iii) and (iv) by
induction on rank T2 [T2 := TU2 ; T1 := TU1 ].

As usual, everything is trivial when rank T2 = 0, so we assume T2 = {0}∪
⋃

j∈J〈j〉 a
Tj . We let D1 := DT′ for T ′ := T (1)

U1 , and D2 := DT′′ for T ′′ := T (1)
U2 .

By Łoś Theorem, ~u ∈ VΣU1
is a function whose values ΣU1 -almost everywhere are

finite sequences of stratified ultrafilters over A, that is, without loss of generality for
all t ∈ Σ T1 , ~u(t) = 〈u0(t), . . . uν(t)(t)〉 where ν(t) ∈ ω . Then ϕ∗(~u) ∈ VΣU2

is the
function defined for all s ∈ Σ domϕ by ϕ∗(~u)(s) = 〈u0(t), . . . uν(t)(t)〉, for t = ϕ(s).
Let λ ∈ VΣU2

be such that U`t(V;U2) � λ ≤ ϕ∗(ν); ie, without loss of generality for
all s ∈ Σ domϕ, λ(s) ≤ ν(ϕ(s)). We note that U`t(V;U2) � ϕ∗(~u)k

ΣU2 (n) = ϕ∗(un),
for all n ∈ ω [where un : t 7→ un(t)]. There are two cases to consider.

Case (c).

ϕ(〈j〉) = 0 and ϕ〈j〉 : U2
〈j〉 → U

1 , for all j ∈ [domϕ]0 ∈ U2(0). We note that

ϕ∗(h)〈j〉 = ϕ∗〈j〉(h) for any h ∈ VΣU1
, in this case.

By the inductive assumption, ϕ∗〈j〉(~u) is a pedigree for ϕ∗〈j〉( f ) over A in U`t(V;U2
〈j〉).

By the Factoring Theorem, (U`(V; ΣU2),vU2;D2) � “ϕ∗(~u) is a pedigree for ϕ∗( f )
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over A”. But u0 =ΣU1 kΣU1(w) for some w ∈ V, so ϕ∗(u0) =ΣU2 kΣU2(w) ∈
SU`t(V;U2)

0 ; this means that ϕ∗(~u) is also a pedigree for ϕ∗( f ) over A in U`t(V; ΣU2) =
(U`(V; ΣU2),vU2).

Case (p).

[ϕ]0 : [T2]0 → [T1]0 , U1(0) = [ϕ]0[U2(0)] and ϕ〈j〉 : U2
〈j〉 → U

1
ϕ(〈j〉) for all j ∈

[domϕ]0 ∈ U2(0). We note that ϕ∗〈j〉(hϕ(〈j〉)) = ϕ∗(h)〈j〉 for any h ∈ VΣU1
, in this

case. We distinguish two subcases.

Subcase (i): U`t(V;U1) � D1 < u1 .

Then also (U`(V; ΣU1),vU1;D1) � “~u is a pedigree for f over A”. By the Factoring
Theorem, U`t(V;U1

〈i〉) � “~u〈i〉 is a pedigree for f〈i〉 over A” for U1(0)-almost all

i. So, by the inductive assumption, U`t(V;U2
〈j〉) � “ϕ∗〈j〉(~uϕ(〈j〉)) is a pedigree for

ϕ∗〈j〉( fϕ(〈j〉)) over A” and U`t(V;U2
〈j〉) � “ϕ∗(~u)〈j〉 is a pedigree for ϕ∗( f )〈j〉 over

A”, for U2(0)-almost all j. The Factoring Theorem leads to the conclusion that
(U`(V; ΣU2),vU2;D2) � “ϕ∗(~u) is a pedigree for ϕ∗( f ) over A”. As in case (c) now,

ϕ∗(u0) =U2 kΣU2(w) for some w ∈ V, so ϕ∗(u0) ∈ SU`t(V;U2)
0 , and we have also

U`t(V; ΣU2) � “ϕ∗(~u) is a pedigree for ϕ∗( f ) over A”.

Subcase (ii): U`t(V;U1) � D1 � u1 .

Let ~u+ denote a function defined by ~u+(t) := 〈u1(t), . . . uν(t)(t)〉 for ΣU1 -almost all
t ∈ Σ T1 . The notational ambiguity is harmless, as U`t(V; ΣU1) � ~u+ = ~u+ . Then
(U`(V; ΣU1),vU1;D1) � “~u+ is a pedigree for f over A”.

By the Factoring Theorem, U`t(V;U1
〈i〉) � “~u+

〈i〉 is a pedigree for f〈i〉 over A” for

U1(0)-almost all i. The inductive assumption gives that U`t(V;U2
〈j〉) � “ϕ∗(~u+)〈j〉 is

a pedigree for ϕ∗( f )〈j〉 over A” for U2(0)-almost all j.

By the Factoring Theorem one more time, (U`(V; ΣU2),vU2;D2) � “ϕ∗(~u+) is a
pedigree for ϕ∗( f ) over A”; also

(U`(V; ΣU2),vU2) � “ϕ∗(~u) = 〈ϕ∗(u0)〉 a ϕ∗(~u+) ∧ ϕ∗(u0) v 0 ∧ ϕ∗(u1)�D2 ”.

In order to prove that ϕ∗(~u) is a pedigree for ϕ∗( f ) over A in U`t(V; ΣU2), it remains
to show that U`t(V; ΣU2) � “kΣU2(X) ∈ ϕ∗(u0) ⇒ ϕ∗(u1) ∈ kΣU2(X)”, for all
X ∈ V. But u0 =ΣU1 kΣU1(w) for some w ∈ β∞A, hence ϕ∗(u0) =ΣU2 kΣU2(w) and
the antecedent implies that X ∈ w. It follows that U`t(V;U1) � u1 ∈ kΣU1(X) and
finally U`t(V;U2) � ϕ∗(u1) ∈ kΣU2(X).
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Proposition 10.16 (ZFC) If ϕ : U2 → U1 is a morphism and U`t(V;U1) � “0 <

h ∧ (∀x ∈ kΣU1(A))(x < h ⇒ 〈x, y〉 ∈ R)”, then U`t(V;U2) � (∀x ∈ kΣU2(A))[x <

ϕ∗(h)⇒ 〈x,ϕ∗( y)〉 ∈ ϕ∗(R)].

Proof We proceed by induction on the rank of U2 .

Case (c).

By the inductive assumption, we have U`t(V;U2
〈j〉) � (∀x ∈ k(A))(x < ϕ∗〈j〉(h) ⇒

〈x,ϕ∗〈j〉( y)〉 ∈ ϕ∗〈j〉(R)) for each j ∈ [domϕ]0 ∈ U2(0). Hence, by the Factoring Theo-
rem, (U`(V; ΣU2),vU2;D2) � “0 < ϕ∗(h) ∧ (∀x ∈ k(A))[(x < ϕ∗(h)⇒ 〈x,ϕ∗( y)〉 ∈
ϕ∗(R))]”. As D2 <U2 ϕ∗(h) implies x <U2;D2 ϕ∗(h) ⇔ x <U2 ϕ∗(h), we have
U`t(V;U2) � (∀x ∈ k(A))[x < ϕ∗(h)⇒ 〈x,ϕ∗( y)〉 ∈ ϕ∗(R)].

Case (p).

Subcase (i): U`t(V;U1) � D1 < h.

Then (U`(V; ΣU1),vU1;D1) � “0 < h ∧ (∀x ∈ k(A))(x < h ⇒ 〈x, y〉 ∈ R)”, and by
the Factoring Theorem, U`t(V;U1

〈i〉) � “0 < h〈i〉 ∧ (∀x ∈ k(A))(x < h〈i〉 ⇒ 〈x, y〈i〉〉 ∈
R〈i〉)” holds for ΣU1(0)-almost all i. By the inductive assumption, U`t(V;U2

〈j〉) �
“0 < ϕ∗(h)〈j〉 ∧ (∀x ∈ k(A))[x < ϕ∗(h)〈j〉 ⇒ 〈x,ϕ∗( y)〈j〉〉 ∈ ϕ∗(R)〈j〉]”, and the
conclusion follows as in case (c).

Subcase (ii): U`t(V;U1) � D1 � h.

Then ϕ∗(h)�U2 ϕ∗(D1)�U2 D2 , and U`t(V;U2) � “x ∈ k(A) ∧ x < ϕ∗(h)” implies
that U`t(V;U2) � “x ∈ k(A) ∧ x v 0”, ie, x = k(X) for some X ∈ A. Since
U`t(V;U1) � 〈k(X), y〉 ∈ R for all such X , U`t(V;U2) � 〈k(X),ϕ∗( y)〉 ∈ ϕ∗(R) for
all such x .

Proposition 10.17 (SST[ ) Let A ∈ Sα , x ∈ A and x,~u ∈ Sα[[y]].
If (Sα[[y]],=,∈,vα) � “~u is the pedigree for x over A”, then ~u is the α-pedigree for
x over A.

Proof Transfer [ Sα[[y]] 4 V ] immediately implies that ~u = 〈un : n ≤ ν〉 where
ν ∈ ω ∩ Sα[[y]], every un ∈ β∞A, and u0 ∈ Sα , uν = x . We have to prove that (iii)
and (iv) from Definition 10.1 are also satisfied.

If (iii) fails, then there are n < m ≤ ν such that um vα un . If (iv) fails, then there is
n < ν and X ∈ un such that X <α un+1 and un+1 /∈ X . Let z = 〈y, 〈n,m〉〉 in the first
case and z = 〈y, 〈n,X〉〉 in the second case.
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Let ~v 1 and ~v 2 be α-pedigrees for y over B and z over C resp., where B,C ∈ Sα ,
and π1 : C → B. Then y = π1(z) and Proposition 10.14 [Theorem 10.10] gives a
commuting diagram [ϕ is induced by π1 ].

[U`t(V; v1
0)]Sα

[U`t(V; v2
0)]Sα

(Sα[[y]],=,∈,vα)

(Sα[[z]],=,∈,vα)

ϕ∗ � Sα ⊆
jα;y,B

jα;z,C

-�

-�

6 6

As n,m ∈ Sα[[z]] in the first case, and n,X ∈ Sα[[z]] in the second case, (iii) or (iv)
fails in Sα[[z]], so Sα[[z]] 2 “~u is the pedigree for x over A”.

Let S := j−1
α;y,B(~u), X := j−1

α;y,B(x), A := j−1
α;y,B(A).

Sα � ZFC, so Proposition 10.15 holds in Sα . But, in Sα , U`t(V; v1
0) � “S is a

pedigree for X over A”, therefore U`t(V; v2
0) � “ϕ∗(S) is a pedigree for ϕ∗(X )

over ϕ∗(A)”, jα;z,C(ϕ∗(S)) = ~u, jα;z,C(ϕ∗(X )) = x , jα;z,C(ϕ∗(A)) = A, and so
(Sα[[z]],=,∈,vα) � “~u is the pedigree for x over A”, a contradiction.

Corollary 10.18 (Closure under pedigrees)

If x ∈ A ∈ Sα and x ∈ Sα[[y]], then the α-pedigree for x over A belongs to Sα[[y]].

Proof (Sα[[y]],=,∈,vα) � SST∗ , so (Sα[[y]],=,∈,vα) � “(∃!~u)(~u is a pedigree
for x over A”. By Proposition 10.17, this ~u ∈ Sα[[y]] is the α-pedigree for x over
A.

Corollary 10.19 Sα[[y]] is the smallest U 4 V such that Sα ⊆ U, y ∈ U, and with
each x ∈ U also an α-pedigree for x is in U.

Proposition 10.20 (ZFC) Let U ∈ β∞A and let U be its associated TOU.
Define D := DU := DTU , E := EU := ETU ∈ VΣ TU by DU(t) = t and EU(t) = tn ,
where t = 〈t0, . . . , tn〉 ∈ Σ TU ; EU(t) = U if t = 0 (ie, U ∈ β0A) [see Corollary 7.3].
Then U`t(V; U) � “〈kΣ U(U)〉 a D is the pedigree for E over kΣ U(A)”.
Moreover, U`t(V; U) � (∀f = 0)(∃µ ∈ ω)( f � Dµ).

Proof We write k for kΣ U throughout. The case when U ∈ β0A is trivial. Otherwise,
by Definition 9.8, for all t ∈ Σ TU , tn ∈ β0A = A; it follows that U`t(V; U) �
E ∈ k(A). From this definition it is equally clear that U`t(V; U) � “〈k(U)〉 a D is
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a sequence of stratified ultrafilters with domain = ν + 2 ∈ ω and Dν = e”, where
ν(t) = n for all t = 〈t0, . . . , tn〉 ∈ Σ TU .

We prove the clauses (iii) and (iv) in the definition of pedigrees.

If U`t(V; U) � µ ≤ ν , then µ(t) ≤ ν(t) = n for Σ U-almost all t ∈ Σ TU , and
we define Dµ by Dµ(t) := tµ(t) . The notational ambiguity is again harmless, as
U`t(V; U) � Dµ = Dµ . We note that T(Dµ) ≡Σ U T ′µ := {t � m : m ≤ µ(t)∧t ∈ Σ TU}
[Corollary 7.3(c)], and λT(Dµ)(t) = µ(t)+1 for Σ U-almost all t [Definition 6.9]. Hence
U`t(V; U) � “µ1 < µ2 ≤ ν ⇒ Dµ1 < Dµ2 ”. As T (0) = {0} ≺U T(Dk(0)), we have
also U`t(V; U) � k(U) < D0 . These results establish (iii).

Also, for every f ∈ VΣ U with T (0) ≺U T( f ) there is µ ≤Σ U ν such that λT( f )(t) =
µ(t) + 1 for Σ U-almost all t . Then λT( f ) ≡U λT(Dµ) and U`t(V; U) � f � Dµ .

It remains to prove (iv).

If U`t(V; U) � “g ∈ k(U) ∧ g < D0 ”, then g = k(S) for some S ∈ U , and for all
〈v〉 a t′ ∈ Σ TU where v ∈ S , we get Dk(0)(〈v〉 a t′) = v ∈ S = g(〈v〉 a t′), ie,
U`t(V; U) � D0 ∈ g.

If U`t(V; U) � “g ∈ Dµ ∧ µ′ = µ + 1 ∧ g < Dµ′ ”, then T(g) 4Σ U T(Dµ) and
there is g ∈ VΣ T(Dµ) such that, for Σ U-almost all t , g(t) = g(s) ∈ Dµ(t) where
s = t � (µ(t) + 1) = 〈t0, . . . , tµ(t)〉. Then for all v ∈ g(s) and all appropriate t′ ,
Dµ′(s a 〈v〉 a t′) = v ∈ g(s) = g(s a 〈v〉 a t′). We see that for Σ U-almost all t ,
Dµ′(t) ∈ g(t), ie, U`t(V; U) � Dµ+1 ∈ g. This completes the verification of (iv).

Proposition 10.21 (ZFC) Let U`t(V;U) � “~u is the pedigree for f over kΣU (A) ∧
u0 = kΣU (U)”. There is a morphism ϕ : U → U such that U`t(V;U) � ϕ � Σ TU =
~u+ . In particular, U`t(V;U) � “ϕ∗(DU) = ~u+ ” and U`t(V;U) � “ϕ∗(EU) = f ”.

In this precise sense, “the pedigree for f is a morphism onto the TOU associated to
the type of f ”. We note that ϕ is uniquely determined: if ϕ′ is another morphism as
in 10.21, then ϕ′ � Σ TU =ΣU ϕ � Σ TU .

Proof We proceed by induction on rank TU .

If rank TU = 0, then U = 0, f =ΣU kΣU (a) for some a ∈ A, U = a, U = 0, and
ϕ is the trivial morphism ϕ(0) = 0. So U`t(V;U) �“ϕ � Σ TU = ~u+ ” is true.

Let TU = {0} ∪
⋃

i∈I〈i〉 a Ti . We assume without loss of generality that ran f ⊆ A.
By the inductive assumption, for each i ∈ I let U`t(V;U〈i〉) � “~ui is the pedigree
for f〈i〉 over kΣU〈i〉(A) ∧ (~ui)0 = kΣU〈i〉(U

i)”, and let ϕi : U〈i〉 → Ui be a morphism
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such that U`t(V;U〈i〉) � “ϕi � Σ TU〈i〉 = (~ui)+ ”. Define ~v by ~v(〈i〉 a t) = ~ui(t) for
i ∈ I, t ∈ Σ TU〈i〉 ; then ~v/T (1) = 〈~ui : i ∈ I〉 and U`(〈U`t(V;U〈i〉) : i ∈ I〉;U(0)) �
“~v/T (1) is the pedigree for f/T (1) over kΣU (A)/T (1) ”; hence, by the Factoring Theorem,
U`t(V;U) � “~v is the DT (1) -pedigree for f over kΣU (A)”.

Case 1 (collapsing)

There is some U such that Ui = U for all i ∈ C ∈ U(0).

Then U`t(V;U) � “v0 = kΣU (U)”, and hence U`t(V;U) � “~v is the pedigree for f
over kΣU (A)”. We let ~u := ~v and define ϕ by{

ϕ(0) = ϕ(〈i〉) = 0

ϕ(〈i〉 a t) = ϕi(t)

for all i ∈ C and t ∈ domϕ〈i〉 .
It is clear that ϕ is a morphism of U to U. We also have, for all i ∈ C and
t ∈ domϕ〈i〉 ∈ ΣU i , ϕ(〈i〉 a t) = ϕi(t) = (~ui)+(t) = ~v+(〈i〉 a t) = ~u+(〈i〉 a t), so
ϕ � Σ TU =ΣU ~u+ .

Case 2 (preserving)

Let h : I → β∞A be defined by h(i) = Ui , and let U ∈ β∞A be such that U ∼ h[U(0)]
[see Proposition 9.2]; U is nonprincipal. We let ~u(t) = 〈U〉 a ~v(t), for t ∈ Σ TU . It is
easy to verify that U`t(V;U) � “~u is a pedigree for f over kΣU (A)”. We define

ϕ(0) = 0;

ϕ(〈i〉) = 〈Ui〉 for i ∈ h−1[dom U] ∈ U(0);

ϕ(〈i〉 a t) = 〈Ui〉 a ϕi(t).

It is easy to verify that ϕ is a morphism of U to U. Also, for all i ∈ I and
t ∈ Σ TU (〈i〉) , ϕ(〈i〉 a t) = 〈Ui〉 a ϕ〈i〉(t) = 〈Ui〉 a (~ui)+(t) = (~ui)(t) = ~v(〈i〉 a t)
= ~u+(〈i〉 a t).

Definition 10.22 (ZFC) Let M1 and M2 be realizations of SST[ .
Φ is a morphism of M1 to M2 iff Φ is an ∈-elementary embedding of M1 to M2

[in particular, (∀x, y ∈ M1)(x vM1 y ⇔ Φ(x) vM2 Φ( y))] and Φ preserves good
pedigrees, that is, (∀α, x,~u ∈ M1)(~u is a good α-pedigree for x ⇒ Φ(~u) is a good
Φ(α)-pedigree for Φ(x)).

Proposition 10.23 (ZFC) If ϕ : U2 → U1 , then ϕ∗ : U`t(V;U1)→ U`t(V;U2) is a
morphism.
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Proof This is a corollary of Proposition 10.15 and Proposition 10.5.

We prove that every morphism Φ : U`t(V;U1)→ U`t(V;U2) is of the form ϕ∗ for an
essentially unique ϕ : U2 → U1 .

Proposition 10.24 (ZFC) Let U be a TOU and D := DU := DTU be defined by
D(t) = t for t ∈ A := Σ TU . If U`t(V;U) � “~u is the pedigree for D over kΣU (A)
and u0 = kΣU (U)”, and χ := χU : U → U is such that U`t(V;U) � χ � Σ TU = ~u+ ,
then χ is an isomorphism of U and U.

Proof By induction on the rank of U .

If U = 0, then U = 0 and the trivial morphism χU is an isomorphism.

Assume that T = {0} ∪
⋃

i∈I〈i〉 a Ti and for each i ∈ I , U`t(V;U〈i〉) � “~v i is
the pedigree for Di over Ai and vi

0 = kΣU〈i〉(V
i)”, where of course Di := DU〈i〉 and

Ai := Σ Ti , and χ̃i : U〈i〉 → Vi are the corresponding isomorphisms. We note that
~v i(t) = 〈vi

0(t), . . . , vi
νi(t)(t)〉 is a finite sequence of elements of β∞Ai for ΣU〈i〉 -almost

all t . For i 6= i′ we have Ai ∩ Ai′ = 0.

Let ρi : Ai → A be defined by ρi(t) = 〈i〉 a t , and σi :⊆ A→ Ai by σi(〈i〉 a t) = t . It
follows from the remark after Proposition 9.6 that ρi is an isomorphism of V i ∈ β∞Ai

and ρi(Vi) ∈ β∞A. We define ~u i by ~u i(t) := 〈ρi(vi
0(t)), . . . , ρi(vi

νi(t)(t))〉 and χi
by χi(t) := ρi(χ̃i(t)); then U`t(V;U〈i〉) � “~u i is the pedigree for D〈i〉 over A and
ui

0 = kΣU〈i〉(U
i)”, Ui = ρi(V i), and χi : U〈i〉 → Ui is an isomorphism [note that

U`t(V;U〈i〉) � “ ~u i = k(ρi) ◦~v i ∧ ~v i = k(σi) ◦~u i ”, and apply Theorem 10.10].

The mapping h : i 7→ Ui is one-one because ρi(V i) concentrates on ρ[Ai] and ρ[Ai] ∩
ρ[Ai′] = 0 for i 6= i′ [see the remark following Definition 9.5]. Hence the preserving
case in the proof of Proposition 10.21 occurs, U ∈ β∞A is defined by U ∼ h[U(0)],
and χU (〈i〉 a t) := 〈U〉 a χi(t).

It is easily verified that χU has the required properties.

Proposition 10.25 (ZFC) For every morphism Φ : U`t(V;U1) → U`t(V;U2) there
is ϕ : U2 → U1 such that Φ = ϕ∗ . If also ϕ′ : U2 → U1 and Φ = (ϕ′)∗ , then
ϕ � T = ϕ′ � T for some maximal T 4U2 TU2 .

Proof Apply Proposition 10.24 to U1 and DU1 to obtain ~u1 , U1 , and an isomorphism
χ := χU1 : U1 → U1 . Since Φ is a morphism, we have U`t(V;U2) � “Φ(~u1) is the
pedigree for Φ(DU1) over kΣU2(A) ∧ Φ(u1

0) = kΣU2(U1)”. By Proposition 10.21 there
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is a morphism ψ : U2 → U1 . The composition ϕ := χ−1 ◦ψ is then a morphism of
U2 to U1 .

We have ψ∗(EU1) =ΣU2 Φ(DU1) and χ∗(EU1) =ΣU1 DU1 , by Proposition 10.21.
Hence Φ(DU1) =ΣU2 ψ∗(EU1) =ΣU2 ψ∗((χ∗)−1(DU1)) =ΣU2 ϕ∗(DU1) =ΣU2 DU1 ◦
(ϕ � Σ TU2) =ΣU2 ϕ � Σ TU2 .

For all f ∈ VΣU1
we have, as in the proof of Proposition 2.5 Claim 2, that U`t(V;U1) �

f = kΣU1( f )(DU1), hence U`t(V;U2) � Φ( f ) = kΣU2( f )(Φ(DU1)). We finally con-
clude that Φ( f ) =ΣU2 f ◦ Φ(DU1) =ΣU2 f ◦ (ϕ � Σ TU2) =ΣU2 ϕ∗( f ).

Assume now that ϕ : U2 → U1 , ϕ′ : U2 → U1 , and Φ = ϕ∗ = (ϕ′)∗ . It follows
that ϕ � Σ TU2 =ΣU2 ϕ∗(DU1) =ΣU2 (ϕ′)∗(DU1) =ΣU2 ϕ′ � Σ TU2 . The conclusion
follows by Proposition 6.16.

11 Stratified Limit Ultrapowers.

11.1 Stratified limit ultrapowers.

A directed system of TOUs consists of the following data: a directed preordering
(D,≤), a system of TOUs U = 〈Ud : d ∈ D〉, and a system φ = 〈φd,d′ : d ≤ d′〉
such that, for all d ≤ d′ ≤ d′′ , φd,d′ 6= 0, ϕ ∈ φd,d′ ⇒ ϕ : Ud′ → Ud , ϕ,ϕ′ ∈
φd,d′ ⇒ ϕ =ΣUd′ ϕ

′ , and ϕ ∈ φd,d′ , ϕ
′ ∈ φd′,d′′ implies ϕ◦ϕ′ =ΣUd′′ ϕ

′′ for some
ϕ′′ ∈ φd,d′′ .

A directed system of TOUs induces a system of interpretations 〈U`t(V;Ud) : d ∈ D〉,
and a system Φ = 〈Φd,d′ : d ≤ d′〉 of morphisms Φd,d′ : U`t(V;Ud) → U`t(V;Ud′)
that commute with the canonical embeddings: Φd,d′ ◦ kΣUd = kΣUd′ , and such that
d ≤ d′ ≤ d′′ ⇒ Φd,d′′ = Φd′,d′′ ◦ Φd,d′ ; namely, Φd,d′ = ϕ∗ for any ϕ ∈ φd,d′ [it is
independent of the choice of ϕ].

The stratified limit ultrapower of the universe LU`t(V; U, φ) is the direct limit of
this system.

For a more concrete description of this interpretation, we observe that the given data
induces a directed system of ultrafilters Ũ := 〈ΣUd : d ∈ D〉, φ̃ := 〈φ̃d,d′ : d ≤ d′〉,
where φ̃d,d′ := {ϕ � Σ TU ′d : ϕ ∈ φd,d′}.

The limit ultrapower LU`t(V; Ũ, φ̃) described in Section 5 is a realization of ST, and
each Φd,∗ : U`t(V; ΣUd) → LU`t(V; Ũ, φ̃) is a morphism of interpretations for the
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{∈, st}-language, that is, an ∈-elementary embedding commuting with the canonical
embeddings [Proposition 5.1].

The interpretations LU`t(V; U, φ) and LU`t(V; Ũ, φ̃) have the same universe, the same
∈∗ and =∗ [interpretations of ∈ and =, resp.] and the same Φd,∗ .

The relation v is interpreted in LU`t(V; U, φ) by v∗ , where f v∗ g iff (∃d′′ ∈ D)(d ≤
d′′ ∧ d′ ≤ d′′ ∧ Φd,d′′( f ) vUd′′ Φd′,d′′(g)), for f ∈ VΣUd , g ∈ VΣUd′ .

We note that f ∈ S∗0 ⇔ f =∗ kΣUd (c) for some c ∈ V, and Φd,∗ preserve v, that is,
for f , g ∈ VΣUd , f vUd g⇔ f v∗ g.

Theorem 11.1 LU`t(V; U, φ) is a realization of SST[ .
For each d ∈ D, Φd,∗ : U`t(V;Ud)→ LU`t(V; U, φ) is a morphism.

Proof The axiom of Relativization follows immediately from the definition of v∗
and the fact that it is satisfied by each vUd .

Transfer:

We prove that, for any ∈-formula P and any f1, . . . , fk v∗ h, LU`t(V; U, φ) �
(∃g)P(g, f̄ ) implies LU`t(V; U, φ) � (∃g v h)P(g, f̄ ). Transfer into Sα then follows
by the usual induction on the complexity of P .

Let h ∈ VΣUd̃ , fi ∈ VΣUdi , and fi v∗ h for all i. From the definition of v∗ and
the facts that all Φd,d′ preserve v and (D,≤) is directed, we get d ≥ d̃, di and
g ∈ VΣUd such that U`t(V;Ud) � Φdi,d( fi) v Φd̃,d(h) and LU`t(V; U, φ) � P(g, f̄ ).
As Φd,∗ is an ∈-elementary embedding, U`t(V;Ud) � P(g,Φd1,d( f1), . . . ,Φdk,d( fk)).
By Proposition 8.1, U`t(V;Ud) � SST, and it follows that there is g̃ ∈ VΣUd such
that U`t(V;Ud) � g̃ v Φd̃,d(h) ∧ P( g̃,Φd1,d( f1), . . . ,Φdk,d( fk)). Applying the v-
preserving, ∈-elementary Φd,∗ , we get LU`t(V; U, φ) � g̃ v h ∧ P( g̃, f̄ ) [Φd,∗( g̃) =
g̃, Φd,∗(Φd̃,d(h)) =∗ Φd̃,∗(h) = h, etc.], ie, LU`t(V; U, φ) � (∃g v h)P(g, f̄ ).

(∀α)(Bα):

Lemma 11.2 If U`t(V;Ud) � “ ~u is an h-pedigree for f over A v h”, then
LU`t(V; U, φ) � “ ~u is a good h-pedigree for f over A v h”.

Proof LU`t(V; U, φ) is an ∈-elementary extension of U`(V;Ud), and vUd is the
restriction of v∗ to VΣUd . From these observations it immediately follows that
conditions (i) and (ii) from the definition of pedigree hold in LU`t(V; U, φ).
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Let LU`t(V; U, φ) � “n < m ∧ X ∈ un ∧ X <h un+1 ”. Without loss of generality
n,m,X ∈ VΣUd′ for some d′ ≥ d . By Proposition 10.15, U`t(V;Ud′) � “Φd,d′(~u)
is a Φd,d′(h)-pedigree for Φd,d′( f ) over Φd,d′(A)”. In particular, U`t(V;Ud′) �
Φd,d′(~u)n <Φd,d′ (h) Φd,d′(~u)m [where Φd,d′(~u)n denotes the n-th term of the finite
sequence Φd,d′(~u) in the sense of U`t(V;Ud′)], and so, applying Φd′,∗ and observing
that Φd′,∗(Φd,d′(~u)n) = un etc, LU`t(V; U, φ) � un <h um . This proves condition (iii).

Similarly, U`t(V;Ud′) � Φd,d′(~u)n+1 ∈ X , and hence LU`t(V; U, φ) � un+1 ∈ X . This
proves condition (iv).

It remains to verify that LU`t(V; U, φ) satisfies the condition (j).

Let X, g, g′ be such that LU`t(V; U, φ) � “X, g, g′ v h ∧ X ∈ Σ u0 ∧ g, g′ ∈ VΣ u0 ”.
Without loss of generality X, g, g′ ∈ VΣUd′ for some d′ ≥ d and U`t(V;Ud′) �
“X, g, g′ v Φd,d′(h) ∧ X ∈ Σ Φd,d′(u0)”. As Φd,d′(~u) is a good Φd,d′(h)-pedigree in
U`t(V;Ud′), U`t(V;Ud′) � “Φd,d′(~u+) ∈ X∧[g vΦd,d′ (u0) g′ ⇔ g(Φd,d′(~u+)) vΦd,d′ (h)

g′(Φd,d′(~u+))]”. Applying Φd′,∗ , LU`t(V; U, φ) � “~u+ ∈ X ∧ (g vu0 g′ ⇔ g(~u+) vh

g′(~u+))”.

The proof of Lemma 11.2 shows that Φd,∗ takes pedigrees in U`t(V;Ud) into good
pedigrees in LU`t(V; U, φ); ie, that Φd,∗ is a morphism.

Finally, let LU`t(V; U, φ) � “f MhU ∧ U ∈ β∞(A) ∧ f = F(g) ∧ A,F v h”. We fix d
so that f , g, h,A,F ∈ VΣUd . Let U`t(V;Ud) � “~u is a good h-pedigree for f over A”.
By Lemma 11.2, LU`t(V; U, φ) satisfies this statement as well, and, by uniqueness
of pedigrees [true in LU`t(V; U, φ) � SST], LU`t(V; U, φ) � U = u0 , hence also
U`t(V;Ud) � U = u0 .

There exists ~v so that

(*) U`t(V;Ud) � “~v is a good h-pedigree for g over B, where B v h”.

Theorem 10.10 holds in U`t(V;Ud), so

U`t(V;Ud) � u0 = F(v0).(**)

By Lemma 11.2 and Φd,∗ being ∈-elementary, (*) and (**) hold in LU`t(V; U, φ).
So, letting V := v0 , we have LU`t(V; U, φ) � “V v h ∧ U = F(V) ∧ gMhV .” This
shows validity of (∀α)(Bα) in LU`t(V; U, φ).

Inner Standardization is a consequence of (∀α)(Bα), as pointed out in the remark
following Definition 10.13.

Theorem 11.3 Every realization of SST[ is isomorphic to a stratified limit ultrapower
of the universe.
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This theorem is not used anywhere in the paper, and we omit its proof, which follows
the lines of the proof of Proposition 5.2, with S[[x]] in place of S[x].

11.2 Internally iterated ultrapowers.

The next subsection is devoted to the construction of a special kind of stratified limit
ultrapower. The technique used in this construction was developed in [13] and called
there internally iterated ultrapower.

We fix a linearly ordered set 〈Λ,≤〉. For α ∈ Λ, Λ(> α) := {β ∈ Λ : α < β}. Let
SeqI

Λ :=
⋃
{IF : F ⊆ Λ,F finite}. For s ∈ SeqI

Λ, s̄I
Λ := {f ∈ IΛ : s ⊆ f}.

We say that P ⊆ SeqI
Λ is a partition if (∀f ∈ IΛ)(∃!s ∈ P)(s ⊆ f ), ie, P := {s̄I

Λ : s ∈
P} is a partition of IΛ in the usual sense. For a partition P, dom P :=

⋃
s∈P dom s;

min P := the least element of dom P, if it exists. [By convention, the least (greatest,
resp.) element of the empty set is +∞ (−∞, resp.), so if P = {0}, min P = +∞ and
max P = −∞.]

Let P,Q be partitions; by definition, P � Q iff (∀t ∈ Q)(∃s ∈ P)(s ⊆ t); we denote
this unique s by πP,Q(t). We then say that Q is a refinement of P and πP,Q is the
projection of Q onto P. Clearly � is an ordering, πP,P = IdP, πP,Q ◦ πQ,R = πP,R

for P � Q � R. For any P,Q let POQ := {s ∪ t ∈ SeqI
Λ : s ∈ P, t ∈ Q}. It is easy to

check that POQ is a partition, P,Q � POQ and P,Q � R⇒ POQ � R.

We define νP : P → Λ by νP(s) = max(dom s). We say 〈Ps : s ∈ P〉 is summable
if P ⊆ SeqI

Λ is a partition and for each s ∈ P, Ps ⊆ SeqI
Λ(>νP(s)) is a partition.

Then Q := Σ s∈PPs := {s ∪ t : s ∈ P, t ∈ Ps} is a partition, dom Q = dom P ∪⋃
s∈P dom Ps, min Q = min P.

Definition 11.4 F I
Λ is the least collection of partitions of SeqI

Λ containing the trivial
partition {0} and all partitions Pα := Pα,I := {{(α, i)} : i ∈ I} for α ∈ Λ, and closed
under Σ . In detail, we construct by transfinite recursion:

F I
Λ(0) := {{0}}

F I
Λ(ξ + 1) := F I

Λ(ξ) ∪ {Σ a∈PαPa : α ∈ Λ ∧ (∀a ∈ Pα)[Pa ∈ F I
Λ(>α)(ξ)]}

F I
Λ(η) :=

⋃
ξ<η F I

Λ(ξ) for η limit

F I
Λ :=

⋃
ξ∈OnF I

Λ(ξ).

We note that the construction always terminates; in fact, F I
Λ(ξ + 1) = F I

Λ(ξ) for
ξ = κ+ , where |I| = κ. For P ∈ F I

Λ, rank P is the least ξ such that P ∈ F I
Λ(ξ).
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Proposition 11.5 (i) Pα,I ∈ F I
Λ for all α ∈ Λ.

(ii) If P ∈ F I
Λ, Ps ∈ F I

Λ for all s ∈ P, and 〈Ps : s ∈ P〉 is summable, then
Σ s∈PPs ∈ F I

Λ .

Proof (i) Pα = Σ a∈Pα{0} ∈ FΛ(1).

(ii) We proceed by induction on rank P. Let P = Σ a∈PαPa ; by inductive assumption,
for each a ∈ Pα , Σ t∈PaPa∪t ∈ FΛ . Hence Σ s∈PPs = Σ a∈Pα(Σ t∈PaPa∪t) ∈ FΛ .
[Note that every s ∈ P uniquely decomposes as a ∪ t where a ∈ Pα, α < min t, t ∈
Pa.]

Let U be an ultrafilter over I . Uα := jα[U] where jα : I → Pα is the isomorphism
defined by jα(i) = {(α, i)}. We have A ∈ Uα ⇔ {i ∈ I : {(α, i)} ∈ A} ∈ U , for all
A ⊆ Pα .

We define an ultrafilter UP over P ∈ F I
Λ by recursion:

U{0} is the principal ultrafilter over {0}.

If P = Σ a∈PαPa , then, for A ⊆ P, A ∈ UP ⇔ {a ∈ Pα : {s ∈ Pa : a ∪ s ∈ A} ∈
UPa} ∈ Uα . [Hence, UP is isomorphic to Σ UαUPa via the map a ∪ s 7→ 〈a, s〉.]

From associativity of the Rudin-Frolı́k sum we get by induction: if Q = Σ s∈PPs , then
UQ ∼= Σ UPUPs .

Proposition 11.6 If P,Q ∈ F I
Λ , then POQ ∈ F I

Λ and UP = πP,POQ[UPOQ],
UQ = πQ,POQ[UPOQ].

Proof By double induction on rank. We assume that the claim holds for all P ∈ FΛ

of rank less than ξ and all Q ∈ FΛ . We prove that it then holds if rank P = ξ and
Q ∈ FΛ , by induction on η := rank Q.

The case when either P or Q is {0} is trivial, so let P = Σ a∈PαPa, Q = Σ b∈PβQb.

From the definition of O one sees that:

If α = β , then POQ = Σ a∈Pα(PaOQa).

If α < β , then POQ = Σ a∈Pα(PaOQ).

If α > β , then POQ = Σ b∈Pβ (POQb).

In each case the terms of the sum belong to FΛ by inductive assumption, hence
POQ ∈ FΛ .
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To prove the claim about ultrafilters, we work out the case α < β in detail. If
A ⊆ P or A ⊆ POQ, and a ∈ Pα , we let Aa := {s : a ∪ s ∈ A}.

We now have: A ∈ UP ⇒ {a ∈ Pα : Aa ∈ UPa} ∈ Uα ⇒ [by the inductive
assumption] {a ∈ Pα : π−1

Pa,PaOQ[Aa] ∈ UPaOQ} ∈ Uα ⇒ {a ∈ Pα : (π−1
P,POQ[A])a ∈

UPaOQ} ∈ Uα ⇒ π−1
P,POQ[A] ∈ UPOQ .

Similarly: B ∈ UQ ⇒ [by the inductive assumption] (∀a ∈ Pα)(π−1
Q,PaOQ[B] ∈

UPaOQ) ⇒ {a ∈ Pα : π−1
Q,PaOQ[B] ∈ UPaOQ} ∈ Uα ⇒ {a ∈ Pα : (π−1

Q,POQ[B])a ∈
UPaOQ} ∈ Uα ⇒ π−1

Q,POQ[B] ∈ UPOQ .

Corollary 11.7 If P � Q, then UP = πP,Q[UQ].

Proof P � Q implies POQ = Q.

With each partition P ∈ F I
Λ there is associated a uniquely determined tree TP in the

sense of Section 6.

Let Γ : SeqI
Λ → V<ω be the one-one mapping defined by Γ(s) = t , where s =

{(α0, i0), . . . , (αk−1, ik−1)} ∈ SeqI
Λ and t = 〈(α0, i0), . . . , (αk−1, ik−1)〉, with α0 <

. . . < αk−1 . [For our purposes, this is more suitable than the simpler mapping
s 7→ 〈i0, . . . , ik−1〉.]

The tree TP is obtained by replacing each s ∈ P by Γ(s), and closing under subse-
quences. A more formal definition is by recursion:

If P = {0}, then TP = {0}.

If P = Σ a∈PαPa , and for each a = {(α, i)}, Ti := TPa is the tree associated to Pa ,
then TP := {0} ∪

⋃
i∈I〈(α, i)〉 a Ti .

With some license, we use a to denote {(α, i)}, 〈(α, i)〉, or (α, i), whichever is
appropriate.

The elements of the partition P are in one-one correspondence with the leaves of TP :
Γ[P] = Σ TP and P = Γ−1[Σ TP]. For t ∈ TP , Pt := Γ−1[Σ Tt] � P is in F I

λ .

An ultrafilter U over I and a partition P ∈ F I
Λ determine a TOU UP over TP :

If P = {0}, then UP = 0, and if P = Σ a∈PαPa , then UP(0) = Uα and UP(a a t) =
UPa(t) otherwise.

Proposition 11.8 ΣUP = Γ[UP] and UP = Γ−1[ΣUP]. If T̃ 4UP TP , then there is
P̃ ∈ F I

Λ , P̃�P, such that Σ T̃ ⊆ Γ[P̃], Σ T̃ ∈ ΣUP̃ , T̃ ≡UP TP̃ and P = Σ s∈P̃ PΓ(s) .
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Proof Straightforward induction on the rank of P.

For T̃ 4UP TP we define P/T̃ := 〈Pt : t ∈ Σ T̃〉 =ΣUP̃
〈PΓ(s) : s ∈ P̃〉. We have

U`(V; ΣUP̃) � “P/T̃ ∈ F k(I)
k(Λ) ∧ UP/T̃ = UP/T̃ ”. [Here k = kΣUP̃

, and we identify U
and k(U) in the last term.]

Proposition 11.9 Let P,Q ∈ F I
Λ and P � Q. The projection πP,Q : UQ → UP

naturally induces a morphism of TOUs πP,Q : UQ → UP so that the following diagram
commutes.

UP

UQ

ΣUP

ΣUQ

πP,Q πP,Q

Γ

Γ

-�

-�

? ?

Proof By induction on the rank of Q. The case when either P or Q is {0} is trivial,
so let P = Σ a∈PαPa , Q = Σ b∈PβQb . As P � Q, we have to have β ≤ α .

Case 1: β = α . This is a preserving case.

For each a ∈ Pα = Qβ we have πPa,Qa : UQa → UPa . We define πP,Q(a) = a and
πP,Q(a a t) = a a πPa,Qa(t) for t ∈ TQa . The verification of the claims is trivial.

Case 2: β < α . This is a collapsing case.

It then follows from the definition of � that P�Qb for all b, so we have πP,Qb : UQb →
UP for all b ∈ Qβ . We define πP,Q(b) = {0} and πP,Q(b a t) = πP,Qb(t) for t ∈ TQb .
The verification of the claims is again trivial.

It is also easy to see that πP,R = πP,Q ◦ πQ,R if P � Q � R.

Γ∗ is an isomorphism of U`(V; ΣUP) and U`(V; UP). In view of the preceding dis-
cussion, we henceforth informally identify these two interpretations. The isomorphism
Γ∗ can be used to copy the stratification vUP of U`(V; ΣUP) over to U`(V; UP), and
we may write simply U`t(V; UP) in place of U`t(V; ΣUP).

From Propositions 11.6 and 11.9 it follows that (F I
Λ,�), U := 〈UP : P ∈ F I

Λ〉,
φ := 〈{ϕP,R} : P � Q〉 specify a directed system of TOUs. The internally iterated
ultrapower of the universe modulo U along Λ is the direct limit of this system, the
stratified limit ultrapower LU`t(V; U,φ).

However, in order to construct an interpretation that satisfies SST] , we need to internally
iterate not a single ultrapower, but a limit ultrapower [such as the iterated ultrapower
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M of the universe along 〈Uδ : δ ∈ ∆〉 constructed in Section 5 in order to obtain an
interpretation for BST ]. Before describing this construction, we have to develop some
further theory.

Let I, J, τ : J → I , and ultrafilters U over I , V over J such that U = τ [V], be fixed. τ
induces a mapping τ̄ : SeqJ

Λ → SeqI
Λ by τ̄ (s) := τ ◦s; we note that dom τ̄ (s) = dom s.

If P ⊆ SeqI
Λ is a partition, τP := τ̄−1[P] ⊆ SeqJ

Λ is a partition, dom τP = dom P,
and ντP = νP ◦ τ̄ . Let τP : τP→ P be defined as τ̄ � τP.

It is easily seen that if 〈Ps : s ∈ P〉 is summable, then 〈τ (Pτ̄ (t)) : t ∈ τP〉 is summable
and τ (Σ s∈PPs) = Σ t∈τP τ (Pτ̄ (t)).

If P,Q ⊆ SeqI
λ are partitions and P � Q, then τP � τQ and the following diagram

commutes.

P

τP

Q

τQ

τP τQ

πP,Q

πτP,τQ

�

�

? ?

Proposition 11.10 If P ∈ F I
λ , then τP ∈ F J

λ , rank τP ≤ rank P, τP : VτP → UP is a
morphism of ultrafilters, and τP naturally induces a morphism of TOUs τ P : VτP → UP

so that the following diagram commutes.

UP

VτP

ΣUP

ΣVτP

τP τ P

Γ

Γ

-�

-�

? ?

Also, for P � Q ∈ F I
λ , the following diagram commutes.

UP

VτP

UQ

VτQ

τP τQ

πP,Q

πτP,τQ

�

�

? ?

Proof By induction on rank P. The nontrivial case is P = Σ a∈Pα,I Pa . We note that
τ (〈(α, i)〉) = 〈(α, τ (i))〉, τPα,I = Pα,J and τP = Σ b∈Pα,Jτ (Pτ̄ (b)). As τ : V → U ,
clearly τ̄ � Pα,J : Vα → Uα and, by the inductive assumption, τ̄ � τ (Pτ̄ (b)) : Vτ (Pτ̄ (b)) →
UPτ̄ (b) . A straightforward computation shows that τP : VτP → UP . We omit the tedious
verification of the remaining claims.
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Let now (D,≤) be a directed preordering, Ud an ultrafilter over Kd for each d ∈ D,
and τd,d′ : Ud′ → Ud a morphism such that τd,d = IdKd and d ≤ d′ ≤ d′′ ⇒ τd,d′′ =
τd,d′ ◦ τd′,d′′ . [We are assuming that each φd,d′ had a unique representative τd,d′ ; this
is done for simplicity, and is the case in the construction below of the interpretation for
SST] . At the cost of further notational complications, the theory can easily be made
to work for any directed system of ultrafilters.]

Definition 11.11 DΛ :=
⋃

d∈D{d} × F
Kd
Λ

〈d,P〉 ≤ 〈d′,P′〉 iff d ≤ d′ ∧ τd,d′P � P′ , for 〈d,P〉, 〈d′,P′〉 ∈ DΛ

ϕd,P;d′,P′ := (τd,d′)P ◦ πτd,d′P,P′

Ud,P := (Ud)P is the ultrafilter over the partition P associated with Ud .

It is easily seen that ≤ is a directed preordering of DΛ .

We point out in particular that

(a) 〈d,P〉 ≤ 〈d′, τd,d′P〉 and ϕd,P;d′,τd,d′P = (τd,d′)P , for d ≤ d′ , d, d′ ∈ D;

(b) 〈d,P〉 ≤ 〈d,P′〉 and ϕd,P;d′,τd,d′P = πP,P′ , for P � P′ , P,P′ ∈ FKd
Λ .

Propositions 11.9 and 11.10 imply that ϕd,P;d′,P′ := (τ d,d′)P ◦ πτd,d′P,P′ : Ud′,P′ →
Ud,P , that the diagram below commutes, that ϕd,P;d,P = IdP , and that ϕd,P;d′′,P′′ =
ϕd,P;d′,P′ ◦ ϕd′,P′;d′′,P′′ if 〈d,P〉 ≤ 〈d′,P′〉 ≤ 〈d′′,P′′〉, as well as boldface versions of
these identities.

Ud,P

Ud′,P′

Ud,P

Ud′,P′

ϕd,P;d′,P′ ϕd,P;d′,P′

Γ

Γ

-�

-�

? ?

Thus (DΛ,≤), U := 〈Ud,P : 〈d,P〉 ∈ DΛ〉; φ := 〈{ϕd,P;d′,P′} : 〈d,P〉 ≤ 〈d′,P′〉〉
specifies a directed system of TOUs. We call LU`t(V; U,φ) an internally iterated
limit ultrapower of the universe along Λ and 〈Ud : d ∈ D〉. It is an interpretation
for SST[ , of course.

11.3 An interpretation for SST] .

Finally, we fix a (nonempty) dense total ordering Λ without endpoints [to be specific,
the usual ordering of rational numbers], and let 〈∆,≤〉 and 〈Uδ : δ ∈ ∆〉 be as defined

Journal of Logic & Analysis 1:8 (2009)



Relative set theory 83

in Section 5. As in Section 5, D = Pfin(∆) is the class of all finite subsets of ∆,
directed by inclusion ⊆. To each d = {δ1, . . . , δn} ∈ D where δ1 < . . . < δn we
assign the ultrafilter Ud := Uδ1 ⊗ . . .⊗Uδn over Kd := Iδ1 × . . .× Iδn ; U0 := {{0}}.
For d ⊆ d′ , τd,d′ is the canonical projection of Kd′ onto Kd , so Ud = τd,d′[Ud′].

The internally iterated limit ultrapower of the universe along Λ and 〈Ud : d ∈ D〉 is
denoted =Λ(V) = (V∗,=∗,∈∗,v∗).

Our goal is to prove that =Λ(V) satisfies SST] . We need three technical lemmata.

Proposition 11.12 If d = {δ1 < . . . < δn}, Uδ1 is κ-good, and P 6= {0}, then Ud,P

is κ-good.

Proof First, P 6= {0} implies P = Σ a∈PαPa , and so Ud,P = (Ud)P ∼= Σ Ud Ud,P{〈α,i〉}
is κ-good, if Ud is. Second, Ud = Uδ1 ⊗ . . .⊗ Uδn is κ-good, if Uδ1 is.

Proposition 11.13 Let Λ be a dense total ordering without endpoints. Let V be a
TOU and U an ultrafilter over I such that V(t) ≤RK U for all t ∈ TV r Σ TV . Then
there is P ∈ F I

Λ with rank P = rankV and a morphism ϕ : UP → V . In particular,
the assertion holds if U is κ-good, with κ > |V(t)| for all t .

Proof By induction on rank of V . If V = 0, all is clear.

Let TV = {0} ∪
⋃

j∈J〈 j〉 a TVj . We fix α ∈ Λ. The set Λ(> α) = {β ∈ Λ : α < β}
is dense with no endpoints. By the inductive assumption, there exist Pj ∈ F I

Λ(>α)
with rank Pj = rankVj and morphisms ϕj : UPj → Vj for all j ∈ J . Let f : I → J
be such that V(0) = f [U]. We let P := Σ {(α,i)}∈PαPf (i) and define ϕ by ϕ(0) = 0,
ϕ(〈(α, i)〉) = 〈f (i)〉, ϕ〈i〉 = ϕf (i) . It is easy to verify the required properties of P and
ϕ [case (p) occurs].

Proposition 11.14 (Amalgamation Theorem) Let ψ : W → V be a morphism of
TOUs. Let Λ be a dense linear ordering without endpoints, P ∈ F I

Λ , and ϕ : UP → V
a morphism. Let Û be a κ-good ultrafilter over Î , where κ > |U|, |V(t)|, |W(t)| for
all appropriate t , and τ : Î → I be such that U = τ [Û]. Then there is P̂ ∈ F Î

Λ and
a morphism ψ̂ : ÛP̂ → W such that τP � P̂ and, for ϕ̂ := τ P ◦ πτP,P̂ , ψ(ψ̂(s)) =
ϕ(ϕ̂(s)) for Σ ÛP̂ -almost all s; ie, the following diagram commutes Σ ÛP̂ -almost
everywhere.

V

W

UP

ÛP̂

ψ ϕ̂ := τ P ◦ πτP,P̂

ϕ

ψ̂

�

�

? ?
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Proof By induction on rank of W . If rankW = 0, then W = V = 0. We let
P̂ := τP [so πτP,P̂ = IdτP ] and ψ̂(t) = 0 for all t ∈ TP̂ . From τP : ÛτP → UP the
claims follow trivially.

If rankW > 0, then TW = {0} ∪
⋃

k∈K〈k〉 a TWk . We have to distinguish two cases.

Case (c): ψ is collapsing, ie, ψ(〈k〉) = 0 for all k ∈ C := [domψ]0 ∈ W(0).

We fix α ∈ Λ with α < min P.

For k ∈ C then ψ〈k〉 : W〈k〉 → V and, by inductive assumption, there are P̂k ∈ F Î
Λ(>α)

and ψ̂k : ÛP̂k
→ W〈k〉 so that ϕ ◦ ϕ̂k = ψ〈k〉 ◦ ψ̂k [for ϕ̂k := τ P ◦ πτP,P̂k

], ie, the
diagram below commutes Σ ÛP̂k

-almost everywhere.

V

W〈k〉

UP

ÛP̂k

ψ〈k〉 ϕ̂k

ϕ

ψ̂k

�

�

? ?

We fix g : Î → K such that g[Û] = W(0) and ran g ⊆ C , and define P̂ :=
Σ {(α,`)}∈P̂αP̂g(`) , and

ψ̂(0) = 0

ψ̂(〈(α, `)〉 a t) = 〈g(`)〉 a ψ̂g(`)(t) for t ∈ TP̂g(`)
.

Then ψ(ψ̂(〈(α, `)〉 a t)) = ψ(〈g(`)〉 a ψ̂g(`)(t)) = [because (c)] = ψ〈g(`)〉(ψ̂g(`)(t)) =
[inductive assumption] = ϕ(ϕ̂g(`)(t)) = ϕ(ϕ̂(〈(α, `)〉 a t)). [Note πτP,P̂g(`)

(t) =
πτP,P̂(〈(α, `)〉 a t)].

Case (p): ψ is preserving, ie, TV = {0} ∪
⋃

j∈J〈 j〉 a TVj , [ψ]0 : ⊆ K → J and
V(0) = [ψ]0[W(0)], ψ〈k〉 : W〈k〉 → Vψ(〈k〉) for k ∈ C = [domψ]0 ∈ W(0).

Let T̃ := ϕ−1({0}) 4UP TP and let t ∈ Σ T̃ . Then [ϕ]t : ⊆ [TP]t → J , V(0) =
[ϕ]t[U(t)], and ϕta〈a〉 : Uta〈a〉 → V〈[ϕ]t(a)〉 , where [ϕ]t(a) ∈ J , for a ∈ At :=
[domϕ]t ∈ U(t). Note that [TP]t = {(α, i) : i ∈ I} for some α ∈ Λ [dependent on t],
and U(t) is Uα , modulo the identification of (α, i) and {(α, i)}.

By inductive assumption, for every pair 〈a, k〉 such that ψ(〈k〉) = 〈[ϕ]t(a)〉 =: 〈j〉 ∈ J ,
there exist P̂t,a,k ∈ F Î

Λ(>α) and a morphism ψ̂t,a,k : ÛP̂t,a,k
→Wk so that the following

diagram commutes Σ ÛP̂t,a,k
-almost everywhere, where ϕ̂t,a,k := τ Pta〈a〉◦πτPta〈a〉,P̂t,a,k

.
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Vj

Wk

Uta〈a〉

ÛP̂t,a,k

ψ〈k〉 ϕ̂t,a,k

ϕta〈a〉

ψ̂t,a,k

�

�

? ?

Letting ft = [ϕ]t , gt = [ψ]0 , and f̂t(`) = (α, τ (`)) for ` ∈ Î [so that U(t) = f̂t[Û]]
and applying Proposition 3.13, we get ĝt :⊆ Î → K so that ĝt[Û] = W(0) and
ft (̂ft(`)) =Û gt(ĝt(`)) for ` ∈ Dt ∈ Û .

We define P̂t and ψ̂t : ÛP̂t
→W :

P̂t := Σ {(α,`)}∈P̂αP̂`t , where P̂`t := P̂t, f̂t(`),ĝt(`) for ` ∈ Dt , P̂`t := τPta〈 f̂t(`)〉 otherwise;

ψ̂t(〈(α, `)〉 a s) = 〈ĝt(`)〉 a ψ̂t, f̂t(`),ĝt(`)(s), for ` ∈ Dt ∈ Û ;

and show that the diagram

V

W

Ut

ÛP̂t

ψ ϕ̂t

ϕt

ψ̂t

�

�

? ?

commutes Σ ÛP̂t
-almost everywhere, where ϕ̂t := τ Pt ◦ πτPt,P̂t

.

We note that min P̂t = α and ϕ̂t(〈(α, `)〉 a s) = 〈(α, f̂t(`))〉 a ϕ̂t, f̂t(`),ĝt(`)(s), and
calculate:

ϕt(ϕ̂t(〈(α, `)〉 a s)) = ϕt(〈(α, f̂t(`))〉 a ϕ̂t, f̂t(`),ĝt(`)(s)) =
〈[ϕ]t( f̂t(`))〉 a ϕta〈 f̂t(`)〉(ϕ̂t, f̂t(`),ĝt(`)(s)) = 〈 ft( f̂t(`))〉 a ϕta〈 f̂t(`)〉(ϕ̂t, f̂t(`),ĝt(`)(s)) =

〈gt(ĝt(`))〉 a ψ〈ĝt(`)〉(ψ̂t, f̂t(`),ĝt(`)(s)) = 〈[ψ]0(ĝt(`))〉 a ψ〈ĝt(`)〉(ψ̂t, f̂t(`),ĝt(`)(s)) =

ψ(〈ĝt(`)〉 a ψ̂t, f̂t(`),ĝt(`)(s)) = ψ(ψt(〈(α, `)〉 a s)),
for all ` ∈ Dt and all appropriate s.

Let P̃ ∈ F I
Λ be such that Σ T̃ ⊆ P̃ and Σ T̃ ∈ ΣUP̃ . We observe that τP̃ : Ûτ P̃ → UP̃ ,

define T̂ := τ−1
P̃

[T̃] ⊆ τ P̃, and note that Σ T̂ ∈ Σ Ûτ P̃ .

We finally define:

P̂ := Σ s∈τ P̃P̂s , where P̂s = P̂τP̃(s) if s ∈ Σ T̂ , P̂s = τPτP̃(s) otherwise

ψ̂(s) = 0 for s ∈ T̂

ψ̂(s a t) = ψ̂τP̃(s)(t) for s ∈ Σ T̂ and appropriate t ∈ P̂τP̃(s) .
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We omit the easy verification that ψ̂ is a morphism and check the commutativity.

ϕ̂(s) = τP̃(s) for s ∈ T̂ ;

ϕ̂(s a t) = τ P̃(s) a ϕ̂τP̃(s)(t) for s ∈ Σ T̂ and appropriate t ∈ P̂τP̃(s) .

For s ∈ T̂ , ϕ(ϕ̂(s)) = ϕ(τP̃(s)) = 0 because τP̃(s) ∈ T̃ ; ψ(ψ̂(s)) = ψ(0) = 0 as well.

For s ∈ Σ T̂ and appropriate t ∈ P̂τP̃(s) , ϕ(ϕ̂(s a t)) = ϕ(τP̃(s) a ϕ̂τP̃(s)(t)) =
ϕτP̃(s)(ϕ̂τP̃(s)(t)) = ψ(ψ̂τP̃(s)(t)) = ψ(ψ̂(s a t)).

Main Theorem 1. =Λ(V) satisfies SST] .

Proof It remains to prove that =Λ(V) � (∀α)(Fα).

Claim. Let 〈d̃, P̃〉 ∈ DΛ , f ∈ VŨ , U ∈ β∞A, V ∈ β∞(A × B), and U = F(V).
If U`t(V; Ũ) � fM0kΣ Ũ (U), d̂ ⊇ d̃ , and Ud̂ is κ-good for sufficiently large κ,

then there exist P̂ and g ∈ VÛ , such that 〈d̃, P̃〉 ≤ 〈d̂, P̂〉 ∈ DΛ and U`t(V; Û) �
“gM0kΣ Û (V) ∧ ϕ̂∗( f ) = k

Σ Û (F)(g)”, where Ũ := Ud̃,P̃ , Ũ := Ud̃,P̃ , Û := Ud̂,P̂ ,

Û := Ud̂,P̂ , and ϕ̂ := ϕd̃,P̃;d̂,P̂ .

Proof of Claim. By Proposition 9.9, F : B → A induces a canonical morphism
ψ : V→ U of the TOUs associated with U and V .

Let U`t(V; Ũ) � “~u is the pedigree for f over k
Σ Ũ (A)”; note that then U`t(V; Ũ) �

u0 = k
Σ Ũ (U). By Proposition 10.21, there is a morphism ϕ : Ũ → U such that

U`t(V; Ũ) � “ϕ∗(~dU) = ~u+ ∧ ϕ∗(eU) = f ”. We fix d̂ ∈ D so that d̃ ⊆ d̂ and Ud̂ is
κ-good, where κ is sufficiently large for the Amalgamation Lemma to apply. There is
then P̂ and ψ̂ : ÛP̂ → V so that 〈d̃, P̃〉 ≤ 〈d̂, P̂〉 and the following diagram commutes
Σ Û -almost everywhere [ Û := ÛP̂ and ϕ̂ := ϕd̃,P̃;d̂,P̂ ].

U

V

Ũ

Û

ψ ϕ̂

ϕ

ψ̂

�

�

? ?
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If we write ~dU(t) = t and eU(t) = tn for t = 〈t0, . . . , tn〉 ∈ Σ TU [or eU(t) = U if
t = 0] as in Proposition 10.20 and apply ϕ∗ to its assertion, we have U`t(V; Ũ) �
“〈k

Σ Ũ (U)〉 a ϕ∗(~dU) is the pedigree for ϕ∗(eU) over k
Σ Ũ (A)”. Hence U`t(V; Û) �

“〈k
Σ Û (U)〉 a ϕ̂∗(ϕ∗(~dU)) is the pedigree for ϕ̂∗( f ) over k

Σ Û (A)”. In particular,
U`t(V; Û) � ϕ̂∗( f )M0kΣ Û (U).

By Proposition 10.20 we have U`t(V; V) � “〈kΣ V(V)〉 a ~dV is the pedigree for eV

over kΣ V(B)”, so U`t(V; Û) � “〈k
Σ Û (V)〉 a ψ̂

∗
(~dV ) is the pedigree for ψ̂

∗
(eV ) over

k
Σ Û (B)”. In particular, U`t(V; Û) � ψ̂

∗
(eV )M0kΣ Û (V).

Subclaim. U`t(V; V) � ψ∗(eU) = kΣ V(F)(eV ).

Proof of Subclaim. Assume U /∈ β0A, V /∈ β0B. We recall [Proposition 10.20]
that eV (〈v0, . . . , vn〉) = vn , eU(〈u0, . . . , uk〉) = uk , and, as ψ is the canonical mor-
phism induced by F , ψ(〈v0, . . . , vn〉) = 〈. . . ,F(vn)〉 Σ V-almost everywhere, and
F(vn) = F(eV (〈v0, . . . , vn〉)) [see the proof of Proposition 9.9 and Definition 9.3].
Hence ψ∗(eU)(〈v0, . . . , vn〉) = eU(ψ(〈v0, . . . , vn〉)) = eU(〈. . . ,F(vn)〉) and F(vn) =
ψ∗(eU)(〈v0, . . . , vn〉) Σ V-almost everywhere.

It follows that ψ∗(eU)(〈v0, . . . , vn〉) = F(eV (〈v0, . . . , vn〉)) Σ V-almost everywhere,
ie, U`t(V; V) � ψ∗(eU) = kΣ V(F)(eV ). The cases when V ∈ β0B or U ∈ β0A are
similar.

From the Subclaim we get U`t(V; Û) � ψ̂
∗
(ψ∗(eU)) = k

Σ Û (F)(ψ̂
∗
(eV )); but also

ψ̂
∗
(ψ∗(eU)) = eU(ψ ◦ ψ̂) =

Σ Û eU(ϕ ◦ ϕ̂) = ϕ̂∗(ϕ∗(eU)) =
Σ Û ϕ̂

∗( f ). We let
g := ψ̂

∗
(eV ) and conclude that U`t(V; Û) � ϕ̂∗( f ) = k

Σ Û (F)(g) ∧ gM0kΣ Û (V).

The Claim immediately implies that =Λ(V) satisfies F0 :

If =Λ(V) � fM0k(U), we fix 〈d̃, P̃〉 ∈ DΛ so that f ∈ VΣ Ũ . Then also U`t(V; Ũ) �
fM0kΣ Ũ (U) [Lemma 11.2] and we use the Claim to obtain 〈d̂, P̂〉 and g so that
U`t(V; Û) � “ϕ̂∗( f ) = k

Σ Û (F)(g) ∧ gM0kΣ Û (V)”.

From this, =Λ(V) � “f = k(F)(g) ∧ gM0k(V)” follows, again by Lemma 11.2.

Before proceeding, we restate the Claim:

If 〈d̃, P̃〉 ∈ DΛ and U`t(V;Ud̃,P̃) � “u, v, a, b,F v 0 ∧ u ∈ β∞a ∧ v ∈ β∞b ∧ u =

F(v) ∧ fM0u”, then there exist d̂ , P̂ and g ∈ VP̂ such that 〈d̃, P̃〉 ≤ 〈d̂, P̂〉 ∈ DΛ and
U`t(V;Ud̂,P̂) � “ϕ̂∗( f ) = ϕ̂∗(F)(g) ∧ gM0ϕ̂

∗(v)”, where ϕ̂ := ϕd̃,P̃;d̂,P̂ . [Note that
ϕ̂∗(v) = k

Σ Û (V) for v = k
Σ Ũ (V), and similarly for F ; also, without loss of generality

dom g = P̂.]
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We use the Factoring Theorem to prove that =Λ(V) satisfies Fα for arbitrary level α .
Let =Λ(V) � “fMαU ∧ U ∈ β∞A ∧ V ∈ β∞B ∧ U = F(V) ∧ A,B,U,V,F v α”.
We fix 〈d,P〉 ∈ DΛ so that f , α,A,B,U,V,F ∈ VΣUP ; the preceding statement is
then satisfied in U`t(V;UP). [By Theorem 10.7, U`t(V;UP) � fMαU′ for some
U′ ∈ β∞A, so =Λ(V) � fMαU′ by Lemma 11.2, and U =∗ U′ by Proposition 10.3.]
By Proposition 7.2 and Corollary 7.3(a) applied to α , there is a tree T(α) 4UP TP such
that h vUP α⇔ T(h) 4UP T(α).

By Proposition 11.8 and subsequent discussion, there is a P̃ ∈ FKd
Λ , P̃ � P, such that

Σ T(α) ⊆ Γ[P̃], Σ T(α) ∈ ΣUP̃ , and T̃ := TP̃ ≡UP T(α). Evidently, U`t(V;UP �
T(α)) is isomorphic to U`t(V;UP̃). By the Factoring Theorem, we see that the ul-
trapower (U`(V; ΣUP),vUP;DT̃

) is isomorphic to [U`t(V;UP/T̃)]U`(V;ΣUP̃) via the iso-
morphism ΩT̃,U defined by ΩT̃,U (g) = g/T̃ .

From U`t(V; ΣUP) � fMαU we get (U`(V; ΣUP),vUP;DT̃
) � fM0U . Applying the

isomorphism Ω and writing k for kΣUP̃
,

U`(V; ΣUP̃) � “〈k(d),P/T̃〉 ∈ Dk(Λ)(>νP̃) ∧ U`t(V;UP/T̃) � [U/T̃,V/T̃,A/T̃,B/T̃,

F/T̃ v 0∧U/T̃ ∈ β∞(A/T̃)∧V/T̃ ∈ β∞(B/T̃)∧U/T̃ = F/T̃(V/T̃)∧ f/T̃M0U/T̃]”.

U`(V; ΣUP̃) satisfies ZFC and therefore the restated Claim. Hence U`(V; ΣUP̃) �
(∃d′, q, g′)[〈d′, q〉 ∈ Dk(Λ)(>νP̃) ∧ 〈k(d),P/T̃〉 ≤ 〈d′, q〉 ∧ dom g′ = q ∧ U`t(V;Uq) �

“ϕ∗
k(d),P/T̃;d′,q

( f/T̃) = ϕ∗
k(d),P/T̃;d′,q

(F/T̃)(g′) ∧ g′M0ϕ
∗
k(d),P/T̃;d′,q

(V/T̃)”].

We observe that, without loss of generality, d′ =ΣUP̃
k(d̂) for d̂ ⊇ d . This is true

because there is d̂ ⊇ d such that U`(V; ΣUP̃) � “k(d̂ ) is k(κ)-good”, for arbitrarily
large κ. We write τ for τd,d̂ and apply the morphism τP̃ to obtain [writing now k for
kΣUτ P̃

and observing that τ∗(νP̃) = ντ P̃ ]:

U`(V; ΣUτ P̃) � (∃q, g′)[〈k(d̂ ), q〉 ∈ Dk(Λ)(>ντ P̃) ∧ 〈k(d), τ ∗(P/T̃)〉 ≤ 〈k(d̂ ), q〉 ∧

dom g′ = q ∧ U`t(V; ΣUq) � “ϕ∗
k(d),τ∗(P/T̃);k(d̂ ),q

(τ ∗( f/T̃)) =

ϕ∗
k(d),τ∗(P/T̃);k(d̂ ),q

(τ ∗(F/T̃))(g′) ∧ g′M0ϕ
∗
k(d),τ∗(P/T̃);k(d̂ ),q

(τ ∗(V/T̃))”] .

Claim. q =ΣUτ P̃
P̂/τ T̃ , where τd,d̂P � P̂ ∈ FKd̂

Λ .

Proof of Claim.
For almost all t ∈ τ P̃ we have 〈d, τ ∗(P/T̃)(t)〉 ≤ 〈d̂, q(t)〉 and q(t) ∈ FKd̂

Λ(>ντ P̃(t)) .

Modifying q if necessary, we can assume this is true for all t ∈ τ P̃. As τ ∗(P/T̃)(t) =
(P/T̃)(τ (t)) = Pτ (t) , we have 〈d,Pτ (t)〉 ≤ 〈d̂, q(t)〉, which means τPτ (t) � q(t). We
can thus define P̂ := Σ t∈τ P̃ q(t). As P = Σ s∈P̃Ps , τP = Σ t∈τ P̃τPτ (t) � P̂.
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Hence 〈d,P〉 ≤ 〈d̂, P̂〉; we let ϕ := ϕd,P;d̂,P̂ . Also, g′ =ΣUP̃
g/τ P̃ for some g ∈ VP̂ .

Claim. U`(V; ΣUτ P̃) � ϕk(d),τ∗(P/T̃);k(d̂ ),q = ϕ/τ P̃.

Proof of Claim. For ΣUτ P̃ -almost all t we have ϕd,τ∗(P/T̃)(t);d′,q(t)(t) = ϕd,Pτ (t);d′,P̂t

= τ ◦ πPτ (t),P̂t
. For all s ∈ P̂t now ϕ(t) a ϕt(s) = ϕ(t a s) = τ (πτP,P̂(t a s)) =

τ (t a πτP,P̂(t a s)) = τ (t) a τ (πPτ (t),P̂t
(s)) = ϕ(t) a ϕd,Pτ (t);d′,P̂t

(s). We conclude that

(ϕ/τ P̃)(t) = ϕt = ϕd,Pτ (t);d′,P̂t
= ϕd,τ∗(P/T̃)(t);d′,q(t)(t).

We now have

U`(V; ΣUτ P̃) � “U`t(V;UP̂/τ T̃ ) � [(ϕ/τ P̃)∗(τ ∗( f/T̃)) = (ϕ/τ P̃)∗(τ ∗(F/T̃))(g/τ T̃)

∧ (g/τ T̃)M0(ϕ/τ P̃)∗(τ ∗(V/T̃))]”.

We use the Factoring Theorem for Morphisms 7.12 (***) [let U1 = UP , Ũ1 = UP̃ ,
U2 = UP̂ , Ũ2 = Uτ P̃ , U2/T̃2 = UP̂/τ P̃, ϕ = ϕd,P;d̂,P̂ , ϕ̂ = ϕ � τ P̃ = τP ] to

conclude that U`(V; ΣUτ P̃) � “U`t(V;UP̂/τ T̃ ) � [ϕ∗( f )/τ P̃ = (ϕ∗(F)/τ P̃)(g/τ T̃) ∧
(g/τ T̃)M0(ϕ∗(V)/τ P̃)]”. By the Factoring Theorem this means that, finally,
(U`(V; ΣUP̂),vUP̂; Dτ T̃

) � “ϕ∗( f ) = ϕ∗(F)(g) ∧ gM0ϕ
∗(V)”, ie, U`t(V;UP̂) �

“ϕ∗( f ) = ϕ∗(F)(g) ∧ gMϕ∗(α)ϕ
∗(V)”.

By Lemma 11.2, =Λ(V) � “f = F(g) ∧ gMαV ”.

We consider one additional auxiliary axiom.

Block Idealization:
For all 0 < β , A,B v 0, and R v β such that R ⊆ A× B,

(∀a ∈ PfinA)[a < β ⇒ (∃y)(∀x ∈ a)(〈x, y〉 ∈ R)]⇔
(∃y v β)(∀x ∈ A) (x < β ⇒ 〈x, y〉 ∈ R).

Theorem 11.15 =Λ(V) satisfies Block Idealization.

Proof Assume that =Λ(V) � “R ⊆ A∗ × B∗ ∧ 0 < β ∧ R v β ∧ (∀a ∈ Pfin(A∗))
[a < β ⇒ (∃y)(∀x ∈ a)(〈x, y〉 ∈ R)]”. We fix 〈d,P〉 ∈ DΛ so that R, β ∈ VU ,
where U := Ud,P and Uδ1 [hence, Ud ] is κ-good [d = {δ1 < . . . < δn}] for fixed
κ > |A|. By Proposition 11.8 there is P̃ � P such that T(β) ≡U TP̃ ; we let Ũ := Ud,P̃

and fix γ such that T(γ)+ ≡U T(β). Then R ∈ VŨ , y ∈ VŨ ⇒ y v∗ β , and
U`t(V; Ũ) � “(∀a ∈ Pfin(kŨ(A)))[a v γ ⇒ (∃y)(∀x ∈ a)(〈x, y〉 ∈ R)]”. As γ <∗ β

and each U(t) ∼= Ud is κ-good, it follows by Proposition 8.1 that U`(V; Ũ) � (κ-
Idealization)Sγ . Hence there is y ∈ VŨ such that U`t(V; Ũ) � “(∀x ∈ kU(A))(x <

β ⇒ 〈x, y〉 ∈ R)” and so U`t(V; U) � “y v β ∧ (∀x ∈ kŨ(A))(x < β ⇒ 〈x, y〉 ∈ R)”.
By Proposition 10.16 finally =Λ(V) � “y v β∧ (∀x ∈ A∗)(x < β ⇒ 〈x, y〉 ∈ R∗)”.

Journal of Logic & Analysis 1:8 (2009)



90 Karel Hrbacek

12 GRIST.

In this section we prove the equivalence of SST] with the axiomatic system GRIST
formulated in the Introduction, derive some of its basic metamathematical properties,
and give a number of consequences that are useful for development of mathematics in
GRIST.

12.1 Metamathematics of SST] .

First we draw some model-theoretic consequences of Main Theorem 1. Most of the
proofs are either obvious or entirely analogous to those given in Section 5, and are
omitted.

Corollary 12.1 SST] has a realization in ZFC.

Corollary 12.2 SST] is a conservative extension of ZFC. In particular, SST] is
consistent relative to ZFC.

Corollary 12.3 Every model M of ZFC has an extension to a model N of SST] with
N � SN

0 = M.

Corollary 12.4 If N1 and N2 are models of SST] , with N1 � SN1
0 = N2 � SN2

0 = M,
then they are L∞,ω -elementarily equivalent, where L is the ∈-v-language with a
name for each x ∈ M. If also |N1| = |N2| = ℵ0 , then N1 and N2 are isomorphic, by
an isomorphism which is identity on M.

Corollary 12.5 Every countable model of ZFC has a unique (up to isomorphism)
extension to a countable model of SST] .

Corollary 12.6 If N1 is a model of SST[ and N2 is a model of SST] , with N1 � SN1
0 =

N2 � SN2
0 = M and |N1| = |N2| = ℵ0 , then there is an ∈-elementary embedding of N1

into N2 which is the identity on M.

In view of Theorem 11.1, this result implies that every stratified limit ultrapower of
the universe, constructed internally in M � ZFC, M countable, has an ∈-elementary
embedding into the unique extension of M to a countable model of SST] . In this
sense, SST] is the theory of the “universal” stratified limit ultrapower.
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Corollary 12.7 (Completeness over ZFC) If T ⊇ ZFC is a complete consistent
theory (in the ∈-language), then T + SST] is a complete consistent theory (in the
∈-v-language).

Corollary 12.8 Let P be a statement in the ∈-v-language.
If ZFC ` “ =Λ(V) � P ”, then SST] ` P .

Proof Assuming the contrary, SST] ∧ ¬P has a countable model N and M := N �
SN

0 � ZFC. By Corollary 12.4, N has to be isomorphic to N′ := =Λ(V)M , obtained by
constructing =Λ(V) inside M; but N′ � P .

Corollary 12.9 SST] ` Block Idealization.

We give this indirect argument via Theorem 11.15 in order to avoid technicalities
attendant on a direct proof of this fact.

Corollary 12.10 SST] is finitely axiomatizable over ZFC.

Proof Proposition 1.2 shows that Transfer follows from a finite number of its instances.
This result (see also [3]) shows that SST is finitely axiomatizable over ZFC. We get
SST] by adding the axioms (∀α)(Bα) and (∀α)(Fα).

The following Normal Form Theorem, an analog of Theorem 5.4 for BST, is a funda-
mental metamathematical result about SST] .

Theorem 12.11 (SST] ) (Normal Form Theorem) Let P(x1, . . . , xk) be any ∈-v-
formula. There is an ∈-formula Q(U) (obtained effectively from P ) such that, for all
α and all 〈x1, . . . , xk〉MαU , Pα(x1, . . . , xk)⇔Q(U).

In particular, Pα(x1, . . . , xk) ⇔
(∃U)(〈x1, . . . , xk〉MαU ∧ Q(U))⇔ (∀U)(〈x1, . . . , xk〉MαU ⇒ Q(U)).

Proof We proceed by induction on the complexity of P .

Let ~u be an α-pedigree for x = 〈x1, . . . , xk〉 with u0 = U . The function EU is
defined in Proposition 10.20. In the isomorphism jα : [U`t(V; U)]Sα → Sα[~u+],
jα(EU) = EU(~u+) = x = 〈x1, . . . , xk〉 and jα(πi ◦ EU) = xi for i = 1, . . . , k .

We have

xi ∈ xj ⇔ πi ◦ EU ∈Σ U πj ◦ EU ⇔ {t ∈ Σ TU : πi(EU(t)) ∈ πj(EU(t))} ∈ Σ U;

Journal of Logic & Analysis 1:8 (2009)



92 Karel Hrbacek

xi vα xj ⇔ πi ◦ EU vΣ U πj ◦ EU ⇔ (∀T ′ 4Σ U TU)(πj ◦ EU ∈ VΣ U′ ⇒ πi ◦ EU ∈
VΣ U′), where U′ := U � T ′ .

The induction step is clear for ∧ and ¬.

We now consider P(x1, . . . , xk) of the form (∃y)P1(x1, . . . , xk, y). By the inductive
assumption, there is Q1 such that, if 〈x1, . . . , xk, y〉MαV , then

Pα
1 (x1, . . . , xk, y)⇔Q1(V).(*)

Let Q(U) be the formula (∃V)(π1,...,k(V) = U ∧ Q1(V)).

If Pα(x1, . . . , xk) holds, fix y such that Pα
1 (x1, . . . , xk, y) holds. By Bα there exists

V ∈ Sα such that U = π1,...,k(V) and 〈x1, . . . , xk, y〉MαV . From (*) we get Q1(V).
Hence Q(U) holds.

Conversely, if Q(U) holds, then [by Transfer into Sα ] there is V ∈ Sα such that
π1,...,k(V) = U and Q1(V). By Fα there exists y with 〈x1, . . . , xk, y〉MαV . Hence
Pα

1 (x1, . . . , xk, y) holds, and Pα(x1, . . . , xk) holds.

Corollary 12.12 If 〈x1, . . . , xk〉 and 〈x′1, . . . , x′k〉 have the same α-type, then they are
α-indiscernible, ie, Pα(x1, . . . , xk)⇔ Pα(x′1, . . . , x

′
k) for all ∈-v-formulas P .

Corollary 12.13 (Boldface Normal Form Theorem) Let P(a, x1, . . . , xk) be any ∈-
v-formula. There is an ∈-formula Q(a,U) (obtained effectively from P ) such that,
for all α and all U with 〈x1, . . . , xk〉MαU ,

(∀a ∈ Sα)(Pα(a, x1, . . . , xk)⇔Q(a,U)).

Proof Let P ′(a, x) be the formula (∃z1, . . . , zk)(x = 〈z1, . . . , zk〉 ∧ P(a, z1, . . . , zk))
and Q′(V) the ∈-formula corresponding to P ′(a, x) by the Normal Form Theorem.
By Proposition 9.7, for every a ∈ Sα , A := {a}, and U ∈ β∞B, there is a unique
Ua ∈ β∞(A×B) such that π1(Ua) = a and π2(Ua) = U . Hence 〈x1, . . . , xk〉MαU ⇔
〈a, 〈x1, . . . , xk〉〉MαUa . We let Q(a,U) be the formula Q′(Ua).

12.2 Equivalence of GRIST and SST] .

We need one further technical result.

Definition 12.14 (ZFC) We fix V ∈ β1B r β0B and define an ultrafilter U∼V ∈
βξ(A× B), for each U ∈ βξA r β0A, by recursion.
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If U ∈ β1A r β0A, U∼V := U ⊗ V . We remark that U ⊗ V is used only for
convenience; one could employ instead any W such that π1[W] = U and π2[W] = V .

At stage ξ > 1 we assume that the one-one mapping σ<ξ : U′ 7→ (U′)∼V of β<ξA r
β0A to β<ξ(A×B) has been defined, rank(U′)∼V = rank U′ , π1((U′)∼V) = U′ , and
π2((U′)∼V) = V for all such U′ . For U ∈ βξA r β<ξA, the ultrafilter σ<ξ[U] is
then nonprincipal and does not contain β<η(A× B) for any η < ξ . Hence σ<ξ[U] ∈
βξ(A×B)rβ<ξ(A×B), and we let U∼V := σ<ξ[U]. We observe that π1[U∼V] = U
and π2[U∼V] = WV,β<ξ(A×B) ; hence π1(U∼V) = U and π2(U∼V) = V .

Proposition 12.15 (SST] ) Let B,V ∈ Sα , V ∈ β1Brβ0B. For every β = α there
is z� β such that zMαV .

Proof Fix x � β , x ∈ A ∈ Sα , and an α-pedigree ~u = 〈u0, . . . , uν〉 for x over A
with U := u0 , so xMαU . As β = α , ν > 0 and U /∈ β0A. Fα implies that
there exists z such that 〈x, z〉MαU∼V . As π2(U∼V) = V , zMαV [Proposition 10.14,
Theorem 10.10]. It remains to prove that z� x .

Let ~v = 〈v0, . . . , vµ〉 be an α-pedigree for 〈x, z〉 over A×B; in particular, v0 = U∼V .
Let γ � vµ−1 ; 〈vµ−1, vµ〉 is a γ -pedigree for 〈x, z〉 over A× B.

Claim 1. Each vm , m < µ, is of the form (U′)∼V for some U′ ∈ β∞A r β0A.

Proof of Claim 1.

Consider the largest m < µ for which vm = (U′)∼V for some U′ . Then either
rank U′ > 1 and vm+1 ∈ {(U′′)∼V : U′′ ∈ dom U′} ∈ (U′)∼V , and we have a
contradiction, or rank U′ = 1, so vm+1 ∈ β0A and m + 1 = µ.

Hence vµ−1 = (U′)∼V . It follows that γ < z, x; otherwise, either U′ or V would be
principal. The conclusion follows from:

Claim 2. If γ < x < y, then every γ -pedigree for 〈x, y〉 has length at least 3.

Proof of Claim 2.

Assume that 〈v0, v1〉 is a γ -pedigree for 〈x, y〉 of length 2. Then 〈π2(v0), π2(v1)〉 is a
γ -pedigree for y, so v1 w y; also, 〈π1(v0), π1(v1)〉 is a γ -pedigree for x . We note in
particular that π1(v0), π2(v0) are both nonprincipal. Let δ � x; then v0 < δ < v1 and
〈v0, v1〉 is also a δ -pedigree for 〈x, y〉. By Corollary 10.14 [Theorem 10.10] it follows
that {π1(v0), π1(v1)} is the range of a δ -pedigree for x , a contradiction, because x ∈ Sδ
while π1(v0) is nonprincipal.
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Main Theorem 2. The theories GRIST and SST] are equivalent.

Proof that SST] ` GRIST:

Relativization.

Let x,A,V ∈ Sα , V ∈ β1A r β0A. By Fα , there exists yMαV ; then x < y.

To prove density, let x < y be given. We let α�x , β�y, and fix A,U,B,V ∈ Sα such
that V ∈ β1Brβ0B, U ∈ β2Arβ1A and z�β , zMαV . By Fα , there exists w such
that 〈w, z〉MαU∼V ; the α-pedigree for 〈w, z〉 is 〈u0, u1, u2〉 [because rank U∼V = 2]
and α < u1 < u2 . The proof of 12.15 establishes that w � z, hence u2 = 〈w, z〉 � β
and x < u1 < y.

Transfer.

Let α v β and x1, . . . , xk v α . We fix A ∈ Sα such that x := 〈x1, . . . , xk〉 ∈ A and
note that xMβWx,A for all β w α . By the Normal Form Theorem, Pα(x1, . . . , xk)
⇔Q(Wx,A)⇔ Pβ(x1, . . . , xk).

Granularity.

The Normal Form Theorem provides a formula Q(U) such that 〈x1, . . . , xk〉MαU im-
plies Pα(x1, . . . , xk) ⇔ Q(U). Let 〈ui : i ≤ ν〉 be the 0-pedigree for 〈x1, . . . , xk〉.
By Proposition 10.5, for ui v α < ui+1 , 〈x1, . . . , xk〉Mαui , and for uν v α ,
〈x1, . . . , xk〉Mαuν . If Pα(x1, . . . , xk) holds for some α , then Q(ui) holds for some i,
and there is a least i for which Q(ui) holds. Then α � ui for this i has the required
properties.

Idealization.

We prove the implication from left to right; the converse is an immediate consequence
of the fact that SST ` “a ∈ PfinA ∩ Sα ⇒ a ⊆ A ∩ Sα” [cf. 3.11].

Let P ′(x, z) be the formula (∃A, x̄, y)(z = 〈〈A, x̄, 〉, y〉 ∧ P(x,A, x̄, y)) and let Q(W)
be the formula corresponding to P ′(x, z) by the Normal Form Theorem.

Let 〈un : n ≤ ν〉 be an α-pedigree for 〈A, x̄〉, and U := un where un v β < un+1

[U := uν , if uν v β ]; then 〈A, x̄〉MβU . Given a ∈ PfinA, a < β , there is y such
that (∀x ∈ a)Pβ(x,A, x̄, y); let V be such that 〈〈A, x̄, 〉, y〉MβV and U = π1(V). For
all x ∈ a, 〈x, 〈〈A, x̄, 〉, y〉〉MβVx , hence Q(Vx). So the following ∈-statement holds:

(∀a ∈ PfinA)[a < β ⇒ (∃V)(∀x ∈ a)(U = π1(V) ∧ Q(Vx))].
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By Collection (in V) and Boundedness, there is a set B ∈ Sα such that (∃V) can be
replaced by (∃V ∈ B). We now use Block Idealization, transferred from level 0 to level
α , [define R(x,V) by (∀x ∈ a)(U = π1(V) ∧ Q(Vx)) and note R v β ] to conclude
that

(∃V ∈ B ∩ Sβ)(∀x ∈ A)[x < β ⇒ (U = π1(V) ∧ Q(Vx))].

Fix such V and use Fβ to get y such that 〈〈A, x̄〉, y〉MβV . Then for all x v β we
have 〈x, 〈〈A, x̄, 〉, y〉〉MβVx . If x < β and x ∈ A, then also Q(Vx) holds; hence,
Pβ(x,A, x̄, y) holds.

Standardization.

Let ~u = 〈u0, . . . , uν〉 be a 0-pedigree for 〈A, x̄〉. As α = 0, there is n such that
un < α v un+1 [or n = ν and uν < α]. Let β � un and let Q(W) be the
∈-formula from the Normal Form Theorem such that 〈y, 〈A, x̄〉〉MγW implies that
( y ∈ A ∧ Pγ( y,A, x̄)) ⇔ Q(W).

We note that for all β v γ < α the γ -type V of 〈A, x̄〉 can be taken as un [the
γ -pedigree is 〈un, . . . , uν〉]. Then, for all y v γ , the γ -type of 〈y, 〈A, x̄〉〉 is Vy , and
( y ∈ A ∧ Pγ( y,A, x̄)) ⇔ Q(Vy).

We fix A ∈ Sβ such that A ⊆ A and let B := {z ∈ A : Q(Vz)}; B ∈ Sβ because
V ∈ Sβ and Q is an ∈-formula.

For y v γ now y ∈ B ⇔ y ∈ A ∧ Q(Vy) ⇔ y ∈ A ∧ Pγ( y,A, x̄).

Corollary 12.16 SST] ` SST∗ .

Before establishing the converse, we deduce some consequences of GRIST.

First, an immediate consequence of Transfer is that all axioms (and hence, all theorems)
of GRIST remain valid if v is replaced by vα , for any α . In other words, (V,∈,vα) �
GRIST. In the terminology of [14], GRIST is fully relativized.

Several variations of the theory FRIST are introduced in [13]. Below are the axioms
of FRIST as presented in [16]; this version is called FRBST2 in [13]. 4

ZFC (with Separation and Replacement for ∈-formulas).

Relativization: v is a dense total pre-ordering with a least element 0 and no greatest
element.

4Actually, FRIST Standardization is stated in [16] with (∀x ∈ S0) in place of (∀x). This is
an oversight. As in [13], the axiom of Boundedness has to be added to the axioms of [16]. The
present version implies Boundedness by the argument in Remark (2) before Proposition 3.1.
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Transfer: For all α , (∀x̄ ∈ S0)(P0(x̄)⇔ Pα(x̄)).

Standardization: For all x̄ ,

(∀x) (∃y ∈ S0) (∀z ∈ S0) (z ∈ y⇔ z ∈ x ∧ P0(z, x, x̄)).

Idealization: For all 0 < β, A,B ∈ S0 and x̄ ,

(∀a ∈ Afin ∩ S0)(∃y ∈ B)(∀x ∈ a) Pβ(x, y, x̄)⇔ (∃y ∈ B)(∀x ∈ A ∩ S0) Pβ(x, y, x̄).

Proposition 12.17 GRIST ` FRIST.

Proof FRIST Standardization:

Let R(x, x̄) be the formula (∃y v 0)(∀z v 0)(z ∈ y ⇔ z ∈ x ∧ P(z, x, x̄)). GRIST
Standardization implies that (∀α = 0)(∃β < α)Rβ(x, x̄) (let γ = β ). By Granularity,
there is a v-least α such that Rα(x, x̄) holds. The two statements together imply that
this α� 0, ie, R(x, x̄) holds.

FRIST Idealization:

Let Q(x, y, x̄, β) be the formula obtained from P(x, y, x̄) by replacing each occurrence
of z v w with z v β ∨ z v w (z,w any variables). Note that, for all γ v β ,
z vβ w ⇔ z vγ β ∨ z vγ w, ie, Qγ(x, y, x̄, β)⇔ Pβ(x, y, x̄).

In this notation, the antecedent of ⇒ in FRIST Idealization is (∀a ∈ PfinA)[a v
0 ⇒ (∃y ∈ B)(∀x ∈ a)Q(x, y, x̄, β)]; let R(A,B, x̄, β) denote this formula. If there is
γ < β such that ¬Rγ(A,B, x̄, β), let β be the least such γ (Granularity); otherwise
let β � β . In either case β = 0 and (∀γ < β)Rγ(A,B, x̄, β) holds [this is a special
case of Local Transfer; see 12.22]. Hence (∀γ < β)(∀a ∈ PfinA)(a v γ ⇒ (∃y ∈
B)(∀x ∈ a)Qβ(x, y, x̄, β)) [note Qγ ⇔ Pβ ⇔ Qβ because γ, β v β ]. By GRIST
Idealization now there is y such that (∀x ∈ A)(x < β ⇒ Qβ(x, y, x̄, β)), and in
particular, (∀x ∈ A)(x v 0⇒ Pβ(x, y, x̄)).

Corollary 12.18 (GRIST) For every α , (V,∈,Sα) � BST.

Proposition 12.19 (GRIST) (External Induction) Let P(x, x̄) be any ∈-v-formula.
If, for all standard ordinals ξ , (∀stη < ξ)P(η, x̄)⇒ P(ξ, x̄) holds, then (∀stξ)P(ξ, x̄)
holds.
In particular, if P(0, x̄) holds and P(n, x̄)⇒ P(n + 1, x̄) holds for all standard n ∈ ω ,
then (∀stn ∈ ω)P(n, x̄) holds.
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Proof Assume ¬P(ξ0, x̄) for some standard ξ0 . By FRIST Standardization, there
is a standard set X such that, for all standard η , η ∈ X ⇔ η ∈ ξ0 + 1 ∧ ¬P(η, x̄).
The set X 6= 0, because ξ0 ∈ X , so it has the least element ξ1 and ξ1 is standard. This
gives a contradiction.

Proposition 12.20 (GRIST) (α-Finite Choice) Let P(x, y, x̄) be an ∈-v-formula.
If a ∈ Sα is finite and (∀x ∈ a)(∃y)Pα(x, y, x̄), then there exists a function f with
dom f = a such that (∀x ∈ a)Pα(x, f (x), x̄).

Proof It suffices to prove the assertion for the case when α� 0 [then apply Transfer]
and a = n ∈ ω ∩ S0 . This is easily done by External Induction.

Proof that GRIST ` SST] :

GRIST Transfer immediately implies Transfer from/into Sα . Inner Standardization
into Sα follows from FRIST Standardization, and GRIST Idealization implies Block
Idealization (let P be the formula y v 0 ∧ 〈x, y〉 ∈ R). The remaining axioms of
SST∗ are included among those of GRIST. SST∗ implies SST[ (Corollary 10.11). It
remains to prove (∀α)(Fα).

Proof It suffices to prove F0 ; the general case follows by Transfer. Given U,V,F ∈ S0

such that U = F(V) and xM0U , we need to show that for some y, x = F( y)∧ yM0V .

We proceed by external induction on rank of V . The claim is clear when rank V = 0.
Let V ∈ βξB r β<ξB, U ∈ βξA, and 〈u0, . . . , uν〉 be the 0-pedigree for x over A
with u0 = U = F(V). There are two cases to consider.

Case 1. F[V] is principal, generated by U .

We fix β such that 0 < β < u1 [just 0 < β , if ν = 0]; then also xMβU . From
(∀X)[X ∈ V ⇒ U ∈ F[X] ⇒ (∃v ∈ X)(F(v) = U)] it follows, by Block Idealization,
that there is v ∈ Sβ such that (∀X ∈ V)(X < β ⇒ v ∈ X ∧ F(v) = U). By the
inductive assumption transferred to level β [note that rank v < rank V ], there is y such
that x = F( y) ∧ yMβv. Since vMγV for all γ < β , it follows that yM0V .

Case 2. F[V] is nonprincipal.

We let β � u1 [ν > 0], so xMβu1 . Then F[V] = U and from (∀X ∈ V)[X < β ⇒
F[X] ∈ U ⇒ u1 ∈ F[X] ⇒ (∃v ∈ X)(u1 = F(v))] it follows, by Block Idealization,
that there is some v ∈ Sβ such that (∀X ∈ V)[X < β ⇒ v ∈ X ∧ F(v) = u1]. By the
inductive assumption transferred to level β again, there is y such that x = F( y)∧ yMβv
and hence yM0V .
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12.3 Consequences of GRIST.

In this subsection we derive a number of further consequences of GRIST. Some of
them throw additional light on the structure of the theory. Others have been found
useful for development of analysis in the framework of GRIST [17]. Some of these
consequences are generalizations of principles derived from RIST by Péraire and from
BST by Kanovei and Reeken; in those cases, the original formulations can be found in
the indicated references. The last few propositions give examples of principles valid
in BST but whose analogs for ∈-v-formulas fail in GRIST [of course, the original
versions for ∈-st-formulas hold, as all (V,∈, Sα) satisfy BST].

Proposition 12.21 (Support Principle) Given a formula P(x1, . . . , xk) in the ∈-v-
language and sets x1, . . . , xk , there is a level set {α0, α1, . . . , αn} such that α0 � 0 <

α1 < . . . < αn and for all i ≤ n and all β with αi v β < αi+1

Pαi(x̄)⇔ Pβ(x̄)⇔ ¬Pαi+1(x̄).

Proof Let Q be the formula corresponding to P by the Normal Form Theorem and let
~u = 〈u0, . . . , uν〉 be the 0-pedigree for 〈x̄〉. Recall that 〈x̄〉Mβun for all un v β < un+1

and hence Pun(x̄)⇔Q(un)⇔ Pβ(x̄). Define recursively: α0 := u0�0; if αi−1�um ,
let αi = un for the least n > m (if any) such that Q(um)⇔ ¬Q(un).

Proposition 12.22 (Local Transfer) Let P(x1, . . . , xk, xk+1, . . . , xn) be any ∈-v-
formula. For any sets xk+1, . . . , xn and any α there is γ = α such that, for all
α v β < γ and all x1, . . . , xk v α , Pα(x1, . . . , xn)⇔ Pβ(x1, . . . , xn).

Proof Without loss of generality we can assume k = 1, n = 2, and write a for x1 , x
for x2 . If x v α , Pα(a, x)⇔ Pβ(a, x) holds for all β w α and all a v α by Transfer.
Otherwise, let Q(a,U) be the ∈-formula corresponding to P(a, x) by the Boldface
Normal Form Theorem. Let ~u = 〈u0, . . . , uν〉 be an α-pedigree for x and let U := u0 ,
so that xMαU . Note that ν > 0 and let γ � u1 = α . If α v β < γ , then ~u is also
a β -pedigree for x , so xMβU holds, and Pα(a, x) ⇔ Q(a,U) ⇔ Pβ(a, x), for all
a v α .

Here is another version of Standardization.

Proposition 12.23 For any α = 0 and any A, x1, . . . , xk , there exists B < α such that
(∀y < α)( y ∈ B ⇔ y ∈ A ∧ Pα( y,A, x1, . . . , xk)).
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Proof As in the proof of FRIST Idealization in 12.17 [with α in place of β ], let
Q be the formula obtained from P by replacing each occurrence of z v w with
z v α ∨ z v w Applying Standardization to Q, we get B v β < α such that,
for all β v γ < α , (∀y v γ)( y ∈ B ⇔ y ∈ A ∧ Qγ( y,A, x̄)), and consequently
(∀y < α)( y ∈ B⇔ y ∈ A ∧ Pα( y,A, x̄)).

Proposition 12.24 Let V ∈ βnB r βn−1B for n ∈ S0 , n > 0, V ∈ S0 . For every
level set {α0, α1, . . . , αn} such that α0� 0 < α1 < . . . < αn there is zM0V such that
every pedigree 〈u0, . . . , uν〉 for z has ν = n and ui � αi , for all i ≤ n.

Proof By External Induction.

The statement is true for n = 1 by Proposition 12.15.

Assume it is true for n and let V ∈ βn+1B r βnB. Then there is v1M0V such that
v1�α1 and 〈V, v1〉 is a pedigree for v1 over βnB, by Proposition 12.15 where we regard
V as an element of β(βnB)rβnB. We have v1 ∈ βnBrβn−1B, as βnBrβn−1B ∈ V .
The statement for n transfers to level α1 � v1 , where {α1 < . . . < αn} is an α1 -level
set of cardinality n. Hence, by inductive assumption, there is zMα1v1 such that an
α1 -pedigree ~u = 〈u1, . . . un〉 for z over B has u1 = v1 and u2 � α2, . . . , un � αn .
Clearly 〈u0 := V, u1, . . . , un〉 is a pedigree for z over B and ui�αi , for all i ≤ n.

Definition 12.25 P(x1, . . . , xk; y1, . . . , yn) denotes a formula of the ∈-v-language
where the variables y1, . . . , yn appear only in the scope of v [not ∈ or =].

Proposition 12.26 (Polytransfer; Péraire [29])
Let α < α1 < . . . < αn and β < β1 < . . . < βn . Then
(∀x1, . . . , xk ∈ Sα ∩ Sβ)(Pα(x1, . . . , xk;α1, . . . , αn)⇔ Pβ(x1, . . . , xk;β1, . . . , βn)).

Proof Without loss of generality we assume k = 1 and write a for x1 . Fix V ∈
S0 ∩ (βnB r βn−1B). By Proposition 12.24 there are zM0V , z′M0V and their
pedigrees ~u = 〈u0, . . . , un〉 and ~u′ = 〈u′0, . . . , u′n〉, resp., such that u1�α1, . . . , un�αn ,
u′1 � β1, . . . , u′n � βn , u0 = V = u′0 . Note that ~u is an α-pedigree for z and ~u′ is a
β -pedigree for z as well. Then clearly

Pα(a;α1, . . . , αn)⇔ Pα(a; u1, . . . , un)⇔ Pα(a, z) and(*)

Pβ(a;β1, . . . , βn)⇔ Pβ(a; u′1, . . . , u
′
n)⇔ Pβ(a, z′)(**)

where P(x, z) is the formula expressing (∃~u)[~u is a pedigree for z ∧ u = 〈u0, . . . , un〉
∧ P(x; u1, . . . , un)]. Let Q(a,U) be the formula corresponding to P(x, z) by the
Boldface Normal Form Theorem. As zMαV , zMβV , and a ∈ Sα ∩ Sβ , Pα(a, z)⇔
Q(a,V)⇔ Pβ(a, z′).
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Proposition 12.27 (Partial Transfer; Péraire [29]) For any α < β ,
(∀x̄ ∈ Sα)[(∃x)(Pα(x, x̄;α) ∧ Qα(x, x̄;α)) ⇒ (∃x)(Pα(x, x̄;α) ∧ Qβ(x, x̄;β))].

Proof Fix α , x̄ ∈ Sα , and x such that Pα(x, x̄;α) ∧ Qα(x, x̄;α). By Local Transfer
there is some β′ = α such that Qβ′(x, x̄;β′) holds, ie, (∃x)(Pα(x, x̄;α)∧Qβ′(x, x̄;β′))
holds. Given β = α , apply Polytransfer to the sequences of levels α < β′ and α < β

to obtain (∃x)(Pα(x, x̄;α) ∧ Qβ(x, x̄;β)).

Proposition 12.28 (α-Standard Size Choice; Kanovei and Reeken [22])
Let P(x, y, x1, . . . , xk) be an ∈-v-formula. For every α and every A ∈ Sα such that
(∀x ∈ A ∩ Sα)(∃y)Pα(x, y, x1, . . . , xk) there exists a function f with dom f = A such
that (∀x ∈ A ∩ Sα)Pα(x, f (x), x1, . . . , xk).

Proof We fix x̄ = x1, . . . , xk , α , and A satisfying the assumptions. Let P ′(z, y)
be the formula (∃x, x̄)[z = 〈x, 〈x̄〉〉 ∧ P(x, y, x̄)], and let Q(V) be the ∈-formula
corresponding to P ′ by the Normal Form Theorem. If 〈x̄〉MαU and x ∈ Sα , we
then have (∃y)Pα(x, y, x̄)⇔ (∃V)[π1(V) = Ux ∧ Q(V)] [see Proposition 9.7 and the
proof of ∃ step of the Normal Form Theorem]. By ZFC Selection, which holds in
(Sα,∈), there are functions V,B ∈ Sα , defined on A, such that V(x) ∈ β∞B(x) and
(∀x ∈ A)[π1(V(x)) = Ux ∧ Q(V(x))]. It remains to prove the following.

Claim. There is a function ~v with dom~v = A such that (∀x ∈ A ∩ Sα)[~v(x) =
〈v(x)0, . . . , v(x)ν(x)〉 is an α-pedigree over B(x) with v(x)0 = V(x) and v(x)ν(x) =
〈〈x, 〈x̄〉〉, y(x)〉 for some (uniquely determined) y(x).

The function f on A defined by x 7→ y(x) then has the property that, for all x ∈ A∩Sα ,
〈〈x, 〈x̄〉〉, f (x)〉MαV(x) ∧ Q(V(x)), so (P ′)α(〈x, 〈x̄〉〉, f (x)) holds, ie, Pα(x, f (x), x̄)
holds.

Proof of Claim.

For every x ∈ A ∩ Sα there is some α-pedigree ~v over B(x) with v0 = V(x) and
vν(x) = 〈〈x, 〈x̄〉〉, y〉 for some y. By Local Transfer 12.22, there is β = α such that
for every x ∈ A ∩ Sα there is some β -pedigree ~v over B(x) with v0 = V(x) and
vν(x) = 〈〈x, 〈x̄〉〉, y〉 for some y. By α-Finite Choice, for every a ∈ PfinA ∩ Sα
there is a function ~v such that, for every x ∈ a, ~v(x) is a β -pedigree over B(x) with
v(x)0 = V(x) and v(x)ν(x) = 〈〈x, 〈x̄〉〉, y(x)〉. Using Idealization we obtain a function
~v with dom~v = A such that, for every x ∈ a, ~v(x) is a β -pedigree over B(x) with
v(x)0 = V(x) and v(x)ν(x) = 〈〈x, 〈x̄〉〉, y(x)〉. Finally, as v(x)0 = V(x) v α and
v(x)1 = β = α [if ν(x) > 0], ~v(x) is an α-pedigree.
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Proposition 12.29 (Map Standardization; Kanovei and Reeken [22])
For every A ∈ Sα there exists f ∈ Sα such that dom f = A and

(∀x ∈ A ∩ Sα)[(∃y ∈ Sα)Pα(x, y, x̄)⇒ Pα(x, f (x), x̄)].

Proof It suffices to give a proof for α� 0 and then use Transfer. Let R(x, z, x̄) be the
formula “z ∈ On ∧ [(∃y ∈ S0)( y ∈ Vz ∧ P(x, y, x̄)) ∨ (∀y ∈ S0)¬P(x, y, x̄)]” [Vz

is the z-th level of the cumulative hierarchy]. By 0-Standard Size Choice, there exists
a function g with dom g = A such that (∀stx ∈ A)R(x, g(x)). Let ξ ∈ On ∩ S0 be
such that ran g ⊆ ξ . Then (∀stx ∈ A)[(∃sty)P(x, y, x̄) ⇒ (∃sty ∈ Vξ)P(x, y, x̄)]. By
FRIST Standardization we obtain C ∈ S0 such that, for all x, y ∈ S0 , 〈x, y〉 ∈ C ⇔
x ∈ A ∧ y ∈ Vξ ∧ P(x, y, x̄). Using Axiom of Choice in (S,∈), we obtain a function
f ∈ S0 with dom f = A such that (∀x ∈ A)[(∃y)(〈x, y〉 ∈ C)⇒ 〈x, f (x)〉 ∈ C]. For this
function, (∀stx ∈ A)[(∃sty)P(x, y, x̄)⇒ P(x, f (x), x̄)] then holds.

Proposition 12.30 (Unique Definability; Kanovei and Reeken [22])
If x is uniquely definable in GRIST from parameters in S0 , then x ∈ S0 . If x /∈ S0 ,
then for each α = 0 there exist y� α such that x and y are ∈-v-indiscernible.

Proof Let xM0U . If rank U = 0, then U = x and x ∈ S0 .

If rank U > 0, we prove that for every γ = 0 there is y � γ such that yM0U , and
hence all such y are ∈-v-indiscernible.

We fix V ∈ β1B r β0B, V ∈ S0 , and use Proposition 12.15 to obtain z� γ such that
zM0V . As π2(U∼V) = V , by F0 there is y such that 〈y, z〉M0U∼V . As π1(U∼V) = U ,
yM0U holds. Let y � β ; β = 0. In the course of proof of Proposition 12.15 [let
α = 0 there] we established:

If x� β , β = 0, xM0U and 〈x, z〉M0U∼V , then z� x .

Applying this to y in place of x , we get y� z� γ .

Proposition 12.31 If A 6= 0, then there is x ∈ A such that x� A.

Proof If A v 0, the assertion is true by Transfer into S0 , so we assume A = 0. Let
β � A and fix Ã ∈ S0 such that A ⊆ Ã. If there is a ∈ PfinÃ such that a < β and
A ⊆ a, then A v a < β , a contradiction. Therefore (∀a ∈ PfinÃ)[a < β ⇒ (∃y)(∀x ∈
a)( y 6= x ∧ y ∈ A ∧ y vβ 0)]. [The y v β clause follows by Transfer into Sβ .] By
Idealization there is y such that x < β ⇒ y 6= x ∧ y ∈ A ∧ y vβ 0 for all x ∈ A, ie,
y ∈ A and y� β .
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Proposition 12.32 (Levels of Elements of Sets )
(a) If A is infinite, then (∀β w A)(∃x)(x ∈ A ∧ x� β).
(b) (∀x ∈ A)(x v α) if and only if A is finite and A v α .

Proof (a) If A is infinite and A � α , then there is a one-one mapping f ∈ Sα of ω
onto A. By Proposition 12.15, for every β there is ν ∈ ω such that ν � β . For β = α

then β � ν � f (ν) ∈ A. For β � α the existence of a ∈ A, a � β , follows from the
preceding proposition.

(b) is a consequence of (a), the preceding proposition, and Proposition 3.11.

Proposition 12.33 Collection Principle for ∈-v-formulas fails in GRIST.

Proof Let P(n,U) be the formula nM0U . By B0 , (∀n ∈ ω)(∃!U ∈ β∞ω)P(n,U).
By F0 , (∀U ∈ β∞ω)(∃n ∈ ω)P(n,U). But β∞ω is a proper class.

This corollary illustrates the one principal metamathematical difference between BST
and GRIST. In BST, the collection of all types of elements of a set A is a set βA.
Because of this, BST can be extended to a theory of external sets, HST, that satisfies
Collection and other useful axioms. In GRIST it is a proper class β∞A. The failure
of Collection implies the impossibility of extending GRIST to an HST-like theory.
The issue of external sets is discussed further in the Conclusion.

Kanovei and Reeken [22] formulated a second version of Idealization, which they call
Local Idealization, and showed that it holds in BST. An analogous principle for the
∈-v-language is false in GRIST.

Local Idealization: For all α < β, B v α , and all x1, . . . , xk ,

(∀ finite a)[a v α⇒ (∃y ∈ B)(∀x ∈ a) Pβ(x, y,B, x1, . . . , xk)]

⇔ (∃y ∈ B)(∀x) [x v α⇒ Pβ(x, y,B, x1, . . . , xk)].

Proposition 12.34 Local Idealization fails in GRIST.

Proof Fix β = 0. For every finite {U1, . . . ,Un} ⊆ β∞ω in S0 there is x ∈ ω such
that each Ui = f (V) for some f ∈ Sβ , where V := tpβ(x;ω). [Indeed: fix xi such
that Ui = tpβ(xi;ω), let y := 〈x1, . . . , xn〉, and U := tpβ( y;ωn); then Ui = πi(U).
Then let V := ϕ(U) and x = ϕ( y), for some one-one mapping ϕ ∈ S0 of ωn onto ω .]
Local Idealization implies existence of x ∈ ω such that every U ∈ β∞ω ∩ S0 is of
the form U = f (V) for some f ∈ Sβ , where V := tpβ(x;ω). However, this means that
every U ∈ β∞ω ∩ S0 has rank less than or equal to rank V , a contradiction.
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Remarks It is shown in [13], Theorem 5.1, that FRIST where Idealization is replaced
by Local Idealization (the theory called FRBST1 in [13]) is a conservative extension
of ZFC; in the interpretation given there Granularity holds as well.

Proposition 12.35 Dependent Choice fails in GRIST.

Proof Let R(x, y) be the formula x < y. Dependent Choice would imply that:

(*) There is a sequence ~a = 〈an : n ∈ ω〉 such that an < an+1

holds for all n ∈ ω . We show that this is not possible.

Let ~a be such a sequence; then (*) holds in (S0[[~a]],∈,v), which is isomorphic to
U`t(V; U)S0 for ~a M0U . We get a contradiction by proving [in ZFC] that (*) fails in
every U`t(V;U).

Let U be of the smallest rank for which (*) holds; clearly rankU > 0. Note that
0 < an for n > 0 [an−1 < an � 0 is impossible]; hence, with D1 := DT (1) , we have
(U`(V;U),vD1) � (∀n ≥ 1)(an < an+1) , ie, (U`(V;U),vD1) � (*). By the Factoring
Theorem, U`(〈U`t(V;U〈i〉) : i ∈ I〉;U(0)) � (*), ie, {i ∈ I : U`t(V;U〈i〉) � (*)} ∈
U(0). This is a contradiction with the inductive assumption.

12.4 Variations of GRIST.

(1) Unbounded GRIST.

Unlike BST or GRIST, Nelson’s IST allows Idealization without any bounds on the
variables x and y; this feature contradicts Boundedness. An extensive discussion of the
comparative advantages of IST and BST can be found in [22]; in particular, Kanovei
and Reeken showed that IST does not have a realization in ZFC.

It is possible to formulate a GRIST-like theory that extends IST; we call it Unbounded
GRIST. Its axioms are obtained from those of GRIST by

(1) replacing Idealization with Unbounded Idealization:

For all A < β and all x̄ ,

(∀ finite a < β)(∃y)(∀x ∈ a) Pβ(x, y, x̄)⇔ (∃y)(∀x < β)Pβ(x, y, x̄), and

(2) weakening Standardization [to allow for unbounded sets, without shadows] by
replacing “any A” with “any A v α”.

Unbounded GRIST is an extension of the theory called FRIST in [13].
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Theorem 12.36 Unbounded GRIST is a conservative extension of ZFC.

Proof As in [13], Proof of Theorem 4.7, we work in the theory T whose primitives
are ∈ and a constant symbol v, and whose axioms are:

ZFC (Separation and Replacement for formulas in the language of T)

(∃θ)(v = Vθ)

(∀x1, . . . , xn ∈ v)(P(x1, . . . , xn)⇔ Pv(x1, . . . , xn))

where P is any ∈-formula, and Pv is the formula obtained from P by restricting all
quantifiers to v.

It is well-known (and an immediate consequence of Reflection Principle in ZFC) that
T is a conservative extension of ZFC. The interpretation =Λ(V) = (V∗,=∗,∈∗,v∗)
for GRIST can thus be constructed in T. We let v := {f ∈ V∗ : f ∈∗ k(v)}. It
is straightforward to verify that the restriction of =Λ(V) to v is an interpretation of
Unbounded GRIST in T.

Remarks The Back and Forth Property is of course incompatible with Unbounded
GRIST. Specifically, B0 fails in this interpretation.

(2) Discrete GRIST.

This is the theory obtained from GRIST by replacing

Density: (∀x, y)(x < y⇒ (∃z)(x < z < y)) with

Discreteness:

(∀x)(∃y)(x < y ∧ ¬ (∃z)(x < z < y)) ∧ (∀x = 0)(∃y)( y < x ∧ ¬ (∃z)( y < z < x)).

Theorem 12.37 Discrete GRIST has a realization in ZFC.

We do not give a proof of this theorem. The key idea is to reformulate the Back and
Forth Property in a form valid for discrete preorderings of levels. This requires, first
of all, a re-definition of types. An α-type over A is now a pair (U,L) where U is a
stratified ultrafilter over A and L is a function defined on Σ TU (see Definition 9.8)
such that L(〈U1, . . . ,Un〉) = 〈`1, . . . , `n〉 where each `i ∈ ω ∪ {∞}. The idea is that
`i fixes the number of levels between Ui−1 and Ui (with U0 := U ).

One can suitably modify the developments of Sections 9 - 12 for this notion of type.
In particular, an interpretation for Discrete GRIST is given by =Λ(V) where Λ is the
usual ordering (ω,<) of natural numbers.
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Conclusion: GRIST and External Sets.

Nonstandard analysis traditionally distinguishes between internal and external sets.
GRIST is a theory of internal sets only, just like BST and IST. Nelson and his
followers demonstrated that extensive work in nonstandard mathematics can be carried
out within IST. Many such “internal” arguments become easier and/or more natural
in GRIST. Yet, most practitioners consider constructions that fundamentally depend
on external sets, such as nonstandard hulls and Loeb measures, to be an essential
part of nonstandard analysis. This is one reason why we need to address the issue of
extendibility of GRIST to a theory of external sets.

There are also foundational reasons. Theories like BST and IST exhibit a curious lack
of symmetry: among their three major principles, Standardization alone admits arbi-
trary formulas (of the ∈-st-language); Transfer and Idealization require ∈-formulas.
The desire to make all of these principles applicable to arbitrary formulas was one
of the original motivations for FRIST. An immediate consequence of Transfer for all
formulas is “Full Relativization”: A valid statement of FRIST (or GRIST) remains
valid upon replacing v by vα , for any α . We paraphrase this by saying that the
universe of GRIST is symmetric under “translations” from S to Sα ; every set α has
its own “picture of the internal cosmos”, given by vα , but these pictures are invariant
under the choice of α . However, one exception remains: Separation and Replacement
schemata of ZFC apply in GRIST to ∈-formulas only. There seems to be no founda-
tional justification for this. The ∈-v-formulas are just as definite (ie, true or false, for
given values of their free variables) as ∈-formulas, and should thus define sets. But
if collections like Ω := {n ∈ ω : 0 < n} are sets, they can only be external to the
universe of GRIST. We face again the question of extending GRIST to a theory that
also allows external sets.

The analogous problem for BST is discussed extensively in Kanovei and Reeken’s
monograph [22]; see also [14]. Here we briefly consider how the solutions that work
for BST fare for GRIST. It has to be noted up front that the axiom of Regularity has
to fail in any reasonable universe containing external sets (consider the set Ω above),
so the best we can hope for is to satisfy ZFC− (ZFC without Regularity, but with
Replacement strengthened to Collection).

The theory HST is an extension of BST to a theory of external sets “with the same
ordinals” (ie, the ordinals of the universe of all sets are isomorphic to the ordinals of the
standard universe) satisfying all of ZFC− except Power Set and Choice. In particular,
Collection holds in HST for all ∈-st-formulas. It follows from Proposition 12.33 that
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an extension of GRIST to an HST-like theory, where Collection would hold for all
∈-v-formulas, is impossible.

Another way to extend BST to a theory of external sets “with the same ordinals” is
NST (+ WFfeas = WF), where all axioms of ZFC− except Collection hold. It is
easy to see that GRIST can be consistently extended to an NST-like theory, where in
particular the schema of Separation holds for all ∈-v-formulas. Such theory would
seem to provide all the external sets needed in practice of nonstandard analysis. It
allows work with monads and galaxies, and the construction of Loeb measures [12]
and nonstandard hulls.

The third possibility is to imitate the approach taken by Kawaı̈ [24, 25] in order to
extend the universe of IST by external sets (his theory is called KST in [22]). The
universe of KST satisfies all of ZFC− ; however, it does not “have the same ordinals”
as the universe S of standard sets, which is itself an external set in KST. KST also
enables the practice of nonstandard analysis to the full extent. It is not difficult to
modify KST to make its internal universe be that of GRIST, rather than IST.

Both of the last two possibilities seem to answer the practical needs of those who
might like to be able to combine internal methods of GRIST with the external methods
of traditional nonstandard analysis in one theoretical framework. From the founda-
tional viewpoint, however, they appear ad-hoc. Principled comprehensive set-theoretic
foundations for nonstandard methods seem to call for an extension of the “Full Rel-
ativization” idea from internal sets to all sets. This view was strongly advocated by
Ballard in [4]. In the present context, it would mean that every set α has its own
“picture of the cosmos”, including its own standard universe Sα , internal universe Iα
with its vα , and a corresponding KST-like external universe Eα , and these pictures are
invariant under the choice of α . An analogous “three-universes” paradigm occurs in
mainstream set theory, in the study of both elementary embeddings and Boolean-valued
models. Some promising steps towards a formulation of a general theory that would
cover all of these situations have been taken, in particular by Ballard in an unpublished
paper [5]. However, development of a satisfactory system for full relative set theory is
quite a challenge, on both technical and philosophical grounds. We hope to report on
the progress towards such a system in a future publication.
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