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Relative set theory: Internal view

KAREL HRBACEK

A nonstandard set theory with many levels of standardness was first proposed by
Yves Péraire [28]. The theory GRIST formulated here is an extension of Péraire’s
RIST. We prove that it is conservative and categorical over ZFC, and universal
among theories of its kind. Technically, the paper carries out detailed analysis of
the construction of internally iterated ultrapowers introduced in the author’s [13].
The objectives of an eventual extension of GRIST to a full relative set theory are
briefly discussed in the last section.
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Introduction.

Nonstandard analysis, a modern rigorous theory of infinitesimals, was erected on
model-theoretic foundations by Abraham Robinson. Axiomatic treatments of non-
standard analysis in the framework of set theory originated in the author’s [11] and
Nelson’s [27]; Kanovei and Reeken’s monograph [22] provides an exhaustive survey
and comparison of the currently established nonstandard set theories. A common fea-
ture of the model-theoretic approach and (most of) the axiomatic approaches is a fixed
classification of the objects of discourse into two or three kinds: standard, internal,
and usually also external. In an alternative approach, first proposed by Wallet, Péraire
and Gordon, infinitesimals and other “nonstandard” concepts are relative to a given,
but arbitrary, level of standardness, metaphorically interpretable as a “level of knowl-
edge.” Péraire [28] developed an axiomatic theory RIST (Relative Internal Set Theory)
that formalizes this outlook, and proved that it is a conservative extension of ZFC.
(See [10] for Gordon’s different approach.) The formulations of the axioms of RIST
are somewhat cumbersome, due to the fact that RIST does not admit quantification
over levels of standardness. The author’s theory FRIST [13] removes this limitation;
as a result, it is both more powerful and formally simpler than RIST.

Published: June 2009 doi: 10.4115/j1a.2009.1.8


http://www.ams.org/mathscinet/search/mscdoc.html?code=03C20,(03C62, 03E70, 03H99)
http://www.ams.org/mathscinet/search/mscdoc.html?code=03C20,(03C62, 03E70, 03H99)
http://dx.doi.org/10.4115/jla.2009.1.8

2 Karel Hrbacek

Theories with many levels provide the users of nonstandard methods with new tools (see
for example Péraire [30]) whose power needs to be further explored, but—somewhat
paradoxically—their main advantage may be in exposition. Nonstandard analysis
raised the hope that the familiar e—¢ definitions of the fundamental calculus concepts—
derivative, limit, integral—could be replaced by more intuitive ones using infinitesimals
in the style of Leibniz. In traditional nonstandard analysis one can do that only for
standard functions at standard points. For internal points and/or functions, definitions
of these concepts have to fall back on the e~ method, as there are no infinitesimals
relative to the internal level. For elementary expositions it is advantageous to adopt the
“internal picture” of Nelson, in which internal sets are identified with the “usual” ones;
this picture avoids the need to discuss nonarchimedean ‘“hyperreals”, but the problem
of avoiding e—d for all internal functions and points then becomes particularly acute.
Theories with many levels solve this problem in a simple, natural way. Some of these
issues are discussed in detail in [16].

In a joint paper with O’Donovan and Lessmann [17] and a book manuscript in prepa-
ration [18], we attempt to demonstrate that elementary analysis at a beginner’s level
can be developed from a few very simple axioms that form a small fragment of FRIST
(but transcend RIST in some important aspects). Several high school level calculus
courses in Geneva have been successfully taught with this approach in Spring 2009.

This paper is concerned with metamathematics of internal relative set theories. The
experience with writing [18] showed that principles beyond those of FRIST are useful
for some more advanced arguments in analysis. Here we present an extension of
FRIST denoted GRIST, and prove that GRIST is a conservative extension of ZFC.
Moreover, GRIST is complete over ZFC in a technical sense (Corollary 12.7) and
universal among all theories of relative standardness satisfying some minimal axioms
(Corollary 12.6). The interpretation of GRIST in ZFC that we use is the same as the
one given in Section 6 of [13] for a version of FRIST. It is quite complicated, and the
proof that GRIST is valid in it even more so. In contrast, the axioms of GRIST are
fairly simple (see below). For these reasons, and unlike the usual practice in traditional
nonstandard analysis, use of GRIST as a foundation for development of mathematics
has to be based on its axioms rather than its models.

The language of GRIST has two primitive binary predicate symbols, € and C. We
read x C y as “x is y-standard” or “x appears at the level of y”.

Wedefinex C, yby x C o V x C y. If P(xy,...,x) is a formula in the €-C-
language and « a variable, P“(x, ..., x;) is obtained from P(xy, . .., x;) by replacing
every occurrence of = with C, .
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Relative set theory 3

xCymeans x Ty A =y C x. P4 is the set of all finite subsets of A.

We postulate all axioms of ZFC (with Separation and Replacement for €-formulas).
The remaining axioms are:

Relativization
C is a dense total pre-ordering with a least element 0 and no greatest element.

In detail, the conjunction of:

(Vx)0OC x A xEx); Vx,y,200((yEx A zEy) =z C x);
Vx,y)xEy V yEx); V@) (x C y); Vx,y)xCy= ) CzCy).
Transfer

If a C 3, then, forall xy,...,x C a,

’Po‘(xl,.. . ,xk) = 'Pﬁ(xl,... ,xk).

Standardization

For any o 1 0 and any A, xy,...,xk, there exists 8 T « and B T (3 such that, for
every Yy with BE~v C «,

(WENyeEBEsyYEA NPy, A X, .. X))

Idealization
Forall AT (8 andall xi,. .., x,
(Va € PMA)a = 6 = Qy)(Vx € a) PP(x,y,A,x1, ..., x0)]
S @M eAdxC =Py, Axi,. .., )l
Granularity
Forany xy,...,x;, if Qa)P*(x1,...,x), then
G)[PYx1, ..., x) A VOB C o= -Px,...,x0)l

An outline of the contents of the paper follows.

Our key objective is to show that every model M of ZFC can be extended to a model of
GRIST. It is also crucial that the extension be definable in M. To accomplish both of
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4 Karel Hrbacek

these purposes, it is more convenient to work with interpretations of GRIST (and other
extensions of ZFC) in ZFC, rather than directly with models. Section 1 summarizes
some facts about interpretations, and in particular focuses on those where the universe
of standard sets in the interpretation is isomorphic to the universe of ZFC; inspired by
the terminology of Kanovei and Reeken [21], we call them realizations. Section 1 also
establishes notational conventions for the rest of the paper. The material in this section
can be consulted for reference only, if/when needed.

Sections 2 — 5 deal with (internal) nonstandard set theories, that is, extensions of ZFC
that have two kinds of objects, standard and internal. We show that limit ultrapowers
of the universe V of set theory are precisely the realizations of a basic nonstandard
set theory ST. We then consider an extension of ST by the Back and Forth Property;
the resulting theory is equivalent to BST of Kanovei [20]. Here we prove that BST
is distinguished among nonstandard set theories by being categorical over ZFC in the
sense that for every countable model M of ZFC there is a unique countable model
of BST with M as its standard universe. BST is also universal in the sense that
every countable model of ST embeds into any model of BST with the same standard
universe. Most of this material is known in some form. In particular, we rely heavily on
Gordon’s notion of relative standardness captured by S[a], Gordon and Andreev’s use
of monads [2], Kanovei’s technique for defining an interpretation of BST in ZFC [22],
and ideas explicitly and implicitly contained in Andreev and the author’s [3]. We give
here a unified presentation in a form suitable for generalization to theories with many
levels of standardness. This generalization is worked out in Sections 6 — 11.

In Section 6 we define trees of ultrafilters, a framework for transfinite repetition of the
ultrapower construction (stratified ultrapowers) investigated in Section 7. Section 8
introduces a basic theory with many levels of standardness, the stratified set theory
SST. All stratified ultrapowers satisfy axioms of a stronger theory SST*. The technical
heart of the paper is in Sections 9 and 10. We define stratified ultrafilters (= canonical
trees of ultrafilters) and show, in SST*, that for every set x there is a standard stratified
ultrafilter U such that xMU, where xMU is a generalization to many-leveled context
of the notion “x is in the monad of U”. It is defined via the key concept of pedigree.
We then formulate the theory SST* = SST + Back and Forth Property. In Section 11
we prove that the interpretation for FRIST from Section 6 of [13] satisfies SST?.

The axioms of SST* are conceptually elegant, but quite unsuitable for development of
mathematics. In Section 12 we show that SST is equivalent to GRIST. It then follows
that GRIST is distinguished among stratified set theories by properties analogous to
those that distinguish BST among nonstandard set theories. Section 12 concludes
with a number of consequences of GRIST, important because they have either already

Journal of Logic & Analysis 1:8 (2009)



Relative set theory 5

been found useful for mathematical applications of GRIST, or because they generalize
similar results for BST or RIST.

This paper is concerned only with internal sets, although a fully adequate theory of
nonstandard objects undoubtedly has to account for external sets as well; see the au-
thor’s [11, 14]. The concluding section contains some remarks on external sets and
GRIST; however, a detailed study of this topic raises a number of new issues that will
be addressed elsewhere.
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Relative set theory 7

1 Realizations.

We work in the Zermelo-Fraenkel set theory ZFC unless explicitly stated otherwise.
In particular, we often employ the following easy consequence of its axioms.

Selection: Let P(x,y,p) be a formula.
(Vp)Y(VA)(Vx € AYENP(x,y,p) = (F)(f is a function N (Vx € AYP(x,f(x), p))].

Here and elsewhere we use overbar as shorthand for a finite list; thus p stands for
P1,- -, Pk- Jech’s monograph [19] is a reference for all undefined set-theoretic concepts
and all unproved results about them.

We use classes informally, as a way to speak about extensions of formulas, and usually
denote them by letters in blackboard, fractur, or uppercase Greek type. For example, if
P(x,p) is aformula (in the €-language) and py, . . ., py are sets, then C = {x : P(x,p)}
is a class. Occasionally, more complicated objects such as systems of classes are
convenient; they are interpretable as classes in standard ways. For example, if A is a
class, (A); denotes the class {x : (i,x) € A}, and the system of classes ((A); : i € I)
is to be interpreted as {(i,x) € A :i € I}.

The principal objects of our study are “structures” (usually, proper classes) for a first-
order language containing equality, the binary predicate symbol €, usually a unary
predicate symbol st, and possibly some other predicate symbols. Technically, such
objects are called interpretations.

An interpretation for the language {€,st,...} is a list of classes (ie, formulas)
M = (M, =9x, E9n, Som, . . .), where =gy and Egy are subclasses of Ml x M, Sgy is
a subclass of M. ... If P(x) is a formula of the {€,st, ...}-language, ’Pm()"c) is the
formula obtained from P by replacing each occurrence of x =y, x € y, st(x),...,
resp., by (the formula defining) x =g y, x €9n y, Sen, - - ., resp., and each occurrence
of the quantifier dx (Vx, resp.) by dx € M (Vx € M, resp.). [It may be necessary
to suitably rename some variables when doing the replacement. P™!(¥) may have
free variables other than X: the parameters of the formulas defining the components
of M.] See Shoenfield [33] and Kanovei—Reeken [22] for background material on
interpretations.

For ¥ € M, PP (%) asserts that P (%) holds in 9 (or, M satisfies P(X)), and we use
the notation 9 E P(X) for the formula P (%), when more convenient.

It is the mathematical practice to extend the language by new predicate, function and
constant symbols (defined in terms of €, st,... and previously defined symbols),
and we want to apply the notations P”'(x) and 9 £ P(¥) also to formulas of the
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8 Karel Hrbacek

extended language. It is to be understood that all defined symbols in P are replaced by
their definitions before the construction of the formula P> . A notational ambiguity
threatens when writing expressions like 9t F P(7(x)) where 7 is a term. As written,
it should be interpreted as 91 = Q(x), where Q(x) is the formula obtained from
P(1(x)) by eliminating all instances of 7(x) using its definition. However, we also
often want to state that 9t F P(y) where y = 7(x), that is, the value of the term 7(x)
in the ambient set theory, not in 91, should be substituted for y in 9t F P(y). We
underline the terms that are to be interpreted in the latter sense, that is, evaluated
before being substituted into PP. For example, 9t F y = (Jx means y =gp Umx,
ie, (Vz € M)(z €qpy < (Ju € M)(z €gn u A u Egy x)). In contrast, M Ey = Jx
means y =gn (Jx. To minimize the need for such underlining, we posit that terms
whose leftmost symbol denotes an embedding of interpretations are always evaluated
before substituting into P ; these symbols include F, G, o*, ¢* 7%, @ W . j, £. The
same applies to terms involving the symbol / defined in Section 7. A few exceptions
to these conventions occur for the symbols £ and *. They should be obvious from
context, and are usually explicitly pointed out.

We require of an interpretation that =gy is a congruence relation:
M E (Vx)(x = x)

ME (Vx,y)x=y=y=1x)

ME Vx,y, 0=y AN y=z2=>x=2)

ME Vx,y, X, V)x=x ANy=y Nxey=x €y)

ME Vx, xX)(x=x A st(x)) = st(x'))

For example, the first formula is (Vx € M))(x =gn x) when spelled out in detail.

The equivalence classes modulo =gy, [x]on := {x’ € M : X’ =gy x}, are in general
proper classes. ZFC does not imply existence of a class of representatives for arbitrary
partitions into classes, and we prefer to avoid “Scott’s Trick™ of taking the subset of
[x]on consisting of x’ of the least rank, and work with the congruences =gy rather than
the true identity. ! This necessitates some care with the definitions of embedding and
isomorphism of interpretations.

Let 9011, 901, be interpretations, with the language of 9; included in the language of
I, . An embedding of 91, to M, is a subclass F of M; x M, such that

'One reason for this decision is to avoid an additional layer of notation, such as having
to write xgy in place of x. More fundamentally, almost all results of this paper remain valid
in ZFC with Regularity removed and Selection added; in this theory, Scott’s Trick is not
available. This observation is important for planned future work on extending Relative Set
Theory to external sets (see Conclusion).
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Relative set theory 9

() (vx; € M)(Exz € Mp)((x1,x2) € F)

(i) (Vx1,y1 € MpD(Vxz,y2 € Mp)((x1 =om, Y1 A X2 =om, y2) = ((x1,x%2) € F &
(V1,y2) € F))

(iii) (Vxi,y1 € M)(Vx2,y2 € M) (((x1,x2) € F A (y1,y2) € F) = (x1 =op, y1 &
X2 =9, ¥2))

(iv) (Vxr,y1 € M)(Vxz,y2 € Mp)(({x1,x2) € F A (y1,y2) € F) = (x; €, 1 &
X2 Egm, ¥2))

(v) (Vx1 € M)(Vx € Mp)({x1,x2) € F = (Sop, (x1) < Son,(x2)))

An embedding is an isomorphism iff 21, and 21, are interpretations for the same
language and, in addition,
(Vi) (sz S Mz)(ﬂxl (S M])((X],Xz> S IF)

It is easy to check that =gy is an isomorphism of 9t and 9N, that F, o F; is an
embedding of 9} to M3 if F; embeds 9y to 9, and F, embeds M, to M3, and
that F~! is an isomorphism of 91, and M if F is an isomorphism of 91 and M1, .

Embeddings, as we defined them, are relations. It is easier, and often natural, to work
with functions that “generate” embeddings.

Let G be a (class) function with dom G C M, ran G C M, and such that

(@) (Vy € Mj)(3x € dom G)(x =gy, y)

(b) (¥x,y € dom G)x =am, y 4 G(x) =am, G())

(©) (Vx,y € domG)(x €9, ¥y & G(x) €9n, G(y))

(d) (Vx € dom G)(Son, (x) < Son, (G(x))).

Define F' C M} x M, by <X1,XQ> € F < (3x € domG)(x; =om X N X2 =g9n, G(x)).
It is easy to verify that, if G has properties (a)-(d), then F is an embedding of 971, to
9N, ; moreover, if also

(e) (Vy € Mp)(dx € dom G)(y =9n, G(x)),

then F is an isomorphism.

We often say that a function G is an embedding when meaning that the corresponding
F is an embedding. Also, G; = (G then stands for F; = F,, G3 = G, o G| means
that F3 = IF, o IFy, G[A] is F[A], and so on.

Most interpretations we work with are for a language that includes a (primitive or
defined) unary predicate symbol st, interpreted by a class isomorphic to V, the universe
of ZFC. Following Kanovei—Reeken [21], a realistic interpretation, or realization
for short, is an interpretation 9 = (M, =gn, €9n, Son, - - .) and an isomorphism £ of
V= (V,=,€) and Soi := (Son, =9m N (Sen X Son), Egm N (Sem X Sep)). [In this and
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10 Karel Hrbacek

similar situations, we often write (Sgxn, =g, €9n1), Or even simply Sgy, for Sgy; it being
understood that the relations are those of 1, restricted to Sgy.]

Proposition 1.1 The isomorphism ¢ in a realization is uniquely determined.

Proof Assume that (901, €;) and (901, £;) are realizations. Then I := £, Yo is an
automorphism of V. We note that =y, is the true equality, and hence F is a function.
By induction on rank it follows immediately that [F is the identity on V: if F(y) =y
for all y of rank less than the rank of x, then F(x) = {F(y) :y e x} ={y:y € x} = x.
Consequently, €;(x) =gy £2(x) forall x € V. O

We say that an interpretation 9 := (M, =gy, Egn, Sont, - - ) is bounded iff
(Vx € M)(Ja € Son)(x €gn a).

We say that 91 satisfies Transfer iff, for any €-formula P(xy, ..., xx),
(Vx1, .. x, € S;o)ME P(xy, ..., xk) < S E P(x1, ..., X))

The latter definition involves quantification over formulas, but it turns out that, for
bounded realizations, validity of Transfer for a single formula suffices. This is an idea
going back to Robinson and Zakon [31]. Another proof of finite axiomatizability of
Transfer can be obtained by adapting Theorem 2, Theorem 1 and Remark 2 in Part II
of Gaifman [9].

Let F; (i = 1,...,10) be the Godel operations (see Jech [19]). Each of these
operations has a natural defining restricted €-formula P;(x,y, z) such that (in ZFC,
or much less) one can prove (Vx,y) (3!z) Pi(x,y,2), and F; is defined by postulating

(Vx, MPi(x, y, Fi(x, ).

Proposition 1.2 If 9 is a bounded realization,

M E (Vx,y) (3z) Pix,y,z) and

(Vx,y,z € SN E Pi(x,y,2) & Som F Pi(x,y,2) (i=1,...,10),

then 9 satisfies Transfer. In particular, 9 satisfies ZFC.

Proof We first note that also Sony F (Vx,y) (3!z) Pi(x,y,z), because Sgy is iso-
morphic to V. The assumptions say that, for i = 1,...,10, and all x,y,z € Sgy,
Son E z = Filx,y) & M E z = Fi(x,y). Following the steps of the proof of Theo-
rem 30 in Jech [19], one shows that for every restricted formula P(X) there is a com-
position of Godel operations F(X) such that (VX)(Vx; € X1)...(Vxx € X)(PX) <
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(x1,...,x) € F(X)) holds in 9, as well as in Spn. As for each x € Sgy there is
X € Sgp with x €9y X [for example, X = {x}m], we have, for x € Sgn, Son F
PR < S E (x1,...,x50) € FX) & ME (x1,...,x) € FX) & M E Px). This
proves Transfer for restricted formulas.

If M E ()P, x) for x € Sgnp and P(x, X) restricted, we use boundedness to fix
A € Sgn such that 9 F (Ix € A)P(x,x). Transfer for restricted formulas gives
Son F (3x € A)P(x, x), and hence Sgy E (3x)P(x, X). As the other direction is trivial,
this proves Transfer for 3:; (and II;) formulas.

We now assume that Transfer holds for 3, and II, formulas, n > 1, and prove it
for ¥,4 formulas. Let 9 F (3x)(Vy)P(x,y,X) where X € Sgn and P(x,y,X) is
Yn—1. Again we fix A € Sgy such that MM F (Ix € A)(Vy)P(x,y,Xx). It suffices to
show that Son E (Ix € A)(Vy)P(x,y,%). If not, then Son E (Vx € A)(Ty) ~P(x,y,X).
Son satisfies ZFC, and in particular Selection; hence there exists f € Sgy such that
Son F (Vx € A) = P(x,f(x),x). The latter is a II,, formula, therefore transfers to 91
and contradicts 91 F (Ix € A)(Vy)P(x,y,x). The other direction is again trivial. O

An embedding F of 91, into M, is €-elementary iff, for any €-formula P(X),
(Vxl, e Xg € M])(ml = ’P(xl, ... ,)Ck) = mz E ’P(F(xl), .. ,F(xk))).

For bounded realizations this property is again expressible in ZFC.

Proposition 1.3 Let 91,0, be bounded realizations such that

M; = (Vx,y) (3!2) Pi(x,y,z) and

(Vx, v,z € Som)M; E Pix,y,2) & S, F Pilx,y,2) (=1,2; i=1,...,10).
If' F is an embedding of 91} into M, and

(Vx,y,z € M)y E Pilx,y,2) & I E Pi(Fx),F(y),Fz) (i=1,...,10),

then IF is an € -elementary embedding of 91y into 5.

Proof According to Proposition 1.2, 91, satisfies ZFC. We observe that I maps Sgp,
onto Sgy, ; otherwise, there would exist a nontrivial €-elementary embedding of V
into ), contradicting a famous theorem of Kunen (see Jech [19], Theorem 68). Hence
for every x € M there is a € M (in fact, a € Sgy, ) such that x €gy, F(a). One can
now repeat the argument from the proof of 1.2 with 91, in place of 9t and the image
of Ml; by F in place of Sgy. |
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12 Karel Hrbacek

Let 21, 9M, be realizations, with the language of 21, included in the language of
M. F is a morphism of 91, to M, iff F is an embedding of M, into M, and is
€-elementary. We write 9 < M, if M; C M, and the identity on M[; is a morphism
of M, to My, and read this “M, is an elementary extension of I;”. Clearly, a
bounded realization 907 satisfies Transfer if and only if Spp < 1.

Let 2 and 91 = (N, =g, €, Ser, - - ) be interpretations and 9T F ZFC. Then one can
consider the interpretation 9™ for the language of N, “MN in the sense of M”. It is
obtained by taking the classes (formulas) that define 91 and interpreting them in 901:

N = (N, (=™, (€)™, S™, ).
The following proposition is easily verified by induction on complexity of formulas.

Proposition 1.4 Let P(xy,...,x;x) be any formula in the language of . For all
Xt x € NP M= P(xy, . x) iff MENE P, .., x0).

In particular, if @ is a sentence expressing the fact that = is a congruence (with respect
to the language of 91), then (ZFC proves that) 9t F Q and, as 9t F ZFC is assumed,
MEME Q) and N E Q. So M™ is indeed an interpretation. [We note that it
need not be realistic even when 9t and 91 are.]

Let F be an embedding of 91, into M, and M F ZFC. Then F™ is an embedding of
‘ﬁglm into ‘ﬁém If IF is an isomorphism, then F™ is an isomorphism.

Conversely, let 9t = “F is an embedding (resp., isomorphism) of 91 into 91,”. Then
F I Nim induces an embedding (resp., isomorphism) of mz}m into ‘ﬁgﬁ in an obvious
way.

Another easy induction shows that [yl FSRUR

Let F be a morphism of a realization 9)1; to a realization 91, and M F ZFC (hence
My E ZFC as well). If N = (N, =, €, Sen, - - ) is an interpretation, we can form
MNP and NP8 it is immediate that F | N”Y is a morphism of 9™ into M2, The
especially useful case is when 91y is Sgn, M, is I, and F is the identity on Sgx;
we get N = N”' Sgn; (=9 is (=)™ N (Son, X Sex,); similarly for €gq;
S = S™ N Sox.

We conclude this section with a list of some particular notational conventions.

As already mentioned, letters in blackboard, calligraphic, gothic, and uppercase Greek
types denote classes. k, ¢, m,n are natural numbers; x, A are infinite cardinals; Id, is
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the identity function on A (Idy, if A is aclass); f, g, h, F, G, H are always functions.
f:CI— J meansthat domf C [ and ranf C J. F [ Ais {(x,y) € F:x € A}, the
restriction of F to A. 0 is the empty set as well as the number zero. V is the class
of all sets. VA = {f: domf = A}; a special convention is introduced in Section 2
in case A is an ultrafilter. We maintain a distinction between ordered pairs (a, b) and
2-tuples (a,b); it is of course unimportant for most purposes. The elements of V*
are k-tuples, and we denote them by (x1,...,x;). The projections 7% : V¥ — V are
defined for 1 < i < k by 7¥((x,...,x)) = x;; we omit k when it is clear from the
context. A; X ... x A is viewed as a subset of V¥.

The symbol := denotes “equal by definition”. Quotation marks in mathematical
context are used as parentheses.

2 Ultrafilters and Ultrapowers.

Ultrafilters are pervasive in set theory, and the ultrapower construction is one of the
key tools in the instrumentarium of model theory. The classic references are Comfort—
Negrepontis [7] and Chang-Keisler [6].

Definition 2.1 U is an ultrafilter over [ iff U C P(I) and
i 0¢U; 1€U

) VX, Y e )(XNY € U)

) VX, Yy e U))XureU=XecU V YeU).

It follows that (VX € U)VY C DX C Y = Y € U) and VX C )X € U
VI~ X € U). We note that [ is determined by U: I = |J U; we call I the domain of
U and denote it dom U.

For X e U, U | X := UNP(X) is an ultrafilter over X

An ultrafilter is principal iff {x} € U for some x € dom U. If such x exists, it is
uniquely determined, and U [ {x} = {{x}} is then an ultrafilter over {x}. We use
W, 1 to denote the principal ultrafilter over / that contains {x}.

Letters U, V, and W are reserved for ultrafilters. We write U ~ V iff U NV is an
ultrafilter, ie, (X e UNV)(U | X =V | X); ~ is an equivalence relation.

The technical subject of this work is detailed study of ultrapowers of the universe V
of set theory, and of direct limits of systems of such ultrapowers. Constructions of this
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14 Karel Hrbacek

kind play an important role in numerous investigations in set theory; we mention only
Scott [32], Vopénka [34], Gaifman [9] and Kunen [26].

We let VY := {f : f is a function, domf € U}, and for f, g € VU define

f=vgiff {i € 1:f() = g(i)} € U;
fevgiff{iel: f()egli}eUl.
The ultrapower of V modulo U is the interpretation U/(V; U) := (VY, =y, €p).

The universe of U4(V; U) is a proper class, and the satisfaction relation cannot be
defined for this “structure” (it would induce one for (V, €)). But, if P(X) is any €-
formula, we let U{(V; U) £ P(x) denote the formula P**V:V)(x) obtained from P by
restricting the range of all quantifiers to VY, and replacing all occurrences of = and €
by =y and €y, resp. [This may involve renaming some bound variables, if necessary
or convenient.] The fundamental fact about ultrapowers now takes the following form.

Proposition 2.2 (L.o$ Theorem) Let P(xy,...,x;) be an € -formula.
Forallfi,...,fi € VY,

UE(V’ U) = P(flv s 7fk) <~ {l €l: P(fl(l)a s afk(l))} ev.

Proof By induction on the complexity of P.

If P is an atomic formula x; = x,,,, UL(V;U) F fy = f,, is the formula f; =y f,,
which holds if and only if {i € I : fy(i) = fin(i)} € U.

The case of x; € x,, is similar, and propositional connectives (-, A) are trivial.

If P is of the form (Fy)Q(xy,...,xx,y), ULV;U) F (Iy)Q(fi,...,fi,y) is the for-
mula (3g € VOWUUV; U) E Q(fi,....fi,8)). Let g € VY be such that UAL(V; U)
Q(fi,---.fk, &) By the inductive assumption, {i € I : Q(fi1(i),...,fi(i),g()} € U,
hence {i € I : A)Q(f1()),...,fi(0),x)} € U,ie, {i € I : P(fi(i),...,.fi(0)} € U.

Using Selection, the argument can be reversed. O

In particular, UU4(V;U) E P) < P holds for any sentence P, so UL(V; U) is an
interpretation for the €-language and satisfies all axioms of ZFC.

The ultrapower construction is easily extended to “structures” for richer languages.
For example, let R C V2. We let Ry := {{f,g) € VU x VU : {i € I : (f(i), g(0)) €
R} € U}, and define UL(V; R; U) := (VY, =y, €y, Ry). As the class R is defined by
some €-formula, L.o§ Theorem is easily seen to hold for A/¢(V; R; U) and formulas in
the language with =, €, and an additional binary relation symbol R interpreted as R.
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Our main emphasis is on ultrapowers of the universe, but occasionally we need the
more general concept of ultraproduct. Let M,I,IE C I x V; we think of M as a
system of classes (M : i € I) indexed by I, where M; := (M); = {x : (i,x) € M};
similarly for (I; : i € I) and (E; : i € I). Assume that for each i € I, (M, [;, E;) is an
interpretation for the €-language. We let

[Tie; Mi/U :={f € VY : {i € domf : f(i) € M} € U},
[T, L/U :=={{f,8) € VU x VUV : {i : (£(i), g())) € L;} € U},

and similarly for [ [, ;E;/U. Then the ultraproduct U/ {((M;, I;, E;);cr; U) is defined
as ([[;c;Mi/U, [1lic; Li/U, [1ic; Ei/U). Lo§ Theorem holds in the form

UM, T, B U) EP(fis - fi) < i ML L E) B PG, ... fild))} € U
Lemma 2.3 Let U; (U,, resp.) be an ultrafilter over I, (I, resp.) and let ¢ be a
function. The following statements are equivalent:

(1) (VX € UN(p 'IXINhL € Uy)
2) (VY € U)(plYIN T € Uy).

Proof (1) = (2):

Assume Y € U, and let X := @[Y]NI;. If X ¢ U then I} ~ X € Uy, so by (1),
go_l[ll ~ XNl € U,. But 4,0_1[]1 ~ X] is disjoint with Y € U,, a contradiction.

) = (D

Assume X € U; and let Y := go_][X] NL. IfY ¢ Uy, then I, \ Y € U, so by (2),
plh N YNNI € Uy. But o[l \ Y] is disjoint with X € Uy, a contradiction. O

A morphism from U, to U is a function ¢ :C I, — I such that (1) or (2) holds;
notation ¢: U, — U;. Observe that dom ¢ = go_l[ll] e U,.

If U, is an ultrafilter and ¢ :C I, — I, we let
elUp] :={XChL:¢ 'X] €Uy} ={XCI :XDy[Y]forsomeY € U,}.
We then have p: U, — ¢[U,]; conversely, if ¢: U, — Uj, then Uy = p[U].

Evidently, if ¢: Uy — U; and ¥: U3 — U,, then po: U3 — U;. Hence
U, <gg U iff (p)(p: U, — U;) defines a preordering of ultrafilters, called the
Rudin-Keisler preordering. The well-known theorem first proved by Katétov (see
[7]) asserts that, if ¢: U — U, then ¢ =y Id;. It follows that, if U; <gx U, and
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16 Karel Hrbacek

U, <rk Ui, then there is a one-one function g :C I} — I, such that g[U;] = U, and
g‘l[Uz] = U;. We call such g an isomorphism of U; and U,.

Every morphism of ultrafilters induces an €-elementary embedding of the correspond-
ing ultrapowers.

Let ¢: U — Uy; we define p*: VU — VU2 by o*(f) =f o .
Evidently, if ¢: U, — U; and ¢: U — U, then (p o ) = ™ o p*.

If Uy ~ U, and ¢ = Idy where X € Uy NU,, then * is an isomorphism of U{¢(V; Uy)
and ULV, U»).

Proposition 2.4 Let P(x,...,xx) be an €-formula. For all fy, ... ,fi € VU,
ULV UD EPfry. .. fi) & ULV Up) E P (), ..., 0" (f).

Proof We have ULV, U) E P(fi,....fo) iff {i € I : P(fi(D),....fi(0)} € U, iff
e '{i €I : PG, ... .fi}] € U iff {j € L : P(fi(p()), - - -, file(DN)} € Uy
iff {j € L : P@* (1)), - - -, " ()G} € UaiffULV; Uz) E P(0*(f1), - -+, @ (fi)).

O

The converse assertion, that every € -elementary embedding of UL(V; Uy) to ULV ; Up)
is induced by some morphism from U, to U;, cannot be proved in ZFC (see [3,
15]). The induced embeddings are special, in that they commute with the natural
€-elementary embeddings of V into U4(V; Uy) and UL(V; Us).

Let Ip = {0} and let Uy be the principal ultrafilter over I; ie, Uy = {{0}}. Thereisa
natural isomorphism £, between (V, =, €) and U{(V; Up) given by €y(x) = {(0,x)}.
If U is an ultrafilter over I and ¢y : U — Uy is defined by py(i) = 0 forall i € I,
we call £y := ¢y, o £ the natural embedding of (V, =, €) into U{(V; U).

Unraveling this definition shows that, for every x € V, €y(x) = c,, where ¢, is the
constant function on / with value x: €y(x)(i) = ¢ (i) = x forall i € I. [y is also
known as the diagonal mapping.]

If o1 Uy — Uy, then gy, 0op = py,, hence ty, = ¢y, 0ty = ¢ opy, oy = p*oty,.
In summary: The €-elementary embeddings induced by morphisms commute with the

natural embeddings.

Proposition 2.5 [Keisler; Lindstrom; [6]] Let V: ULV;U) — ULV;U,) be an
€ -elementary embedding such that ¥ o £y, = €y,. Then there is ¢: U, — U; such
that W = ¢*. Ifalso ¢: Uy — U; and ¥ = ¢*, then ¢ =y, ¢.
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Proof Let d := Id;, be the identity on /1. We set e := U(d) € VY2, and write £, &,
in place of £y, £y, .

Claim 1. A € U; implies e~ '[A] € U>.

Proof d@i) =ic€ Aforalli € Ac Up,sod €y, £(A). Hence e = ¥(d) €y,
U(E(A) = £2(A), ie, {j € bL:e() € A} = e [A] € U,. m]

Welet p :=¢ | e [11], so ¢ =y, e and ranp C [;. Claim 1 remains true with e
replaced by ¢, and shows that p: U, — Uj.

Claim 2. ©*(f) =y, V(f) forall f € VU1,

Proof We observe that, for all i € domf, f(i) = f(d{) = & (HH))A®)), so
ULV, Uy) E f=8(f)(d). As W is an €-elementary embedding, we get UL(V; Us) E
W) = V(- (MNW(D) = 8(f)(p) =f o ¢”, and conclude that W (f) =y, fop =
©*(f). [We recall that the underlined composition f o ¢ is evaluated in the ambient

set theory, not in UA(V; U,); hence the meaning is UU(V; U,) F W(f) = g where
g:=fopl o

If ¢* = ¢*, then in particular p*(d) =y, ©*(d); but p*(d) =dop = ¢, p*d) =
dop* =¢*, 50 ¢ =y, . |

It is not clear a priori that Proposition 2.5 is a theorem of ZFC, because the notion of
elementary embedding is defined by a schema of equivalences: for every €-formula
P, ULV Uy E P(fi,... ) iff ULV, Uy) E PP(fH),--.,Y(fr). However, an
inspection of its proof reveals that a single equivalence, for the formula Pg(x,y, 2):
“yis a function and z = y(x)” [with x = d, y = £,(f) and z = f] suffices to prove
that U = ¢*. As ¢* is an €-elementary embedding, so is ¥. Hence, “an embedding
U: ULV; Uy) — ULV; Uy) such that oty = €y, and (Vf, g, h € VINULV; U)) E
Po(f,g, h) < ULV, Us) E Po(Y(f), T(g), ¥(h))” can be taken as a definition of “e€-
elementary embedding” in Proposition 2.5.

Proposition 2.5 suggests that ultrapowers of V should be construed as realizations. To
that effect we add to the €-language a unary predicate symbol st, to be interpreted
by the class Sy := €y[V] = {f € VY : f =y €y(x) for some x € V}, the range of
the natural embedding £;. From now on, the ultrapower of V modulo U is the
interpretation Ut(V; U) := (VY =y, €y, Sy) for the {€,st}-language. The natural
isomorphism €y of (V,=, €) and (Sy,=uy N (Sy X Sy), €y N (Sy X Sy)) witnesses
that (UU0t(V; U),ty) is a realization. Proposition 1.1 tells us that, in ZFC, £y is
uniquely determined by the class Sy .
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18 Karel Hrbacek

Let U0t(V; U;) and ULH(V; U,) be ultrapowers of V. W: ULH(V; Uy) — ULLV; Us)
denotes that U is a morphism in the sense of realizations; thatis, ¥ is an €-elementary
embedding and W o £y, = £y,

Proposition 1.3, or, alternatively, the remarks after the proof of Proposition 2.5, show
that this notion is expressible in ZFC. Moreover, every morphism is of the form ¢*
for some ¢: U, — Uj, so we have a “duality” between the category of ultrafilters and
that of ultrapowers of the universe. (This statement is not quite correct in the technical
sense of category theory, due—among other things—to the fact that ¢ is unique only
almost everywhere.)

3 Nonstandard Set Theory.

Our goal here is a sound and complete axiomatization of the interpretations U/t(V; U) =
(VY, =y, €y, Sy) for the language that has, in addition to = and €, also a unary
predicate symbol st, interpreted by Sy. It is customary to read st(x) as “x is stan-
dard.” Elements of Sy are the standard sets in Ut(V; U); if U is nonprincipal, then
Id; #y ty(x) for all x € V, and UK(V; U) F (Ix)(—st(x)). Hence nonstandard sets
exist in ULt(V; U). Nonstandard set theory axiomatizes ultrapowers of the universe.

We use (3%x)... as shorthand for (3x)(st(x) A ...), and (V*tx)... as shorthand for
(Vx)(st(x) = ...). P is a formula obtained from P by replacing each occurrence of
(3x)... by (). .., and of (Vx)... by (V*'x)....

Elementary nonstandard set theory ST~ is the theory in the {€, st}-language with
the following axioms:

ZFC for standard sets: P, where P is any axiom of ZFC.
Boundedness: (Vx)(3ta)(x € a).

Transfer:  (Vix, ..., x)(P(xq, ..., x0) < Py, ..., x0)),
where P is any €-formula.

?In a private conversation, J Véininen asked, how does nonstandard set theory differ from
studying a k-saturated ultrapower of V,; where & is inaccessible. During my talk at CUNY
Graduate Center on an early version of this material, G Liebman asked, how do models of
nonstandard set theory differ from nonstandard models of set theory. The discussion at the
end of the preceding section is the beginning of an answer to these questions: U{(V, U) is a
nonstandard “model” of set theory, while /¢t(V; U) is a “model” of nonstandard set theory. In
other words, in nonstandard set theory one always considers also the primitive predicate st, or,
equivalently, a particular elementary embedding of V into VY.
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We let S := {x : st(x)} be the class of standard sets and V := {x : x = x} the class
of all sets, sometimes referred to as internal sets for emphasis. A consequence of
Transfer is that ZFC holds ( for internal sets).

ST is ST~ plus
Inner Standardization:  (Vx)(3%a)(V*'2)(z € a & z € x).

The standard set a in the Inner Standardization axiom is uniquely determined by x; we
denote it sh(x) and call it the shadow of x.

Remarks (1) Every realization of ST~ is bounded.
(2) In ST, Boundedness is a consequence of the remaining axioms.

Proof The axiom of Regularity implies that for every set x there is an ordinal ¢ such
that x € V¢, the ’th level of the cumulative hierarchy. It suffices to show that there
is an ordinal n € S, n > &; then x € V,, € S. If not, then £ > 7 for all ordinals
n € S and sh(§) € S is a standard set containing all standard ordinals, contradicting
ZFC*, d

Proposition 3.1 [6, 22] U/t(V; U) is a realization of ST.

Proof The natural embedding €y is the required isomorphism. Every realization
satisfies ZFC®t. For every f € VU with ranf C A, f €y ty(A). Transfer is provided
by Los§ Theorem. Every bounded realization trivially satisfies Inner Standardization.

O

Until further notice, we work in the elementary nonstandard set theory ST~ .

If U is a class, PV is a formula obtained from P by replacing each occurrence
of (Ax)... [(¥x)..., resp.] by (Ix € U)... [(Vx € U)..., resp.]. In particular,
PS(xi,....x0) < Pxy, ..., x)and PV (xy, ..., x0) < Pxi, ..., xx). Weuse U; <
U, (U, is an €-elementary extension of U ) as shorthand for the assertion that, for any
e-formula P(xi,...,xx), (Vxi,....x € UDPY (1, ..., x0) < PP2(xy, ..., x0)).
In particular, Transfer is just the assertion that S < V.

Proposition 3.2 (ST™) Let S C U C V. The following statements are equivalent:

D SxU
) UV
3) (Vx,y € U)l(x,y) € UA (vx € U)(Vf € S)(f(x) € U)I.
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Proof (1) = (3):
ZFC* holds, so (Vx,y € S)[(x,y) € SA (¥Vx € S)(Vf € S)(f(x) € S)]. From (1) we
get that this statement holds with S replaced everywhere by U.

(2) = (1):
Let P(%) be an e-formula, X € S. If P5(%) holds, then P(%) holds by S 5 V, and
then PY(%) holdsby U < Vand S C U.

3) = 2
Claim. (Vxq,...,x, € U((@Y)Px,...,x,y) = Ty € Py, ...,x, ).

Proof Assume xp,...,x; € U and (dy)P(x,y). By repeated application of (3)
we know that (x,...,xx) € U, and by Boundedness we obtain A € S such that
(x1,...,x) € A. Axioms of Separation hold in S, so there is a set C € S such
that (V*9)[(z1,...,2%%) € C & (z1,...,20) € A A (FY)P3Z,y)]. By Transfer
then also (V2)[(z1,...,2%%) € C < (21,...,2) € A A (3Y)P(Z,y)], so in particular
(x1,...,xx) € C. Axioms of Selection hold in S, so there is a function f € S such
that (V*'z € C)PS'(Z,f(Z)). Again by Transfer, (VZ € C)P(Z,f(Z)), and in particular
P(x,f(x)) holds. But f(x) € U by (3). m]

The proof that U < V now proceeds by induction on complexity of 7P. The only
nontrivial case is when P(X) is of the form (dy)Q(x,y). We assume by induction that
(Vx,y € U)(QU()_C, y) <& Q(X,y)) holds. Using the Claim in the second step and the
inductive assumption in the third one, we have, for x € U, P(X) & (Iy)QXx,y) <
G e DQE,y) & Gy € QYR y) & P®. O

Definition 3.3 S[a] := {f(a) : f € Sis a function}.

Corollary 3.4 (ST™)
S<S[lalxV,andif S U and a € U, then S[a] < U.

Proof If x = f(a) and y = g(a) for f,g € S, then (x,y) = F(a) for F € S defined by
F(z) = (f(z), £(z)). Hence S[a] satisfies (3) of Proposition 3.2. O

S[a] is the least €-elementary extension of S containing a (as an element). It turns
out that S[a] is naturally isomorphic to an ultrapower of the standard universe S,
constructed inside S (Proposition 3.7).

Leta € AeSandlet Wos := {X CA:a € X} be the principal ultrafilter over A
containing {a}. If the standard set V, 4 := sh(W,4) exists, then it has the property
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that X € Vou & a € X, for X € P(A)N S. Itis trivial to verify that V, 4 is a
(standard) ultrafilter over A, and that V, 4 is principal iff a € S (iff V, 4 = W, 4). We
say that a generates the standard ultrafilter V, 4 over A. We also write aMU (a is in
the monad of U) for (V*'X € P(A))(X € U < a € X). Clearly, if a € AN B where
A,B € S, then Va,A ~ Va,B-

Proposition3.5 (ST™) AssumeA,B,f €S,f:C A — B,a € domf and V, 4 exists.
Then Vi) p = f[Vaal.

Proof Theset f[V 4l € Sand, for Y € P(B)N'S, Y € f[V,yal oyl e Vaa &
acfYlefa)ey. o

Proposition 3.6 (ST™) The following statements are equivalent:
(a) Inner Standardization
(b) Forevery a € A € S there exists the ultrafilter V, 4 € S generated by a over A.

Proof The proof of (a) = (b) is contained in the discussion above. For (b) = (a) it
suffices to show that sh(a) is €-definable from V4.

Letac A e S;thena C|JA. Foreachy € [JAlet X, :={xcA:yecx} CA;we
note that (X, : y € [ JA) isastandard function; hence b := {y € (JA: X, € V 4} € S.
Forye |JANSwehavey €a<ac X, < Xy € Vya,s0 (VWy)yeb&ycEa),
and b = sh(a). O

We continue working in ST~ ; let a € A € S be such that U := V4 exists. S :=
(S, =, €) is an interpretation of ZFC and S < (V, =, €); we consider the ultrapower
of the universe modulo U constructed inside S:

UV D1° = (V9% (=%, (€0)®, Sv)®) =
VNS, =y NS xS), egNESxS), Syn S)
(the second equality follows by Transfer; see also Section 1).
We define a mapping j,4: VYN S — V by jaa(f) = f(a).

Proposition 3.7 (ST™) j, 4 is an isomorphism between [U(t(V; VmA)]S and S, =
(Slal, =, €,5), and j,a(Idp) = a.

Proof Letj:= j,a. Clearly ranj = {f(a) : f € S} = S[a]. For standard f, g we
have f=p g {icA:f)=g)} cUsac{icA:f(i)=gl} < fla)=
gl@) < i(f) = j(g). Similarly f €y g < j(f) € j(g). Forx € S, j(ty(x)) = x, 50 j
maps Sy N S onto S. Clearly j(Idy) = Ids(a) = a. O
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Let ST? be ST plus
Axiom of Primitivity: (Ja)(Vx)(3)(x = f(a)).

Corollary 3.8 (ST?) The trivial interpretation (V,=, €,S) is isomorphic to an ul-
trapower of the universe constructed inside S.

There is a useful interpretation of this result in ZFC.

Corollary 3.9 (ZFC) Ultrapowers of V are precisely the realizations of ST? .

Proof U/{t(V;U) is a realization of ST by Proposition 3.1. To prove that primitivity
holds, take a = Id;.

If 901 is a realization of ST”, Corollary 3.8 is true in 97 and, by remarks following
Proposition 1.4, 9 is isomorphic to [[U4t(V; OIS = [Ut(V; U)°™ . But Soy is
isomorphic to V via £, so [ULt(V; U)]°™ is isomorphic to ULi(V; €' (U)). O

In this sense the nonstandard set theory ST? axiomatizes ultrapowers of the universe.

Here are some further observations related to these ideas.

Lemma 3.10 (ZFC) (a) Ult(V;U)E h = ty(g)(f) ifandonlyif h =y gof.
Assume that f €y ty(A).

(b) ULtV U) F Vi g4y = Eu(fIU]).

(c) f € Sy if and only if ULH(V; U) E “V} g,(a) 1s principal”.

Proof We write ¢ for €.

@) Ul(V;U) E b= t@)(f) iff {i : h() = @)} € Uiff {i : h() =
g} eUiff h=y gof.

(b) For X C A, UlH(V;U) E &(X) € Vi iff f €y 8X) iff {i : f() € X} € U iff
FUX] € U iff X € fI[U] iff &(X) ey ¢(f[U]).

(c) Using (b), ULH(V; U) E “Vj g, is principal” iff f[U] is principal. But {a} € f[U]
for some a € A iff f =y €(a) for some a € A, ie, iff f € Sy. O

We return to the theory ST.
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Proposition 3.11 (ST) If a € S is finite, then a C S.

Proof We first show that (Vn € w)(n € S = n C S). Assume m € n is nonstandard.
By Inner Standardization, there is y € S such that (V®'z)(z € y < z € m). By Transfer,
y C w, y is nonempty (0 € y) and bounded above (by n); let my be the greatest
element of y. As my is standard, mo € m; so either mop +1 € mand my+ 1 € y, or
mo + 1 = m and m is standard. Either way, we have a contradiction.

If now a € S is finite, there is a one-one mapping f € S of some n € S onto a. Then
n C S and hence a = f[n] C S, by Transfer. O

Let x be a standard infinite cardinal.
r-Idealization is the statement:
For all standard A, B with |A| < x and all R C A x B,
(Va € PMAY3y)(vx € a)((x,y) € R) & @y)(V*'x € A)((x,y) € R).

It is well-known (see Chang—Keisler [6]) that if the ultrafilter U is k-good 3 then
UV, U) is k-saturated, that is, in our terminology, U/t(V;U) E x-Idealization.
[More accurately, we should say U{¢H(V; U) F £y (x)-Idealization, etc.]

Proposition 3.12 (ST + «-Idealization) Let U,V,f €S, U =f[V] and aMU. If
|V| < K, then there exists bMV such that f(b) = a.

Proof LetA:=V, B:=domV, (X,y) e R yeX A f(y)=a. fSCVis
standard finite, then (S = X, for some Xy € VN S. Hence f[Xp] € UN S and so
a € f[Xol, ie, a = f(y) for some y € Xj. It follows that (X,y) € R forall X € SN S.
By k-Idealization there exists b such that (X,b) € R forall X € VN S, ie, bMV and

f(b) =a. O

The special case where U is principal over {0} is also useful; the assertion then is that,
if |V| < k, then there is bMV.

Proposition 3.13 (ZFC) (Amalgamation Lemma) Let U, V, W be ultrafilters, V =
flU1, V = g[W]. IfUisa k-good ultrafilter and k > |U|, |W/|, then there existf such
that f[U] = U. For each such f there exists g such that g{U] = W and f of =7 808.
That is, the following diagram commutes.

*In this paper, all k-good ultrafilters are assumed to be w; -incomplete.
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o)

(=)}

Q

f

Proof We write ¢ for €. UKV, U) F “f(x)-Idealization”, so Proposition 3.12 holds
in L{Et(V U) When apphed to #(U), this implies that there is f € VU such that
U v, U) |=fME(U) that is, f €p tA) forall A € U, ie, f l[A] € Uforall A e U.
We then have U —f[U].

Givenf such that ]A‘[U] = U,Awe have V = h[U] where h,f:f o?. Hence h €5 ¥(B),
for every B eV, ie, Ult(V;U) E hME(V). Also Ut (V;U) F &(V) = E(g)[E(W)] and
ULV D) E [E(W)| < E(k). Applymg Proposition 3.12 inside U/41(V,; U) once more,
we obtain g € VU such that ULV, U) E “gMEW) A h = ¥(g)(g)”. This translates
into W—g[U] andh—Ugog. O

4 Repeated Ultrapowers.

Let U4(V; U) F “u is an ultrafilter”’; we can then form the ultrapower of the universe
modulo u inside UL(V; U), ie, consider the interpretation

(V)0 = (VIO (=, D), (€ UETD, (5,117,

We observe that u = (U; : i € domu) is a function with domu € U, and for U-almost
all i, U; is an ultrafilter; without loss of generality we can assume that domu = [
and U; is an ultrafilter for all i € I. Now F € (VOO iff Y0V, U) E “F is a
function A dom F € u” iff F is a function, domF € U and {i € I : F(i) € VVi} € U
iff F € [[VYi/U. For F,G € (V)Y VU yuV,U) E F =, Giff {i € I:
F(i) =y, G(i)} € U iff (F,G) € [[(=y,)/U. Similarly for €,. F € (S,)"*V:V) iff
{iel:F@i)eSy}eUiff Fe[[Sy/U.

It follows from these observations that the interpretation [L/41(V;u)[1“V:V) is nothing
but the ultraproduct UL({U(V; U;) =i € I); U).

Let U be an ultrafilter over I and (U; : i € I) a sequence of ultrafilters, with U; over
I;. Let K := X ofl; = Uiel{i} X I; = {<l,]> ciel, je Ii}.

The Rudin-Frolik sum X ; U; is the ultrafilter V over K defined as follows:
XeVe{icl:X)jeUleUss{icl:{jel:(i,j)e X} €U} eU.
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The verification that V is indeed an ultrafilter over K and that 7;[V] = U is trivial.

In the special case where U; = U’ for all i € I, we write U ® U’ (product of U and
U') in place of ¥ yU;; U ® U’ is an ultrafilter over I x I’, for I’ := dom U’.

The relation <gzr on ultrafilters, defined by U <gg V iff V is isomorphic to X yU;
for some (U; : i € I), is called the Rudin-Frolik preordering. Transitivity of
<gr follows from the evident associativity of Rudin-Frolik sums: Given ultrafilters
Vij, (i,j) € K, and V = ¥ yU;, W = XyV;;, we have also W = ¥ yW; where
Wi =Xy, Vi;. Clearly U <gr V implies U <gg V (via U = m[V]).

Let f € VV; we define the function f/I € VY by (f/I)(i) = (f);, where dom(f); C I,
and (f);(j) = f(,)). Also Q(f) :=f/I.

Proposition 4.1 (The Factoring Lemma) (€ is an isomorphism of UL(V; % yU;) and
ULULV U i € 1), U) = ULV u) VD),
Moreover, for h € VY, UN(V;U) E Qi (h) =, tu(h).

Here ¢, is the natural embedding of the universe into its ultrapower modulo «, all
evaluated inside of U/(V; U).

An equivalent formulation of the Factoring Lemma is:
Q is an isomorphism of (UK(V;EUU,-),WT[VU]) and ULUL(V; Uy i € 1);U) =
[ULH(V; )|V,

Proof We first note that, for f € VV, the set {i € I : dom((f/I)(i)) € U;} € U, so
QN e[IVY%/U.

Wehave fi =v o & {()) €K AG)=L0EDEXYU &
{iel:{jel:(fi/DOG) = (HL/DHM} U}t el <

{iel: (/D) =y, (L/DD} U < ULV;U)F Qf) =4 Af2).

A similar calculation shows that ) preserves €.

To show that € is “onto”, we observe that g € [[ VY /U implies that U-almost
everywhere g(i) is a function with domg(i) € U;. We let f(i,j) := g(i)(j) where
defined; domf € Vand {i € I : (f/D)(i) =y, g())} € U, so ULV, U) E Q(f) =, g.

For h € VY, mi(h)(i,j) = h(i) for all i € domh € U, j € I;. Hence QU7 (h)) =
(¢y,(h(i)) : i € domh) where €y,(h(i)) is the constant function on /; with value h(i).
This implies that U4(V; U) F Q(7y(h)) =, £,(h). m]

Proposition 4.1 gives an easy proof of an important fact.
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Proposition If U <gr V and U is k-good, then V is x-good.

Proof According to Chang-Keisler [6], the ultrafilter V over the set K is x-good
if and only if Ul((2A; ; : (i,j) € K);V) is k-saturated, for all structures 2; ; in any
language with less than x symbols. By the Factoring Lemma, this ultraproduct is
isomorphic to UL((UL((R; j :j € 1;); Uy) = i € I); U), which is k-saturated when U is
K-good. a

The interpretation UA(V;U) satisfies ZFC; consequently, Corollary 3.9 holds in
ULV; U) and UL(V; U) E “UL(V;u) = STP”. By Proposition 1.4, [U1(V; u)|44V:V) =
ST? and, in view of the isomorphism provided by the Factoring Lemma, we have
VY, =y, €y, m[VY]) E ST?. On the other hand, as for any ultrapower, we have also
(VV,=v, €v,Sy) F ST, where Sy = ty[V].

The point is that the repeated ultrapower has two candidates for a “standard universe”.
We consider the interpretation (VV, =y, €y, &y[V], WT[VU]) for the language with €
and two unary predicates, sty and st;, with sty(x) interpreted by “x € €y[V]” and st
by “x € ﬂ]“[VU]”. This interpretation satisfies STy A ST, where STy and ST; are
obtained from ST by replacing st with sty and st;, respectively.

We now work in STy A ST} and let Sy := {x : sto(x)}, S; := {x : st;(x)}. For
a € A € Sy there is the ultrafilter Vg 4 € Sp such that

(VX € P(A) N Sp)(X € Vo, < a € X),
and the ultrafilter V[L 4 € Sy such that
(VX € P(A) N SNX € V), < a € X).

We have a € Sy iff Vg 4 1s principal, as well as a € Sy iff V;’ 4 1s principal. Also,
[0V, Vg A)]‘SO is isomorphic to (Splal, =, €,Sy), the least €-elementary extension
of Sy containing a, and [UAH(V; ViA)]S1 is isomorphic to (Si[a], =, €, S), the least
€-elementary extension of S; containing a. Trivially, So[a] is closed under shy, and
Si[a] is closed under both shy and sh;; but we need a finer result.

Proposition 4.2 (STy A STy) Sp[[a]] := So[<Vi’A,a>] is the least € -elementary
extension of Sy containing a and closed under shy and sh .

In particular, it is independent of the choice of A. However, it is crucial that A € Sy,
although the notion of Vi 4 1s defined forany a € A € §;.
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Proof Trivially, So[[a]] O Sy is closed under shy. We prove that it is also closed
under sh; .

Let BA be the set of all ultrafilters over A, and V! := VJ,A; (Vi a) € BA x A € Sy.
For X € P(BAxA)NSy, (Via) eX wae X))y & Xy € VI & {VI}xX)p €
Wyi ga ® V1. We conclude that V(lvl,a>,,8A><A =Wy gy ® Ve Sollall.

For every x € So[[a]] there is f € Sg such that x = f((V!,a)). Let B := f[BA x Al;
B € Sy, and by Proposition 3.5, V| 5 = f[V<lvl7a>7 gaxal € Sollal]l. The argument in
the proof of Proposition 3.6 is easily modified to show that sh;(x) is &€-definable from

V; - and hence (because Sy[[a]] < V) it belongs to Sp[[a]].
If S < U,a € U and U is closed under sh;, then VJ,A = shl(W[LA) € U and so
Sollal]l € U. a

The sequence <V; 4,a) is (essentially) an example of what, in later sections, we call
the pedigree for a over A.

The product of a finite number of ultrafilters is of course defined inductively.
Definition 4.3 Let Uy,..., U, be ultrafilters over I, ..., I,, respectively.

®?:1 U; .= {{0}}, ®3:1 Ui :=U,; and, forn > 2, @, U; is an ultrafilter over
I x ... x I, defined by

n n
Xe QUi e {ir: {{iz,....in) : {i1,02,-..,in) € X} € Q) Ui} € Uy

i=1 i=2
&', U; isisomorphic to U; ® Q'_, U;, viathe map (xy, ..., x,) — (x1, (x2,...x)).
fU =...=U,=U,wewrite @;_, Ui as Q" U.
If d = {s1,...,s¢} € {1,...,n}, we define the canonical projection m; = 7, g, :

11 X, Xln —>IS| X, Xlsk by 7Td(<i1,...,in>) = <is1a- . .,isk>; 7T0(<i1,...,in>) =0.
It is easy to verify that 74 is a morphism from U; ® ... ® U, to Uy, ® ... ® Uy, (see
Section 6 for more general results).

By repeated appeals to Proposition 4.1 one can construe U{(V; Q'_, U;) as n-times
repeated ultrapower of the universe. But, for the construction of interpretations of
relative set theory, we need even “transfinite repetitions” of the ultrapower construction.
Here we give the simplest example, as a motivation for the general theory of such
repetitions that is developed in the subsequent sections.

Let U be a nonprincipal ultrafilter over w and let V := ¥y Q" U. Each ®" U is

an ultrafilter over w”, hence V is the ultrafilter over K := (J,c,{n} x w" defined by

Journal of Logic & Analysis 1:8 (2009)



28 Karel Hrbacek

XeVe{new: X, € ®"U}L € U. By the Factoring Lemma, UL(V; V) is
isomorphic to [UA(V;u)[“V:V) for u = (R" U : n € w). We note that ULV; U)
“u = ®d ty(U)” where d := Id,, is a “hyperfinite integer”: Id,, €y ty(w), Id, #u
ty(n) for any n € w. The interpretation can thus be viewed as an ultrapower repeated
a “hyperfinite” number of times. This idea is presented in full generality in Sections 6
and 7.

S Limit Ultrapowers and BST.

Many realizations of the nonstandard set theory ST are not (isomorphic to) ultrapowers
of the universe. They turn out to be (isomorphic to) limit ultrapowers of the universe,
if this concept is defined in sufficient generality.

Let (D, <) be a directed preordering [that is, (Vd € D)(d < d), (Vd,d',d" € D)(d <
d Nd <d' =d<d"),and (Vd,d c¢D)3d" eD)yd <d" AN d <d").

Furthermore, let U = (U : d € D) be asystem of ultrafilters, and ¢ = (¢g 0 : d < d')
be such that, for all d < d/, d)d,d’ #£0, pe gbd,d/ = @: Uy — Uy, p, QO, € ¢d,d’ =
¢ =u, ¢,and ¢ € pga, ¢ € g implies o' =y, ¢" for some " € ¢z,
for d < d' < d”. We refer to this data as a directed system of ultrafilters.

This data induces a system (U¢t(V;Uy) : d € D) of interpretations, and a system
O = (Pyq : d < d') of morphisms @44 : UKV Ug) — ULKV; Uy) [that is, €-
elementary embeddings that commute with the natural embeddings: ®4 4 oty, = ty,, |
suchthatd < d' <d" = (bd,d” = (I)d/,d” O(I)d,d’ ; namely, (I)dﬂ/ = @* forany ¢ € (bd,d/ .

As we do not assume Global Choice, it is not in general possible to choose a unique
representative g o € ¢q,4 - However, in most applications such choice is possible. In
any case, we use ¢q 4 as notation for a generic element of ¢ 4 .

A limit ultrapower of the universe LU/(1(V;U, ¢) is the direct limit of this system.

A concrete description of the direct limit as a union of ultrapowers can be given as
follows. Without loss of generality we assume that dom U;Ndom Uy = 0 for d # d'.
(Replace 1; by {d} x I; and Uy, by its image under the mapping x — (d,x).)

We define f € V* iff (3d € D)(f € VY); thatis, V* = |J,ep VY. For f € VY, g €
VUd, , f _* g iff (Eld” c D)(d < d' ANd < d" A (bd,d”(f) :U,l, (pd/,d"(g)); similarly
for €*; f € S*iff f =" £y, (x) for some x € V; LUV, U, ¢) := (V*,=*,€*,5%).
We also define @ . : VYe — V* by Dy .(f) = f [ie, @y« is the inclusion of Vi, in
V*],and £: V — V* by €(x) = £y(x) where U = U for a fixed d € D. Note that
d<d = ®;, =y, 0Py, [thisamounts to f =* @, +(f), for f € VU],
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Proposition 5.1 LU /t(V;U, ¢) is a realization of ST.
Foreachd € D, ®,4,: U(V;Uy) — LUIKV; U, ¢) is a morphism.

Proof First we show that ®,, is an embedding. For f,g € VY and d < d",
f=uv, & ® Paa(f) =v, Paa(g,sof =y, g & f="g. Similarly for €.
f €ty V] & f € S*is immediate from the definition. It is straightforward to verify
that =™ is a congruence. ®,, commutes with the natural embeddings: for x € V,

Bx) = By, () =" By, (x) = P (by, (1)).

A well-known argument by induction on complexity of formulas shows that g4, is
€-elementary (hence, a morphism). The nontrivial case is when LUH(V; U, ¢) F
GP(fi,- . fe,8), for fi, ... .fr € VY. We take d’ > d such that LU(V; U, ¢) E
Pfi,... fr,g) for some g € VUr. As f; =* &,y 4(f;) and =" is a congru-
ence, we have also LUV, U, ¢) F P(Pqa(f1),--., Paa(fi),g). By the induc-
tive assumption then UV Uy ) F P(Pga(f1),--., Paa(fi), 8), ie, UlL(V;Uy) F
FOP( @0 (f1)s- -, Paar(fi),8). As @44 is €-elementary, we get UIH(V;Uy) =
FOP(fr1s- - Sk, 8)-

ZFC holds in (S*,=*,€*), which is isomorphic to (V,=,€) via £. Boundedness
and Inner Standardization hold because they hold in each U¢#(V;U,). Finally, for
fi,- - fc € S* (without loss of generality f; = €y, (x;) € VU< for some d, where x; €
V), LUKV, U, ¢) E PUSA,.... i) & (V,=,€) E Pxi,...,xx) < UKV;Uy) E
P fi, ... f) © UV, Uy E P(f1,....fr) (Transfer holds in Ult(V;Uy)) <
LUKV, U, ¢) E P(fi,-..,fi) (because P4, is €-elementary). Hence LUH(V; U, ¢)
satisfies ST. |

Proposition 5.2 Every realization of ST is isomorphic to a limit ultrapower of the
universe.

Proof (Outline)

Let § := (I, =g, €g, Sg) be such interpretation and let £ be the natural isomorphism
of V onto Sg. Theorem 3.7 holds in & E ST. Hence every x € I, x €5 $(A),
generates (S[x])° = {z €T:3F “z=¥8f)x)" for some f € VA}. There is a
unique ultrafilter Uy 4 over A such that 3 F “8(U, 4) is generated by x over £(A)”, ie,
(VX CA)X € Up & x €5 8(X)).

Also, 3 F “j ga) is an isomorphism of [U/01(V; E(nyA))]S onto (S[x],=,€,S)”. An
examination of this statement in the light of discussions in Section 1 shows that (j x,g(A))%
is an isomorphism of [U1(V; €Uy, 4))]°" onto ((S[x])°, =g, €3, Sg). Also, £ is the
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natural isomorphism of V onto S¥, so it maps U¢t(V; Uy,a) isomorphically onto
eV e(Ux )]

The idea of the proof is to observe that I is the union of the system of classes (S[xD° as
x ranges over [, directed by inclusion, and to construct an isomorphic directed system
of ultrapowers of V.

We let D := {(x,A) : x € I A x €g ¥A)}. For (x,A),(y,B) € D we define
(x,A) < (y,B) & S F S[x] C Syl & (Vf € VA)(Jg € VEXS F £(f)x) = t@)(y).
It is immediate that < is a directed preordering (3 F “S[x] U S[y] C S[{x,y}1”). To
each (x,A) € D we assign the ultrafilter U, 4. Finally, for (x,A) < (y,B) we let
©:=tlo ((jy,E(B))%)_l 0 (ix.ta))” o €. Tt is easily verified that © is a morphism of
ULH(V; Uy ») into ULH(V; Uy ), and hence © = ¢* for some ¢: Uyp — U, 4. We let
®(x,4),(y,8) be the set of all such .

It is now a matter of tedious verification (which we skip) to show that the direct limit
of the system just described is isomorphic to . a

The enormous variety of limit ultrapowers leaves little hope for general results beyond
Propositions 5.1 and 5.2, which characterize limit ultrapowers as being precisely the
realizations of ST. However, we show that there is a realization of ST that is universal
in a well-defined sense, and that this universal realization singles out a particular
nonstandard set theory known as BST.

We use a particular kind of the limit ultrapower construction, known as the iterated
ultrapower.

Let (A, <) be a total ordering, that is, < is reflexive, antisymmetric and transitive in A
and (V9,8 € A)(§ < §'V§ <6). Let (Us : 6 € A) assign an ultrafilter over /5 to each
§ € A. Byreplacing U; by Uj over I := {0} x I5, where X € Us < {0} x X € Uj,
we can and do assume that I5 N I = 0 for § # §'.

We let D := Pgn(A) be the class of all finite subsets of Aj; the inclusion C is then
a directed ordering of D. To each d = {d1,...,0,} € D, where §; < ... < J,, we
assign the ultrafilter Uy := Us, ® ... ® Us, over Ky :=1I5, x ... x I5,; Uy := {{0}}.
Let U:= (Uy : d € D). For d C d' welet g4 be the canonical projection of Uy
onto Uy (see Section 4); let ¢ = ({paa} :d C d'). LUL(V;U,¢) is called the
iterated ultrapower of the universe along (Us : § € A).

Iterated ultrapowers were introduced by Gaifman [9], see also Chang—Keisler [6],
and extensively used by Kunen [26] and others in the study of large cardinals. In
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such applications the ultrafilters Us are usually w;-complete. Our main interest here
is in constructing an iterated ultrapower along a total ordering A that indexes all
ultrafilters. This is easy to do if one assumes Global Choice; such iterations were used
by the author to construct interpretations of nonstandard set theories in [11]. Kanovei
[23,22] employed an observation of Shelah to define such iterations in ZFC; we follow
his method below.

Let x be an infinite cardinal. The set P(x) is totally ordered lexicographically:
for X,Y € P(k), X <Y< X =YV o €Y, where o is the least element of the
symmetric difference of X and Y. Furthermore, the set A := P(k)*" is totally ordered
lexicographically: for o, 3: 2% — P(k) welet a <, 0 < a = [V alp) < B(p),
where p is the least element of {7 < 2" : a(7) # [(7)}.

We let A := |J,.{x} x A, and define a total ordering < on A by: (k,a) < (x,3)
iff K > k' V (k=K AN a <, ). Note the reversal of the order of cardinals!

To each § = (k,a) € A we assign an ultrafilter Us as follows: Us = ran o if ran o is
an ultrafilter over x; Us = {{0}} otherwise. Note that every ultrafilter over x occurs
(repeatedly) as Us for some § = (k, ) € A.

Let M := (V*,=*,€*,S*) be the iterated ultrapower of the universe along (Us : § €
A), and ¢ the canonical embedding of V into V*. According to Proposition 5.1, 9T is
a realization of ST.

The Back and Forth Property is the conjunction of the following two statements in
the { €, st}-language:

(B)
Vx, VU, F)[(ran F € dom U A xMU A x = F(y)) = (VYU = F[V] A yMV)]

(F)
(V0 (VU, V, F)[tan F C domU A xMU A U = F[V]) = Gy)OMV A x = F())].

In particular, B implies that for every y there is a standard V such that yMV (take
U = {{0}}, x = 0). This V is nothing but V, jomv, and so B implies (over ST™) that
Inner Standardization holds, by Proposition 3.6.

By a similar argument, F implies that for every standard V there is y that generates V
(over dom V).

Proposition 5.3 9 satisfies the Back and Forth Property.
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Proof 9k ST, and B follows from ST, as shown in Propositions 3.6 and 3.5.

Let U,V be ultrafilters, U = F[V] and 9 = fM€(U). Fix finite d C A such that
f € VY (recall Uy = Us, ® ... ® Us, where d = {4, ...,8,} in <-increasing order,
and 0; = (k;, ;). Let U be a A\-good ultrafilter over A, for A > rp, |U|, |V|. We fix
ag such that U = Uy o). Let 6 := (X, ap) and d := {6} Ud. Then Uy is isomorphic
to Us ® Uy, hence it is A-good, and UL(V; Uy) satisfies A-Idealization. Of course,
also ULV, Up) F “ST A fMEU) A &U) = EF)[E(V)]”. It follows that there is
g € VY such that U(V; Up E“gME(V) A f = ¥F)(Q)7, ie, ULV, Uy F g € ty(Y)
for every Y € V. Hence 9 F g € €Y) for every ¥ € V, ie, M F gME(V) (and
M E &(U) = L(F)[€(V)]). This proves that F holds in 9. O

Proposition 5.4 (ST + Back and Forth Property) (Normal Form Theorem)
There is an effective procedure that assigns to each {€ -st}-formula P(xy,...,x;) an
€ -formula P*(U) such that, for all xi,...,x; and standard U with (xi,...,x;)MU,
P(xi,...,x) < P*(U). In particular,

P, ..., x) < U x, ..., x)MU A PU)) <
U (xi, ..., x)MU = PU)).

It follows that each P(X) is equivalent to a formula in X 3‘ form: P(xy,...,x) <
(FU)VX)[U is an ultrafilter A (X € U = (x1,...,x) € X A P5(U))], and to a
formula in II$' form: P(xi,...,x) < (VU)SX)[U is not an ultrafilter V (X €
UN <X1, - ,xk> ¢ X) Vv P(U).

The first result of this nature was proved by Nelson [27] for IST (Reduction Algorithm).
Kanovei adapted it to BST in [20] (see also [22]). The formulation of the Normal
Form Theorem given here is due to Andreev [1] (see also [2]), who proved it in BST
with only a weak version of Standardization. The proof below is in [3] (see also [15]).

Proof Let P(xy,...,xx) be an €-st-formula where all free variables are among
X1,...,Xx;. Renaming the bound variables if necessary, we can assume that all bound
variables are distinct from all free variables and from each other (ie, if Q;y; and Oy,
are distinct occurrences of quantifiers in P, then y; and y, are distinct variables).

We proceed by induction on the complexity of P. Let 1 <i,j < k.
(x; € x;)* is the formula expressing “{(ai,...,a) € domU : q; € aj} € U”;
(x; = x;)* is the formula “{(ai,...,ax) € domU : q; = a;} € U™;

(stx;)* is “(Ja) {(ai,...,ax) € domU : a; = a} € U™,
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(PAQYis P NQ°; (=P) is P

(LG, .- x, ) is V) (mr 4k [VI=U A Q'(V)).

(Without loss of generality, we can assume that y is the last variable on the list.)
The Back and Forth Property makes the translation of existential quantifiers work
correctly. a

Corollary 5.5 (ST+Back and Forth Property) (Boldface Normal Form Theorem)
Let P(a,xi,...,x;) be any {€-st}-formula; there is an € -formula Q(a, U) such that,
for all xy,...,x; and standard U with (xy,...,xx)MU,

Va)(Pa,x1, ..., x) & Q(a, U)).
Proof Let Q(a, U) be the formula P*(W, 4 ® U), where A := {a}. |

Kanovei [20] formulated the nonstandard set theory BST (Bounded Set Theory), a
modification of Nelson’s IST.

Axioms of BST:
P, where P is any axiom of ZFC.
Boundedness: (Vx)(3y)(x € y).

Transfer: (Vi ..., x)(P*x1, ..., x0) < Pi, ... X))
where P(xy, ..., x;) is any €-formula.

Standardization:  (VX)(V')(FY)(V)z ey z€x A Pz, X, %)
where P(z, x, X) is any €-st-formula.

Bounded Idealization:
(VO(A[(a € PMA)y)(vx € a) Px,y,A,X) & @F)(W'x € AP, y,A,X)]
where P(x,y,A,X) is any €-formula.

Proposition 5.6 BST is equivalent to ST+ Back and Forth Property.

Proof —
BST includes the axioms of ST .
BST + Inner Standardization:

For any x, there is a standard set A such that x C A (Boundedness, (Union)*t). By
Standardization, there is a standard set a such that, for all standard z, z € a & z €
ANzEXES ZEX. O
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B now follows from Propositions 3.6 and 3.5. (If xMU and x = F(y),let A := dom U,
B := F~'[A], and V the ultrafilter generated by y over B; then U = F[V].)

BST + (V*'k)(k-Idealization):

Let P(x,y,A, R) be the formula “(x,y) € R” and apply Bounded Idealization. O
Proposition 3.12 shows that (V*'x)(x-Idealization) implies F.

—

ST~ + B + Inner Standardization:

As pointed out in the remark after the statement of the Back and Forth Property, B
implies that Inner Standardization holds. |

ST~ + Back and Forth Property - Standardization ([3], Proposition 3):

Let P(z,x,x1,...,x) be any formula. By the Normal Form Theorem, there is an
€-formula P*(U) such that P(z,x,%) < FU)((z,x,x) MU A P*U)). We fix a
standard ultrafilter Uy such that (x, X)MUj. It is easy to verify that, for any standard
zand U, (z,x,X)MU < (Up N m,_k+2[U]) is an ultrafilter A {(w,v,v) € domU :
w = z} € U. Using Transfer we have that, for standard z, P(z,x,%) < (3U)[(Up N
2, k+2[U]) is an ultrafilter A {(w,v,v) € domU : w =z} € U A P°(U)], and the
formula on the right side is an €-formula. O

ST + F & (V*'k)(k-Idealization):

Let R C A x B, A, B standard, and (V*'a € PiA)3y)(Vx € a)((x,y) € R). Let U
be the ultrafilter generated by R over P(A X B). For x € A define S, := {(y,r) €
BXxP(AXB): (x,y) € r}. The collection {S, : x € A}U{BXZ:Z € U} is standard.
The assumptions imply that it has the finite intersection property, so it extends to a
standard ultrafilter V over B x P(A X B); obviously, U = m[V]. From RMU, using
F, we deduce the existence of (y, )MV such that m({y,r)) = R. Then r = R and
(y,R) € Sy, ie, (x,y) € R, for all standard x € A. ]

ST + Back and Forth Property - Bounded Idealization:

Assume that the left side holds. Selection implies the existence of a set B such
that, for every a € PWA, if 3y)(Vx € a)P(x,,A,X), then 3y € B)(Vx € a)
P(x,y,A, X); by Boundedness, we can take B to be standard. Define R := {(x,y) €
A x B:P(x,y,A,X)} and apply r-Idealization to obtain the right side. The converse
implication is easy: by Proposition 3.11,if a € PI"ANS,thena CANS. O O

Corollary 5.7 (Kanovei) BST has a realization in ZFC.
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These results have interesting consequences for model theory of BST. In the rest of
this section we use model-theoretic terminology (Chang—Keisler [6]); in particular, a
model (of ZFC or BST) is a set, has a satisfaction relation, and satisfies all ( formal)
axioms (of ZFC or BST).

Corollary 5.8 Every model M of ZFC can be extended to a model N of BST with
SN =M.

Corollary 5.9 If Ni,N, are models of BST and Ny | SN = N, | SN2 = M, then N;
and N, are L, -elementarily equivalent (where L is the language with €, st and a
name for each x € M). In particular, if also [Nj| = |[N,| = R, then N; and N, are
isomorphic by an isomorphism which is the identity on M.

Proof Define a relation R on N> x N5 by:

(xl, oo xR (63, x7) iff
AU e M[N; E {x},...,.xh)MU A Ny F (32, ...,x2)MU].
(Here (x},...,x}) in the scope of F is understood to be evaluated in the model.)

By Boldface Normal Form Theorem, (x')R(x?) implies that X! and ¥* satisfy the same
formulas of the language £. Back and Forth Property shows that (¥!)R(%¥?) implies
(vy' € ND(Ey? € No)((x!,y")R(¥,y?)) and (V) € Np)3y' € ND((x!, y)R(Z2, y?)).
It is well-known [8] that the existence of such a back-and-forth relation between two
structures implies their L ., -elementary equivalence. |

Corollary 5.10 Every countable model of ZFC has a unique (up to isomorphism)
extension to a countable model of BST.

Corollary 511 If N; £ ST, N, = BST, N; | SNt = N, | SN = M, and also
INi| = |N2| = N, then there is an € -elementary embedding of N; into N, which is
the identity on M.

Proof This is a “one-sided” version of Corollary 5.9. O

Corollary 5.12 (Completeness of BST over ZFC) If T D ZFC is a complete
consistent theory (in the €-language), then T + BST is a complete consistent theory
(in the € -st-language).
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Proof Suppose that T := T+BST+P and T, := T+BST+ =P are consistent
theories. Let Ni, N, be models of T, T, resp., and let M; := N; | SNi (viewed as
structures for the €-language); then M; F T. By the Isomorphism Theorem of Shelah
[6, Theorem 6.1.15] there is an ultrafilter U such that /¢(M;; U) and U4(M,; U) are
isomorphic. We let N; :=UI(Ny; U) and N := UL(Ny; U). Then N, ET;,N, ET,,
so N; ‘and N, are not elementarily equivalent, but Ny [ SNt = M, is isomorphic to
N, [ SN2 = M. This contradicts Corollary 5.9. ]

Our goal in the rest of the paper is to obtain results analogous to those of Sections 2-5
for theories with many levels of standardness.

6 Trees of Ultrafilters.

The ultrapower construction can be repeated any finite number of times, by straightfor-
ward induction. However, the considerations in the subsequent chapters require “hyper-
finite” repetitions: if U is nonprincipal, U4(V; U) has “hyperfinite” or “nonstandard”
natural numbers; ie, there exist v such that Ul(V; U) F “v € B(w) A v # ¥(n)”, for
all n € w; and we have to construct “v-times repeated” ultrapowers inside U4(V; U).
This chapter sets up notation and terminology to support this kind of construction.

Finite sequences are elements of V< :=(J, . V". If t € V", |t = n = domz is
the length of 7. (i) := {(0,i)} is the finite sequence of length 1 with value i. For
t,s € V=¥, the concatenation r ~ s € V<% is defined by

(k) fork < |1;

~ $)k) =
(1290 {sw) fork = 1| +£,€ < |s|

A tree is a nonempty set 7 of finite sequences closed under subsequences (ie, t € T,
k < |t| = t | k € T) and well-founded under 2 [ie, = (If)(domf = w A (Vn €
w)(f [ne DI

The requirement of well-foundedness assigns to each tree an ordinal number, its rank.
To make this explicit, we restate the definition of trees in recursive form.

(0) T = {0} is a tree of rank 0.

(1)If I # 0 and 7; is a tree for each i € I, then T := {0} U J;;(i) ~ T; is a tree, and
rank(T) = sup{rank(7;) + 1 :i € I}.

It is routine to show that the smallest class closed under (0) and (1) is precisely the
class of all trees.
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t € T is a leaf iff it is C-maximal, ie, thereisno ¥ € T witht C 7.
YT is the set of all leaves of T'.

Fort € T let
T,:={s:t~se€T} (thet-branch of T);
[T),:={i:t~ (i) € T} (the t-level of T).

It is clear that 7; is a tree and T = {0} U Uic(py, (0) ~ Ty Also, t € ¥T & T, =
{0} < [T], = 0.

If F is a function with dom F C T, we define F; with domF; C T; and [F]; with
dom[F], C [T], by F,(s) = F(t ~ s) and [F],(i) = F(t ~ (i)), resp. F, and [F], are
“restrictions” of F to the branch 7; and the level [T];, resp.

Similarly, for X C T, (X),:={s:t~s € X} and [X], :={i: 1t ~ (i) € X}.

If # = (i) and there is no danger of misunderstanding, we write T}, [T];, F;, [F]; etc.
for Ty, [Ty, Fiy, [Flyy , resp.
Al'={tln:t€A ncw}isatree,if 0 £ACT.

Definition 6.1 Let T be a tree. A tree of ultrafilters (TOU) over T is a function i/
with doml = T\ X T such that, for each t € dom/, U(¢) is a nonprincipal ultrafilter
over [T];.

An equivalent recursive definition is:

(0) U =0 is a TOU over {0};

(I T = {0} Ul (i) ~ Ti, domU C T, U(0) is a nonprincipal ultrafilter over 7
and, foreach i € I, Z/{<,~> is a TOU over T;, then U is a TOU over T.

We note that the tree 7 is determined by U (1 € T < ¢t € domU V t = 5 ~ (i) for
s € domU, i € domU(s)); we denote it T, if necessary for clarity. Also, U; is a TOU,
for each r € dom/.

The ultrafilter XU over X T is defined recursively.
Definition 6.2 (0) If &/ = 0, XU is the principal ultrafilter {{0}} over X7 = {0}.
(DI T = {0} U (i) ~ Ti,then T = (i) ~ X T;, and for X C X T we let

XexXd < {iEIZ(X)@ GEU@}EU(O)
S {iel:{seXT;: (i) ~s€X} € XUy} € UO).
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Thus X U is isomorphic to the Rudin-Frolik sum of the ultrafilters % ;) modulo U(0),
Yu©)(XU), via the one-one map (i) ~ s +— (i,s). In particular, if rank 7 = 1, XU
is isomorphic to 2/(0) via the one-one map (i) — i of X T onto [T]p.

We reserve letters (p, 1), @ for mappings from a tree to a tree. For mappings denoted
by these letters only, we modify our notational conventions as follows.

Let p :CT?> = T', t € dome.
@, CT? — T ) 18 defined by (1 ~ 5) = (1) ~ @,(s);
[l :C [T?], — [ N is defined by (1 ~ (i) = (1) ~ ([p1:(0)).

We note that ¢,(s) is defined iff p(f) C (¢t ~ s), and [¢],(7) is defined iff p( ~
(iY) = @(t) ~ (j) for some j; when this is the case, [¢],(i)) = .

Definition 6.3 ¢ is amorphism of 2/ to U! (notation ¢ : U?> — U")iff dom ¢ C T?
is a tree, and

1) ¢(0)=0

(ii) for each ¢ € dom o . £ T2, [dom ¢, € U?(?), and either

() p(t ~ (j)) = @(2) for all j € [dom ];, or

(p) [dom o1, = dom[¢p], and U' (p(1)) = [Pl IU2(1)];

(iii) @[X (dom )] C 2T,

We say that ¢ is collapsing [preserving, resp.] if case (c) [(p), resp.] occurs for ¢.

An equivalent definition goes by recursion on rank of 72.

O If T2 = {0}, ¢: U*> = U iff U =0,T! = {0}, (0) =0.

(i) If 7> = {0} U U, () ~ ng), p: U? — U iff p(0) = 0, [dom ]y € U?*(0),
and either

(c) for all j € [dom ]y, @((j)) =0 and ¢ : Z/{<]> — U for all j € [dom ¢], or

(P T' = {0} U U;, (i <> ~ T [dom ]g = dom[ep]y, U'(0) = [¢]o[t4>(0)] and
P Z/l<2].> — t,lo((]> = Z/{w 0 for all j € [dom ¢]p.

Among the easy consequences of this definition are:

(1) For t;,tp € dome, t; C th = @(t1) C (t); ran¢ is a subtree of T'; and
Y (dom¢) C X T2,

(2) Idy is a morphism of U to U.

B)Ifp: U> - U" and y: U' — U°, then P o : U> — U,

(4)If € dom @, then @, : U7 — Uy, is a morphism.

Proposition 6.4 If @: U> — U', then SU' = p[XU?].
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It would be more correct to write X U! = (X TH[X U?]; we take this notational
license here and elsewhere.

Proof By induction on rank of 72.
The claim is trivial when 72 = {0}. Assume that 72 = {0} U Ujes U) ~ T?.

Collapsing case: By inductive assumption, /! = pil% Z/(/-z] forall j € [dom ¢]g. For
Xexu', o 'X] = Uje[domso]o<i> ~ <PJ-71[X] € Y U? because [dom ]y € U*(0)
and each cpj*l[X] € z:uj?.

Preserving case: Then T' = {0} U U, (i) ~ T} and U;(0) = [¢lo[U*(0)]. By
inductive assumption, ZL{;@) = cpj[Z Z/{jz] for all j € [dom¢p]y. For X € su',
X0 o= {iel:X;eSU}eu ) ad o '[X] 2 U{e; [l :J €

[l '[X°1} € SU? because [¢]; ' [X°] € U?(0) and each ;' [(X) (] € SUP. O
Definition 6.5 Let 7', T be trees; the projection 77 7 of T to T’ is defined as

follows:
t ifteTNT,
o r(f) = . y ,
s ifreT~\T,seXT, sCt.

We note that 77 7 is defined on a subset of T in general, even when T C T. Also
note that 7" N T is a tree and 7w 7 = TpAr 7.

Lemma 6.6 Let 7" C T' C T be trees. Then mr» 7(t) = v (7 7(1)) for all
t € T where 7y 7 is defined.

Proof Let 7y (1) = s € T'. If t = s, the claim is obvious. Otherwise, s € X T".
If se€ T’ thens e XT" and 7wy pi(s) = s, t ¢ T" and 7wpv 7(f) = 5. Otherwise,
wpn p(s) =rwhere r Cs, r€ XT". Thenalsor Ct, t ¢ T",so wpn p(t) =r. O

The projection 77 7(f) may be undefined while 77~ 7() is defined. This is the price
we pay for defining projections as partial mappings. If the obvious alternative definition
of 7 as a total mapping is used, 7 may not be a morphism, according to our definition
of morphism.

Definition 6.7 7’ C T is a U -subtree of T (notation: T’ <y, T) iff [T’], € U(¢) for
allte T'\XT.
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The equivalent recursive definition is:
0) T' <y {0} iff T" = {0};

(D) T' sy {0} U U, (i) ~ T; iff either " = {0} or [T"]o € U(0) and T} <y, T; for
all i € [T']p.

We say that 7’ is maximal iff X 7 C X T. If ¢o: U?> — U", then dom ¢ is a maximal
U?-subtree of T2.

If 7" <y T,wedefined | T" =U on T' ST by U'(t) := U®) | [T'];. Clearly
U" isaTOU over T’ and 7y 7: U — U’ is a morphism. In particular, XU | T') =
mp p[SU] I T ismaximal, wp r | 2T =Idsyp and XU [T =XU | BT
Proposition 6.8 (The Factoring Lemma for TOUs)

Let T' <y T; then X sy007/(X Uy) (t ranges over X T') is isomorphic to XU via the
mapping (t,s) — t ~s.

Proof By induction on rank of 7.

(0) If T = {0}, all is trivial [see the first part of step (1)].

(D Let T = {0} U, (i) ~ Ti. I T" = {0}, XU’ = {{0}}, the only value of 7 is
t =0, and Uy = U. The claim is trivial.

Let I’ := [T']yp € U(0), where T] <y, T; for all i € I'. By the inductive assumption,
X U; is isomorphic to X 57/ (X (U;)s) where s ranges over BT}, Ui :=U; [ T/ = U |
'y, and Uy)s = Upy .

We note [see the definition of X U/] that X (U") = Xy (XU/) (i ranges over I');
hence X € XU < {i e I' : (X); € XU;} € U(0) [by definition of XU/ and I € U(0)]
s{iel :{seXT/:(X)s € XU)s} € ZU!} € U) [inductive assumption]
slicl {seXT: Xj~ € XUp~} €U [T} €U0)

S{teXT X, e XU} € XU [let (i) ~s = t;apply definition of X U']. ]
Definition 6.9 For 7’ <y T we define Ay :C X T — w by Ap(1) = |7 7(2)].

We note that dom Ay = X TN 7T]_~,I’T[E T eXU.

Proposition 6.10 Forevery A :C X T — w such that {t € ¥T : \(t) < |t|} € XU
there is T’ <y T with A\p =x;y0 A.

Proof Let7T' :={seT:(Fre X Fn < X)) < |t|] A s=t]n). O
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Definition 6.11 For T/7 T" <u T welet T <u T iff )‘T” <su )\T/, T’ <u T iff
A <ssy A, and T =y T' iff Ao =x00 Apr.

Thus 7" <y T' iff {t € T : wpr 7(t) C 7 7(1)} € XU, and similarly for =.
Also, T' =y T iff T' is a maximal I/ -subtree of T. Another useful observation is:
T" <y T iff either T =, {0} or {i € I : T/ <4y, T/} € U(0). It is now easy to
verify that, for 77 = T, this definition agrees with <, as defined in 6.7.

The relation =/ is reflexive, transitive and total. Also (T <y T' and T" <y T") iff
T =y T",and T" <y T' iff (T" <¢¢ T' and T #4 T).

Proposition 6.12 If T, T" <y T, then T" N T' <y T, and also T" <y T' iff
T AT =, T" ift T" N T <y T'.

Proof For the first claim, t € (T" NT) X (T" N T') implies t ¢ XT',t ¢ X T", so
[T € U@, [T"), € U(®) and [T" NT'); = [T"]; N [T']; € U®).

Next, let A := dom Ap» Ndom Ay» € XU . The chain of equivalences follows from the
observation that, for t € A, Apuqr () = min{ A7), \p# (1)} .

Proof Let for example A (1) < Ap/(¢); then s" := 7wy 7(1) € BT, 5" := 7wpn 1(t) €
YT" and s C s'. Hence s € T" NT', in fact, s € X (T" N T'). We conclude s’/ =
WT”HT’,T(I) and Apvqpe(t) = ’S”| = min{|s’], ’S”|} = min{)\T/(t), )\T//(t)}. O O

Proposition 6.13 Let 7', 7" <y T; then T" <y T' iff wypn ot U — U

Proof Let 7 := myv . If 7 is a morphism of U’ to U”, then A := X (dom ) €
YU Let B := ﬂ;,lT[A] € XU. By Lemma 6.6, for t € B, wp» (1) = w(mwy 7(1)),
s0 Ay (1) = | p ()] < |7 7(6)] = Ar/(1), and we conclude that A\pr <s.yy Agv.

If 7" <y T', we verify the requirements for 7 to be a morphism. From the definition
of projections, dom 7 is a tree, 7w(0) = 0, and 7 € X (dom =) implies w(f) € X T".
The key is to verify (ii). Let r € dom#w ~ X 7T'. If r € T ~\ X T”, then [dom ], =
[T"], N [T']; € U(t). Also [=x], is the identity on [dom 7r];, so (p) holds. Otherwise,
s:=m(t) € XT". Then [dom =], = [T'], € U(¢) and 7 (t ~ (j)) = s forall j € [T],,
so (c) holds. O

Proposition 6.14 Let ¢: > — U' be a morphism.

(a) If Zl <y T', then zz = go:l[ffl] <2 T2,
(b) If T? <2 T?, then T! := [T?] <0 T'.
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Proof (a) Let ¢ € T2 < ©T2; then there is jo such that  ~ (o) € T2 C dom .
Hence [dom ], € U?(¢) and either

(c), in which case @(t ~ (j)) = @(r) € T" for all j € [dom ), and [dom ], C [T2];,
SO [7"2], € U*(t); or

(p), in which case [dom ¢]; = dom[¢p]; and [¢],: dom[p]; — [T! ]¢(t) In partlcular
Pt ~ (lo)) = () ~ (ip) € T', hence (1) ¢ ET" and C = [T'lyr € U D),
D =[] '[C] € U%(r), and D C [T?];, so again [T2), € U%(r).

(b) Let s € T' ~ ©T'; then there is iy such that s ~ (ip) € T'. Let ¢ € T? be
such that (') = s ~ (ip); we then can find ¢, jy such that 1 ~ (jo) C 7, ©(1) = s,
@(t ~ (jo)) = s ~ (ip). This means that r € T> \. £ T2, so [T?], € U*(?), t € dom ¢p,
and case (p) occurs at ¢, so D := [dom ¢];N [Tz], € U%(t), hence C := [el:[D] € U(s)
and C C [T"];. We conclude that [T'], € U'(s). O

Corollary 6.15 (a) If T' <, T', then o~ '[T"] <42 o '[T"].
B)IFT' <0 T, then ' [T'] <2 ' [T].
(c) If T? <2 T2, then cp[/fz] <yt <p[T2], but (c) may fail if < is replaced by <.

Clearly T := {0} < T’ forevery T' <y T. If T' %y T, the function \(f) :=
A7/(t) — 1 is defined XU/ -almost everywhere, and there is a U -subtree 77 of T such
that A\ =xyy A (Proposition 6.10). We say that 7" is a predecessor of 7"’ (in the
preordering </). Indeed, T" <y T', T' #y T', and if T" <y T, then either
T" <y T or T =, T".

Analogously, if " Z£,; T, A1) := A\p(£)+ 1 < |f] holds X U -almost everywhere, and
there is a U/ -subtree T, of T such that A =su A. We say that T’ is a successor
of T'; indeed, T <y T, T' #y T, and if T" <y T" then either T, <y T" or
T” =u T/.

It is also clear that (77.)4 =y T’ and (T',)— =y T’, as long as all these trees are
defined. In particular, TV := {0} U {(i) : i € I} <y T’ for every T' #y T, and
T =, TSS) is a successor of 7. For V) .=y | TV, SUD is isomorphic to U/(0)
via the map (i) +— i. Hence Ut(V; X UD) is naturally isomorphic to U(V;U(0)),
and we sometimes identify these two interpretations in order to simplify notation.

We conclude this section with a result showing that morphisms are uniquely determined
by their behavior on leaves.

Proposition 6.16 If @, v: U> — U and p | X T? =52 @ | L T?, then there is a
maximal tree T <y T? such that TC domepNdomp and p [T = [T
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Proof By induction on the rank of 72 it is easy to show that for every S € X {* there
is a maximal T <2 T2 such that 3T C S. Now let S := {r € £ T? : (t) = (1)}
and consider the corresponding 7. We prove that ¢(s) = 1(s) forall s € T.

Assuming the contrary, fix s € T of minimal length such that ¢(s) # 1 (s); without
loss of generality ¢(s) C 1(s) [note ¢(s),(s) are compatible, because p(s) C
@) = YP() D P(s), forsome t € X T]. Then s is collapsing for ¢ and preserving for
P, ie, (s ~ (i)) = (s) forall i € [T1s, while U (2p(s)) = [4];[U2(s)]. For every
i € [T], thereis s D s ~ (i) preserving for ¢ [otherwise, for s ~ (i) C r € »T,
() = @(s) C P(s) C (). Fix ir,ir € [Tl such that [3](i1) # [4],(i2), and
s' D5~ (i), s D s ~ (i>) of minimal length preserving for . Now [¢p]y [LU>*(s")] =
U (p(s)) = [l [U(s")]; so there are i, i, such that [p]y (i) = [@lw (@) =: j; ie,
s ~ (1) = 96" ~ () = @) ~ ). Let? 25 ~ (i), 1 25" ~ (i),
/¢ € XT,and let k := |p(s)].

On one hand, ¢() = p(s' ~ {4k =j = p(s" ~ () = @(")r. On the other

hand, ¥ () = (s ~ (i1)k = [Y]G1) # [P)(i2) = P(" ~ (i2)) = P(");. But
o) = (7)), (") = ("), a contradiction. O

Corollary 6.17 If ¢: U — U, then there is a maximal tree T <y T such that
T Cdomey and @(t) =t forallt € T.

Proof Proposition 6.4 asserts that ¢ [ 3T is a morphism of XU to X U ; from this,
@ | 2T =xy Idr | X T follows by the theorem of Katétov. m|

7 Stratified Ultrapowers.

Every TOU U has an associated ultrafilter > ¢/ over X Ty;, and hence an associated
ultrapower UL(V; X U).

The universe of this interpretation is the class V> of functions defined ¥:2/-almost
everywhere, and = and € are interpreted by =x;; and €xyy, resp.

If p: U?> — U' is a morphism of TOUs, then ¢ | X T? is a morphism of ul-
trafilters. For f € VEU we let ©*(f) = (¢ | ST*(f) = (f o w | Y72
@ UKV S UY — ULV £ U?) is a morphism.

If now 7" <y T and U’ := U | T, the projection 77/ 7 is a morphism of XU
onto XU, and hence induces an elementary embedding 5 o of ULV, YU into
ULV; X U), defined by ﬂ;/’T(f) =(fompr) [ XT,forf € VEU" More than that;
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foru:= (XU, : 1 € XT'), ULV;ZU") E “u is an ultrafilter”, and, by Propositions 4.1
and 6.8, ULV SU), w5, [VZU']) is isomorphic to [U(V; u)44V=UD Tt follows
that UUA(V; 2 U), w’},’T[VE U’]) is an interpretation of a nonstandard set theory satis-
fying all the axioms of ST. In particular we note that there are many ways in which
the standardness predicate can be interpreted so that ST holds, one for each 7" <, T';
the universe of UL(V; X U) is stratified into multiple levels of standardness. We use a
binary predicate T, to describe this stratification.

To simplify the notation, we “identify” f € V=Y" with wr r(f) € V>¥ when there
is (hopefully) no danger of misunderstanding. This allows us to regard V=" as a
subclass of VZ¥: for g € V=Y the statement “g € V=4'” is to be interpreted as
“there exists h € V=U' such that 7r§,7T(h) =y g’

Definition 7.1 For f, g € V> we define:
fCug iff (VT <y Dlg e VP = f e VU],

It is clear that Ty, is reflexive and transitive. It is also total: (Vf,g € V=U)(f Ty
gV gLulf).

Proof Suppose that neither f £;; g nor g Ty f holds. Then there is 77 <y T such
that g € VU Af ¢ V=U' andalso T” <y T suchthat f € VZU" Ag ¢ VZU" _ Either

T <y T" or T" <y T'. In the first case, T i(8) € V=" | and hence (Lemma 6.6

and Proposition 6.13) 77, 1(g) =su ™5 (7 11(8)) € V=U" | a contradiction. The

second case is similar. O

Interpretations (UA(V; X U), Tyy), that is, (VY =xyy, €x14, Exy), for the {€,C}-
language will be called stratified ultrapowers of the universe and denoted U¢t(V; ).

Proposition 7.2 For every f € V>Y there is a unique (modulo =y, ) tree T(f) <y T
such that, forall T' <y T, fe V" < T(f)<u T'.

Proof By induction on rank of 7.
OIKET=T9, T(f) :=TO.
(DI T = {0} U, (i) ~ Ti, we distinguish two cases.

@) f =sy Exy(c) for some ¢ € V. Then T(f) := T again clearly works.
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(b) Otherwise, we let Iy := {i € I : domf; € XU;} (note Iy € U(0)) and use the
inductive assumption to choose, for each i € Iy, a particular T(f;) <u;, T;. We let
T(f) == {0} UUie; (i) ~ T(f); clearly T(f) <¢ T and f € VEUro,

Assume f € VEU' for some T’ <y T. Then T© < T’ because f #sy Exu(c)
for any ¢, and I’ := {i € Iy : f; € V*U} € U(0). By the inductive assumption,
T(f;) <y, T! fori e I'. Hence T(f) < T'.

Conversely, assume T(f) <y T’ <u¢ T. Then T <y T and I' := {i € Iy :
T(f;) <u, T/} € U(0). By the inductive assumption, f; € VEU forall i € I', and
hence f € V3¢’ a

Corollary 7.3 (a)f Ty g © T(f) <y T(g), forall f,g € V>,

(b) Let Dy(f) =t forall t € X T', where T' <y T; then T(D7/) =y T'.

(c) Let Epi(t) = 1, for all t = (tg,...,t;) € ST, where T <y T' <y T; then
T(ET/) =y T.

Proposition 7.4 Let ¢: U> — U'; then T(*(f)) =2 (¢ 'U(T()_1), for any
fe VEU' such that T© < T(f).

Proof Let f € VEU' TO <\ T(f), and T(f) <¢n T'. Let U(f) := U | T(f).
The fact that f € V>U()) means that there is a set X € XU such that, for .7’ € X,
Trnr () = () = () = f@). Let T := (o~ '[(T(f)-1)1 and U :=
U | T. We note that T(f)_ <1 T(f), s0o ¢ '[T(f)-1 <2 @ 'UTOL, T <2
@ '[T(f)]is defined, and Z := {s € ST : A1y 1 < Mgy} € SU. Let
Y = ¢ XN W{ITZ[Z%] NZ;thenY € SU*. If §',s" € Y and 5 := TFT7T2(S/) =
W?,T2(S”)’ then s = s ~ (j) for some s € o '[(T(f))_]. Hence ¢(s) € (T(f))— and
@(5) € T(f). Also @(5) = mr(p,1((sN) = Tr(p), 1 (P(s"). As p(s), p(s") € X,
we have f(¢(s')) = f(e(s”)). This proves that @*(f) = (fo @) | X T? € V=¥ e,
T(*(f) < T

Now assume that T(¢*(f)) <2 T; then T(p*(f)) <2 T— = @ '[(T(f))_]. Hence
there is a set Y € SU?, Y C w%ﬁlsz[E T_], such that ¢,¢' € Y, 71'?77T2(t’) =
w5 (") = fle) = f(e("). By the Factoring Lemma for TOUs, there is
Y € U 7“,) and for every ¢ € Y a set Y;E 2 U7 such that~U7€?7 ~¥KCY.
[We note in particular that Vv/,v"" € ¥; = f(p(t ~ V') = f(p(t ~V")).] The set
X :=@[Y1€eXU"' | T(f)_). Forevery 5 € X pick one € Y such that 5 = (1),
and let X5 = o;[F5]; X5 € EZ/{E]. Hence X = ;55 ~ X5 € LU Let
s~u,s ~u" € X. Fix v,/ € ¥; such that u' = ¢;(V), u” = ¢;("). Then
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Seu=p(t~V), s~u" =@t ~V)and f(5 ~u') = fle(t ~V)) = fle(T ~
V) = (5 ~ ). Hence f € VEU'ITN) e T(f) <y T(f)—, a contradiction. O

Definition 7.5 ®: VEU' — VEU g a premorphism of U(t(V;U") to ULHV;U?)
iff ® is a morphism of UL(V; SUY to ULV ZU?) and P preserves L, ie,
T g < B(f) Tye D(g) holds forall £, g € VEU',

Proposition 7.6 If ¢: > — U', then * is a premorphism of Ut(V;U") to
ULV U?).

Proof Propositions 6.4 and 2.4 show that ¢* is a morphism of U/(V;XU) to
ULV; X U?); we have to prove that (o* preserves L.

If T(f) =,p T, then f =5, £i(c) for some ¢ € V, so @*(f) =52 £2(c) and
T(p*(f) =2 TY. Both f Ty, g and *(f) Ty, *(g) hold for all g.

So let us assume that 7@ <0 T(f). If f Ty, g, then T(f) <y, T(g), and 7O <y
T(g); we get T(f)— <u, T(g)—; hence, using Corollary 6.15(a), cp_l[T(f),] <u,
@ '[T(g)_1; and, applying + and Proposition 7.4 on both sides, finally T(*(f)) <2
T(¢*(8)), ie, *(f) Tye 0™ (8)-

The same calculation shows that f [, g implies @*(f) Ty ¢*(g) (use Corol-
lary 6.15(b) in place of (a)) and completes the proof. O

We already used the Factoring Lemma, Proposition 4.1, as a motivation for the intro-
duction of C. We now want to show that factoring preserves C. First some notation.

Let U be a TOU over T and let T" <y T. We define T/T" and U/T': ¥ T' — V by
(T/TH@) :=T;, U/T)@) := U,, and note that UL(V;XU") E “T /T’ is a tree and
U/T" isaTOU over T/T'”. [Recall that terms with the leading symbol / are evaluated
in the ambient set theory, and need not be underlined.] For f :C X T — V we define
f/T: ST — V by (f/T")(t) = f;. [Recall that f; is defined by fi(s) = f(t ~ s5); we
have f; :C X T, — V here.] Finally, we let Q(f) := Qg () :=f/T’, for f € V=Y,

Proposition 7.7 (The Factoring Lemma) €2 is an isomorphism between
ULV U, VEU) = (VEU =gy, €xy, 3 p[VEU]) and

ULULV;U) € ST, S U = [UHY; U/ THHEVEUD,

Moreover, ULV S U') F “Qmr 17(8)) =5 /1) Es wiyrn(8) " forall g € yEU
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We stress that here €5/ is to be evaluated in Uy, U, ie, ULV; XU E
“Es;w/17)(8) is a constant function on Y (T/T') with value g”, ie, if UU(V;ZU") &
Eswy/ry(8) = f, then {t € BT : f()(s) = g(t) forall s € X(T)} € TU'. We
summarize the “Moreover” part by saying that “$) is the identity on V> U

Proof This is Proposition 4.1 for U =XU', I =XT',U;=XU, fori=te€l. O

The isomorphism €2 in the Factoring Lemma takes V= the “coarsest level of stan-
dardness” of the ultrapower UL(V; X U), onto the “coarsest level of standardness” of
UV, 2 U/T ))JUAV:E U") | Our next task is to show that the ordering C of the “finer
levels of standardness” is also preserved by 2.

For T" <y T" <y T welet T"/T' :C ¥ T" — V be defined by (T"/T')(t) = T/,
whenever t € T”.

Proposition 7.8 ULV XU E T" /T <y T/T'. Ifalso T' <y T" <u T, then
T" <y T" iff ULV, SUYET" )T <0 T"T.

Proof These are easy consequences of the definition of <;;, L.o§ Theorem, and the
Factoring Lemma for TOUs, Proposition 6.8. |

Proposition 7.9 For f ¢ VU ULV, SU'Y E T(f/T") =y T(f)/T'.

Proof Let 7”7 := T(f); we have T <y T". Also, f =xy 7y (g) for some
g:CXT" — V. Then {t € XT" : f; =sy, ﬂ';{,,’Tt(g[)} € DU and ULV, SU') E
“fIT =y Tr;,,/T,J/T,(g/T’)”. (Here = is evaluated in U(V; X U").) We conclude
that ULV; SU'Y E T(F/T') <y T/T

Conversely, assume ULV SU') F “f /T € VT A7 <y T/T'”. Then L := {t €
ST :7(0) <y, Ti} € XU s welet T := (L)) U U, {t ~ s : 5 € 7(H)} and note that
T" isatree, T" <y T" < T, and ULV, XU E “T"JT' = 7. Tt follows easily that
f € V¥ hence T(f) s T" and ULV S U E “T()/T <y T"/T' =77, O

Corollary 7.10 Forf,g ¢ V2| £ Ty g iff ULV SU') E Q) Ty i U8).

Proof f Ty g iff T(f) <u T(g) iff UV;SU) E T(N/T' <uyr T@)/T iff
ULV EUNY ETT suyr T(g/T') iff ULV SU') E Q) Sy Ug). O
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In order to summarize these results in a compact form we define a relativized version
of C:

fCung iff fCuhV fCyg, forf g he V=¥
The Factoring Lemma and Corollary 7.10 combine into the following key theorem.
Theorem 7.11 (The Factoring Theorem)
Q7 is an isomorphism between (UL(V; X U), Eyy.p.,) and

UI(UUV; S U, Ty) 1t € ST, S U = [UV; U )T HEVEUD
which is the identity on yEU

Finally, we show that factoring commutes with ¢*.

Theorem 7.12 (The Factoring Theorem for Morphisms)
Given ¢ U?* — U" and T? <2 T?, let u? = u? T2, T' = p[T?],
U :=U' | T, and g := ¢ | T2. Then
() ULV;U) E “o/T*: U*/T> — *U"/T")” and
%) ULV U E “(/TA* . ULV U T?) — UV " U /T
Forall f € V>4 " also
(%) ULVUP) E Qg (5 =y 2 (/T @ Q1 10 (O
ie, the following diagram commutes.

Q

ULV SUD), Eynp) ~— L

[Z/{fl‘(V, uZ/T2)]U€(V;I]2)
¥ [(p/ T2 V40 o

ULV U, Curip,y) BELL VNN [Mﬁt(V;LlVTU]“aVﬂU
The * in (@/T2)* is here to be evaluated in UL(V;U?) !

Proof From Definition 6.3 we get immediately that ¢ : U> - U'. Fort e T2 N
dom € TU> wehave @™ (U /T') 1) = U" /T p(1)) = Uy, and @, : U — Uy,
is a morphism. This is precisely the meaning of (*).

(**) follows from (*) by Proposition 7.6, which is satisfied in U4(V; ZP).

Finally, for 1 € Y72 Ndom € SU% and s € £ T2 € S U2, Qg0 12 (P (@) =
P (i) = @ ()t ~ 5) = flept ~ ) = f(@®) ~ ¢,(5) = for(p(s)) and
(/T (@" (1 1y INDI) = @@ (f/THDN) = @ (f/THp)(s) =
7 (fo)(8) = fio(1)(p:(s)). This proves (**%). o
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8 Elementary Relative Set Theory.

Our goal in this section is to axiomatize stratified ultrapowers of the universe, in
imitation of Section 3. Stratified ultrapowers are interpretations for the {€,C}-
language; therefore the desired theory SST is formulated in this language.

We define S, := {x : x C a}, the class of sets at level «, or «-standard sets;
V= {x: x = x} is the class of all sets. In particular, So = {x : x C 0} is the class of
all standard sets, and the unary predicate st is defined by: st(x) iff x C 0.

The axioms of SST are:

C is a total preordering of V with a least element O;
Vo) (V,=,€,S,) EST].

Explicitly:

Relativization:

M) Cx); (V6,00 CEy AyCz=xC2); Vx,y)xCy V yLCx); (V)0 LC x).

ZFC for S,: (Ya)PS, where P is any axiom of ZFC.

Transfer from/into S,: (Va)(Vxi, ..., x € So) (P (x1, ..., x0) < P(x1, ..., %),
where P(x1,...,x) is any €-formula.

Inner Standardization into S,: (Va)(Vx)(3a € S,)(Vz € Su)(z € a & z € x).
Remarks We use Greek letters «, 3,y as variables over sets when we are interested
only in their level of standardness.

In terms of the levels S,, the Relativization Axiom states that (Va)(aw € S.),
(Va, B)(a € Sg = Sa € Sp), (Va, B)(Sa € SV S C Sq), and (Va)(Sp C Sq).

It suffices to postulate ZFC for Sy. Indeed, an axiom P of ZFC has no free variables,
hence P implies P, by Transfer from Sy, and P implies P>, by Transfer into S,
In particular, SST implies ZFC.

The set a in Inner Standardization is uniquely determined by x and a; we denote it
sh,(x) and call it the «-shadow of x.

Proposition 8.1 U//:(V;U) = SST, for any TOU U .
Moreover, it U(t) is k-good for all t € domU and Ult(V;U) E “a C (B for some 37,
then UH(V;U) E (k-Idealization)S> .
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Proof The fact that T;; has the properties required by Relativization is pointed out
following its definition 7.1. Let T' := T(f); by Corollary 7.3 then g Ty f &
T(g) su T(f) & g € ™}, ;[VZ"']. By Factoring Lemma, UL(V;U), w5, [[VZH'])
is isomorphic to [ULH(V; X (U /T’ NHAVEU) = ST (Corollary 3.9 and Proposition 1.4).
So ST relativizes to every level of Ult(V;U).

Let 7’ := T(f) <y T;under the assumptions of x-goodness, UL(V; X U") E “XU/T')
is tx(k)-good”, hence ULV, XU E “Ult(V;U/T') E k-Idealization”, and there-
fore ULH(V;U) E (k-Idealization)™ . O

More notation:

Wewritex CyforxCy A m~yCx,andxHyforx Ty A yCx.
XEuyiff *cCaAyCa) VxCyiffxCa VxCy.

x Cqo y and x H, y have the expected meaning.

Wenotethat xC, 0 & xC o & x € S, s0 Ty, is a “relative” version of T, where
S rather than Sy is taken as the coarsest level of standardness, and the finer levels
remain unchanged.

If P is any €-C-formula, P“ denotes the formula obtained from P by replacing
each occurrence of C by C,,.

Proposition 8.2 (SST)

IfBC a,then (xCgy)* & xCyy. IfalC 3, then (x Egy)* & xCgy.

If P is an €-formula, then (P5*)8 < PSe if 3 C « and (P5*)° < PS8 if a T 3.
In particular, (Vxy, ... x)POUxr, . x) & P, X))

Proof xCpy)* e @ELVIEY) S @xE,B8VxEay e xEa VL
VxC aVxCy). Thisisequivalentto x C, yif 5 C o, andtox Cgyifa & 3. O

Definition 8.3 A set L is a level set iff L is finite, C[ L is a set and (Vx,y € L)
(xBy = x=y). It follows that C| L is a well-ordering.

For each level set L # 0 there is a unique sequence (x, : n < v) (v € w) such that
L={x,:n<v}andformn<v,m<n<&x, Cx,; wecal (x, :n <v)
a sequence of levels. In Section 10 we study in great detail particular sequences of
levels, called there pedigrees.

Strong Support Principle: Let P(X) be any €-LC-formula.
For every X there is a level set L such that (Va)[P*(x) & (36 € L)(« B 5)].
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Theorem 8.4 U/(1(V;U) satisfies the Strong Support Principle.

Proof Without loss of generality we assume that P has one free variable. It suffices
to prove:

For every x there is a level set M such that

*) V)P ANa30< (30 € M)(aBP)].

We then let L := M U {0} if P°x) (< P(x)) holds; L := M otherwise.
We proceed by induction on rank 7.

(0)If T =TO, then ULH(V;U) E (Va)(ow B 0) and we let M = £x44(0).

(D Let T = {0} UUe (i) ~ Ti, x =f € V¥ We recall that TV = {0} U {(i)
icl} <y T, TY9 <4 TV, and TO <, 7" = T <4 T forevery T' <44 T.
Let v := Dyu. In terms of C, these observations amount to: UH(V;U) F 0 C «
iff U(V;U) E v C . Let I := {i € I: domf; € Us}; I € U©). By the
inductive assumption, for each i € 1 there is M; € V=Y such that UV, S U), Cu) F
“M;isalevel set A Va)[PY(f) N aJ0< (36 € M)(aB 3]”.

Let UV := U | TV; we recall that XUV is isomorphic to /(0) via the mapping
(i) — i. Let M € V™Y be defined by M((i) ~ 5) = M(s) for i € I, s € ©T;,
so that QM) = M/TY =g, (M; : i € T). By the Factoring Theorem 7.11 (with
T = TW), ULV; S U), Typy) E“Mis alevel set A (V[P (f) A a0 < (36 €
M)(ae B 8)]”. We have « Cun B & a5y B for v Cy o, B, and [(ULV; XU, Egry
YE P & [ULVU) = UKV, XU),Ey) E PYS)] for v Ty «. Hence
UKV, U) E “M is alevel set A NVO)[PY(f) N advy < (306 € M)(a B o017, If
also ULH(V;U) E PY(f), we take M € V=U such that U(V;U) EM = M U {7};
otherwise, we let M = M. It is easy to verify that (*) holds in U4«(V;U) for x = f
and this M. a

SST* is the theory obtained by adding the following axioms to SST:
Block Standardization: (Vx 1 0)(da C x)(Vz C x)(z € a < 7 € x).

Granularity: Let P(x) be any €-C-formula.
Forall xq, ..., x;, if Ga)P*(xq,...,x;), then

GPYx1, .., 1) A (VOB C = -PPxy, ..., xq)l.
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Remarks Block Standardization is equivalent to

NVMad0)(Vx)(da T o)(VzC a)z € a < 7 € X).

To prove the new version, apply the original version to sh,(x) in place of x to obtain
a if shy(x) H a; if shy(x) C «, let a = sh,(x). For the converse, let o = x.

Corollary 8.5 U/t(V;U) satisfies SST*, for any TOU U.

Proof If L is a level set for P as in the Strong Support Principle and (Ja)P“(x)
holds, then L # 0. To prove Granularity, we take « to be the C-least element of L.

Another consequence of the Strong Support Principle is the existence of a level set L
such that for every « there is § € L with a H (§ [take P(x) to be x = x and fix any
x]. As L is finite and well-ordered by T, every level o except the least one has an
immediate predecessor level; we denote it o~ . Block Standardization follows from
Inner Standardization into S, . O

Proposition 8.6 (SST*) If (Vx,y € M)(xHy = x=1y), then M is a level set.

Proof Claim1. M CS,,, where ag HM.

Proof of Claim 1. Suppose some m € M ~\ S, There is a one-one mapping f € S,,
of u onto M, where p is a (finite or infinite) cardinal. If © = 1, M = {m} and
m € Sy, by Transfer. So pn > 1 and m = f(§) for { < p. Either n:= ¢ +1 < por
n:= & — 1 < p [the second case is needed if © = £ + 1]. In either case, n # £ and
nBE. Asf,f1 € Sy, it follows that m' := f(n) T, m and m Co, m', so m B m’
while m # m’, a contradiction. O

Let P%(M) be the statement

“There exists L C M such that L is finite, (Vx,y € L)(xHy,y = x=1y), C4[ Lisa
set, (Vx ¢ Sp)(x € M < x € L), and (Vx € L)(x ¢ S,)”.

It is immediate from Claim 1 that P*°(M) holds: let L = 0. Let L’ be a witness to the
validity of P“(M) where 0 C «. If there is x € M such that xBa, let L := L' U {x};
otherwise let L := L'. By Block Standardization, there is a set B C « such that
VzC o) zeEBezeM~L);then M~ LCB.

Claim 2. M ~ L C Sg, where 35 B.

Proof of Claim 2. Suppose some m € M ~ L, m 3 (3. Let f € Sg be a one-one
mapping of a cardinal p onto B. Since M ~. L C B, we have m = f(§) for some
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& < . As in the proof of Claim 1, we find 1 # £ such that m’' := f(n)) Bm C «. We
have m’ € B,so m’ € M ~. L; but m’ # m, a contradiction. O

The set L witnesses the validity of P?(M) where 8 C «. By Granularity, P°(M)
holds. If L is a witness to P°(M), and there is x € M such that x50, let L := L'U {x};
otherwise let L := L’. Itis clear that L is a level setand M = L. O

9 Stratified Ultrafilters.

We recall that BX is the set of all ultrafilters over X—the Stone-Cech space over X,
and U ~ V means that U NV is an ultrafilter. For an arbitrary nonempty set A we
define by recursion on ordinals:

0) ByA :=A

(1) For § > 0, B_(A := Un<§'677A and BA = B AU{U € B(BA) : U is
nonprincipal and B_,A ¢ U for any n < £} = B AU{U € B(BA) : U is
nonprincipal and there isno V € B_,A such that U ~ V}.

Elements of B, A := Ugcp, BeA are called stratified ultrafilters over A. For
U € B, A welet DomU := A. As usual, the recursive definition assigns to each
stratified ultrafilter an ordinal rank.

We are taking a terminological liberty by calling elements of A stratified ultrafilters.
There is a natural identification of each a € ByA with the principal ultrafilter W, 4 it
generates over A. We choose not to make this identification formally, as it would lead
to technical complications elsewhere.

Stratified ultrafilters of rank 1 are the nonprincipal ultrafilters over A; stratified ultrafil-
ters of rank 2 are the nonprincipal ultrafilters over BA that concentrate on nonprincipal
ultrafilters over A [ie, such that (3A . A) € U], and so on.

Proposition 9.1 For U,V € B, A~NA, U~V impliesU =V.
Proof Assume without loss of generality that rank V < rank U = £. If rank U =
rank V, then U and V are ultrafilters over the same domain 3_¢A, and U ~ V implies

U=V.If rank V <rank U, then U ~ V is impossible by the definition of 3,A. O

Proposition 9.2 For every ultrafilter W with domW C 3 A there is a unique
V € B, A such that either W ~ V ¢ 3,A or W is principal and V is its generator.
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Proof If W is nonprincipal, fix § such that dom W C B_.A and extend W to W~W
with domW = B_.A. Then either W € BA, and we let V := W, or there is
V € BeA N ByA such that W ~ V. Uniqueness of V follows from the preceding
proposition. |

We let m(W) := V. Note that W| ~ W, implies m(W;) = m(W5).

Definition 9.3 Let f: A — B. We define its extension f: B, A — B.,B by recur-
sion.

(0) For a € ByA we let fy(a) = f(a) € ByB.

(1) Assume ¢ > 0 and f<5 = Un<£ﬂ7: BeeA — B B is already defined. We
letfg(U) :f<£(U) for U € ,8<§A. For U € ,8£A N ,6<§A we let W ::f<5[U] S
B(B.eB) and f(U) := m(W) € BB. Finally f := Uge@nfg-

We often write f[U] in place of f<£[U]. Note that the rank of f(U) is less than or
equal to the rank of U, and f(U) = f[U] if and only if the equality holds.

Proposition 9.4 Iff: A — B and g: B — C, then gof = go f. Trivially also
Ids = ldg_y.

Proof By induction on rank of U € B, A. The claim is trivial if U € ByA. Let
Ue ,BEA ~ B<§A and W :f<£[U]; thenfg(U) =m((W).

If W is principal, say generated by V € B_¢B, then g_.[W] is generated by g.(V) =
Z-e(V) € BC and gof(U) = gofe(U) = mgof[Ul) = m@_[W]) =
2e(V) = Ze(m(W)) = 5 (1) = ZFU)).

If W is nonprincipal, we have f<§[U] =W~ mW) = fE(U). Hence g_.[W] ~
8l fe(U)] = gp[fe(U)] where n < & is the rank of f(U). We get gof(U) =

gofe(U) = m(gof [U) = mE W) = m@,[fe(U)D) = g,(fe(U)) = g(FU)).
[The third equality is true by the inductive assumption.] |

Definition 9.5 For C C A we define 3.A /C C BeA (stratified ultrafilters concen-
trated on C) by recursion:

(0) BpA/C:=C

() For >0, B A/C:=,B,A/C and
BeA/C = BA/CU{U € BAN BeA: BA/C €U},

Of course, B,,A/C = Ugcq, BeA/C.
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Remarks By induction on rank it is easily seen that 3, A/C; N B A/Cy =
BA/(Cy N Cy). In particular, if C; N C; = 0, then B,,A/C1 N B A/Cr = 0.

Proposition 9.6 Let ANB=C#0andlet p: A— B and 0: B — A be such that
p(x) = o) =xforallx € C. If U € BeA/C and V € 3:B/C, then p(U) € B:B/C,
(V) € BeA/C, and 5(p(U)) = U, p(a(V)) = V.

Remarks The assertion implies that p maps B.A /C one-one onto B¢B /C, and &
maps 3,B/C one-one onto B;A/C. Also, for U € B,A/C, p(U) has the same rank
as U, and so p(U) = p[U]. Similarly, for V € ,BgB/C, o(V)=7a[V].

Proof (0) For a € C, p(a) = p(a) = a, and similarly o(a) = a.

(1) Assume that the assertion is true for all n < £. By the preceding remarks, p
maps 3_¢A/C one-one onto B_B/C. If U € B,A/C \ B_A/C, then B_A/C €
U, U is nonprincipal, and 8_,A/C = B_,ANB_A/C ¢& U for any n < &.
Hence ﬁ[,6<£A/C] = ,8<§B/C € plU], pl[U] is nonprincipal, and ﬁ[,6<,7A/C] =
ﬁ<nB/C ¢ plU] for any 1 < &; hence BB ¢ plU] (note ﬁ<nB/C = B,BN
B.eB/C). We conclude that p(U) = plU] € B¢B/C ~\ B¢B/C.

By a symmetric argument, if V € B¢B/C \ B_¢B/C, then 5(U) = 5[U] € B,A/C
B<£A/C. For such U,V we then have o(p(U)) = c[p[U]] = U because o o p is the
identity on B_.A /C € U, and p(a(V)) = p[a[V]] = V because p o 7 is the identity
on B_B/CeV. m]

Proposition 9.7 Forevery a € A and U € ﬁéB there is a unique U, € ,BE(A X B)
such that 71 (U,) = a and m(U,) = U.

Proof By induction on €.

If £ =0, then U = b for some b € B, and U, := (a, b) has the required properties.

If W € By(A x B), then W = (c,d). From 7(W) = a and (W) = U = b it follows
that c=a, d=b,so W =U,.

Letnow § >0 and U € BB\ B¢B.

Existence. By inductive assumption, there is the function 7: BB — B_¢(A x B)
defined by #(V) = V,. We let U, := t[U]; ie, for X C ,8<£(A X B),

*) XeUoY:={VepB B:t(V)=V,€X} €U.
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Clearly U, € B(B.¢(A X B)). Wenote that 13[U,] = U: If X € U,, then X 2 #[Y] €
U,, and so T[X] D m[t[Y]] = Y € U [by inductive assumption, m(V,) = V for all
V € Y]. So U, is nonprincipal, and not equivalent to an ultrafilter of smaller rank
(otherwise, U would be as well); hence U, € ﬁﬁ(A X B) and m(U,) = m(m[U,]) =
mU)=U.

It remains to show that 7 (U,) := m(7([U,]) = a. But X € U, implies V, € X for
some V € dom U, by (*); hence a = 7(V,) € 71[X]. We conclude that 7[U,] is a
principal ultrafilter generated by a, hence 7 (U,) = m(m[U,]) = a.

Uniqueness. Let W € B¢(A x B)\ B_¢(A x B) and 7T1(W) = a; we prove that W = U,
for some U’ € B:B. Uniqueness follows: if also m(W) = U, then U = U'(= m2(U,))
and W = U,.

The assumption 7 (W) = m(7[W]) = a means that 71 [W] is principal generated by
a; ie, {a} € mW[W]; ie, there is X € W such that (VV € X)(7(V) = a). Hence,
by inductive assumption, for each V € X there is a unique V' € B, (B such that
V =V,. We define s on X by s(V) = V' and let U’' = s[W] € B(B¢B). We have to
prove that U’ € BB and W = Uj,.

We note that #(s(V)) = #(V') = V, = V [t is one-one and preserves rank because
72(#(V)) = V]. Hence s is one-one and preserves rank. It follows that U’ € BgB , and
U, =1tU]=1s[W]]=W. |

With each stratified ultrafilter U we associate a TOU U, and consequently also a
stratified ultrapower U/1(V; U).

Definition 9.8 (0) If U € B,A, then U = 0.

(D If U € BeA N BeA for § > 0 and, for each V € domU = B,A, V is the TOU
associated to V, we let Ty := {0} U {(V) ~ Ty : V € domU}, U(0) = U, and
U(V) ~ 1) = V(¢) forall V € domU and r € Ty ~. X Ty. Note in particular that
U((V)) =V, forall V € domU.

It is easy to check that U is indeed a TOU according to Definition 6.1, and that the
rank of U (as TOU) equals the rank of U (as a stratified ultrafilter).
We also have the following explicit description of U, easily verified by induction.

If U € ByA, then U = 0; otherwise, let L be the set of all finite sequences (U, . .., U,)
where U; € domU, Uypy; € domUy for 1 < /¢ <n,and U, € ByA. Then Ty =L |,
YTu=L, U0)=UandU({Uy,...,Us)) = Uy whenever (U, ...,U;) € Ty~X Ty
(ie, whenever Uy is nonprincipal).
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Proposition 9.9 Every f: A' — A? induces a canonical morphism ¢: U' — U?
for any U' € B A" and U? := f(U") € B, A%, If f = Idy, then = Idr, . If
g: A2 — A3 induces 1p: U?> — U3 where U3 := g(U?), then 9 o p: U' — U3 is
equal, everywhere on its domain, to the canonical morphism 6 induced by gof : A! —
A3

Proof We describe ¢ recursively. If U! € ByA!, then U? = f(U") = f(U") € B,A2,
U! = U? = 0 and ¢ is the trivial morphism ¢(0) = 0.

If U' € BeA' N BAl, let W :=f[U'].

Case (i): W is principal, generated by U? € ,6<5A2. Then S := {V! ¢ ,6<5A1 :
f(VYy = U?} € U'. By the inductive assumption, for every V! € S we have the
canonical morphism "' : V! — U2. We let p((V!) ~ 1) := "' (1) forall 1 € Ty,
V; € S. Note in particular that ((V')) = 0 for all V' € S—this is the collapsing
case in the definition of morphism.

Case (ii): W is nonprincipal, W ~ U? € ,@§A2. Then § := {V! ¢ ,3<5A1 :
f(vly € domU?} € U'. By the inductive assumption, for every V! € S we have
the canonical morphism "' : V! — V2 where V2 := f(V!) € B_cA?. We let
O((VYY ~ 1) := (F(VH) ~ "' (1) forall 1 € Ty:. Note that this is the preserving
case in the definition of morphism. The verification that ¢ is a morphism of TOUs is
routine.

Finally, we prove that v o ¢ agrees with the canonical morphism 6 of U! to U?
induced by h := g o f, again by induction; we use the notation from the corresponding
steps in the first part of this proof.

The case when U' € B,A! is clear. If not, we have

Case (i): W is principal, generated by U?. Then gof[U'] = g[W] is principal,
generated by U? = g(U?) € [3<£A3. We see that, for all V! € S and t € Ty,
P(p((VY) ~ 1) = ("' (1) = 0¥ (1) = (V') ~ £) [the penultimate step is by
inductive assumption applied to <pVI VS U2, ¢ U2 - U2

Case (ii): W is nonprincipal, W ~ U? € BgAZ. There are two subcases, depending
on whether g[U?] is principal or not; note that g[U?] ~ g[W] = g[f[U'1] = h[U"],
so the same case applies to A[U']. We have, for V! € S, t € Ty, (V') ~ 1) =
(FOVH) A~ " (1), hence, depending on the case that applies to g,

¢f(v')(¢v1 ) in the principal case;

Vl ~ = _ Fyl 1
PV~ 9) {<g(f(V1)))r\q/;f(V W@V (1)) otherwise.
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On the other hand, for @ we have

mwwﬂn:{

6" €3] in the principal case;
(h(V1)) ~ Ovl(t) otherwise.

But 2(V") = g(F(V")) by Proposition 9.4, and 15/ (" (1)) = 8" (¢) by the inductive
assumption. a

10 Pedigrees.

In this section we work in the theory SST, unless explicitly stated otherwise.

Definition 10.1 Let x € A € S,. An «-pedigree for x over A is a sequence
U= (uy, :n <v) where v € w and

(i) every u, is a stratified ultrafilter over A [ie, u, € B, Al

(i) uo C a5 uy =x

(i) (Vn < m < v)(u, Cqo Um)

(1v) (Vz € up)(Z Cq Uny1 = Upy1 € 7), forall n < v.

The ultrafilter ug is called the a-type of x over A; we denote it tp,(x;A). We also

use i := (u, : 0 < n < v). Pedigree and type mean 0-pedigree and 0-type, resp.

The definition as stated is clearly of the form P%(x,A) [where P(x,A) is P°(x,A)],
but it is useful to note that

(@i holdsiff a Cu;y A Vn,m)(1 <n<m<v=u, C u,),forv>0,and

(iv) holds iff (Vz € u,)(z C upy1 = upt1 € z), forall n < v.

The condition (iv) perhaps becomes more meaningful when stated in terms of monads.

Definition 10.2 For U € S, we write xM, U iff (VX € UNS,)(x € X).
The class M,U = (U N'S,) is the a-monad of U.

In general, M, U is a proper class. Also, it can be empty. Here is a list of some useful
elementary facts about monads.

(1) If U is principal and generated by a, then a € S, and M,U = {a} is a set.
Conversely, if M,U NS, # 0, then U is principal. Hence U is nonprincipal if and
only if M, UNS, = 0.

(2) o £ B implies M,U D MgU.

B)Let U,V €S,. If U ~ V,then MU = M,V. If M,UNM,V # 0,then U ~ V.

The condition (iv) in Definition 10.1 can be restated as:
(iv) If u, E B C upq1, then u, 1 Mpu, .
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Proposition 10.3 (SST) Every x € A € S, has at most one a.-pedigree over A.
More generally: Let x € A € Sy, o9 T . Let i = (u, : n < v) be an ayg-pedigree
for x over A, and let V.= (v,, : m < u) be an « -pedigree for x over A. Then pu < v
and vy, = Uy, forallm < pu.

Proof We begin by noticing that u,, = x = v,,. Let j be the largest integer such that
j < min{v, u} and u,_; = v,_; holds for all i <j. If j = p, then u < v and we are
done. If j = v, then v < p. As up € Sqy C Sy, we have up = upy—, = v, S0
Viu—v € Sq, and g — v = 0 [if not, v,—,—1 Tq, Vu—v, but this is impossible], hence
u = v, and again we are done.

It remains to show that the remaining case j < v, j < p leads to a contradiction. We
consider u,_;j_1 and v,_;_1. Let us assume that u,_;_1 T v,_;_1. Welet 5Bv,_;_
and u := v,—j = wu,_j, so that 3 C u. By clause (iv) in the definition of pedi-
grees, uMgv,,_;_1 and also uMgu,_;_1. By the property (3) of monads, this implies
uy—j—1 ~ vu—j—1 and hence [Proposition 9.1] u, ;1 = v,_;_1, a contradiction with
the choice of ;.

The argument for the case v, | E u,, ;1 is analogous. O

Proposition 10.4 (SST) LetA,B € S,, x € AN B. If there is an «.-pedigree for x
over A, then there is an o -pedigree for x over B.

Proof Let ii = (ug,...,u,) be an a-pedigree for x over A. Let C := AN B.
Claim. u, € 8_A/C,forall n < v.

Proof of Claim. We proceed by induction. The claim is clearly true for u, = x.
Let & be the rank of u, and 7 the rank of u,11. Assume that u,+, € 8,A /C; then
Uyl € ﬁ<§A/C, as £ > n. For 8 u, we have ,6<€A/C € Sg and u,1Mpu,; so
B<eA/C € uy and u, € BA/C. O

We now fix p,0 € S, as in the assumptions of Proposition 9.6, and prove that
poi = (p(up),...,p(u,)) is an a-pedigree for x over B.

Conditions (i) and (ii) from Definition 10.1 are clearly satisfied by poii. As p(u,) T, uy,
and u, = a(p(u,)) E, p(u,), we have u, By, p(u,); this implies (iii).

In order to prove (iv), we note that p(u,) = plu,] forall n < v, by the remark following
Proposition 9.6. Given (3 such that u, C 0 C u,y1, and Y C 3, Y € plu,], there
is some X € u, such that p[X] C Y. By Transfer into Sz, we can assume X € Sg.
Hence u,.1 € X [by (iv) for #] and p(u,11) € p[X] C Y. This shows (iv) holds for
pou. O
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Proposition 10.5 (SST*) Let i be the a-pedigree for x over A € S, .

If « C B C x, then there is a unique n < v such that u, C 8 C u,y;. The sequence
Ul B := (up,ups1,...,u,) is then the (-pedigree for x over A. If x C 3, we let
il B:=(u,) = (x);itis again the 3-pedigree for x over A.

Proof The set ranu = {uo, ...,u,} is a level set by Proposition 8.6. Hence C| ran i
is a well-ordering, and there is a least n such that u, C 3 [ u,1. O

Corollary 10.6 (SST*) Let A € S, and o C (3; if tpg(x,A) = tpg(y,A), then
tpa(x7A) = tpa(y7A)-

Proof Let ii = (uo,...,u,) and vV = (vo,...,v,) be the a-pedigrees for x and y
over A, resp., and let u, & 3 T upy1, vu & 8 T Upy1. Then u, = tpg(x,A) =
tpg(y,A) = vy, Itis easy to check that the sequence (uo,...,u, = Vi,...,V,) is an
a-pedigree for y over A. By Proposition 10.3 now vg = ug. O

Theorem 10.7 (SST*) Ifx € A € S,, then an «-pedigree for x over A exists.

Proof Let P%(x) be the statement “For every A € S,, if x € A, then there exists
an «a-pedigree for x over A.” By Proposition 10.4, P(x) is equivalent to “For some
A € S, such that x € A, there exists an «-pedigree for x over A.” Our goal is to prove
that P (x) holds for all «.

P*(x) holds for all  J x, because (up) with ug = x is then clearly an «-pedigree
for x over A.

By Granularity, there is a least « for which P%(x) holds. Let us assume 0 C «. We
fix A € Sy such that x € A, and an «-pedigree ¥ = (u, : n < v) for x over A, and
obtain a contradiction by showing that there is a 3-pedigree for x over A for some
B C a. If ug € Sy, then i is also a 0-pedigree for x over A, and we let 5 = 0.

Otherwise we fix £ € Sy such that uy € 3 <EA' Let W := WuO,B<gA be the principal
ultrafilter generated by ug; we note W Hug I 0. By Block Standardization, there is
u' T up such that VX C o)X € ' & X € W); welet 5B u'. Then u' € Sp is
an ultrafilter over 3 <§A’ upML,u’ for all 3 C ~ C «, and «’ is nonprincipal [because
up ¢ Spl. By Proposition 9.2, u’ ~ u for some u € BgA N'Sg. Then also uoM.,u for
all 5 C v C «, and the sequence (u) ~ ii is a f-pedigree for x over A, a contradiction.
Hence o HO0 and ’PO(x) holds. Proposition 10.5 now implies that P“(x) holds for all
levels a. O
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Definition 10.8 An «-pedigree i for x over A is a good «-pedigree if, for u :=
tpa(x;A), i My (X u) and

0 fCug e fh) Cogt) forallf,g € V='NS,.

An equivalent statement of the property (j) is that jo.ca: vEu NS, — Sulut],
defined by ja.a(f) = f(u"), is an isomorphism of interpretations [U¢(V; Y u)lSe
and (S,[uT],=,€,C,) [see Theorem 3.7]. Of course, Sy[iit] = S.[i], because
u€S,. Also S,[i] = S,[ranii], because u, T U, iff rank u, > rank u,,, and so the
sequence (uo, . ..,u,) is €-definable from the set {ug, ..., u,}.

Theorem 10.9 (SST*) Forany x € A € S, the «-pedigree for x over A is good.

Proof We fix an o-pedigree i = (uo,...,u,) for x over A € S,,, and use Granu-
larity to prove that « is the least level av J oy for which & [ « is «-good. We write
jo fOr jaxa.

If a 3 x, then all is trivial: @ | o = (u,) where u, = x = tpo(x;A) =: u, Ut =0,
Yu = {{0}} is the principal ultrafilter over {0}, S,[d"] = S,, C, is the identity
on S,, and for any f = {(0,a)} € Sa, jo(f) = f(E@") = f(0) = a; evidently, j,
preserves L, .

Let o O ay be the least level such that i [ « is a-good. Then « [ x, there is a unique
n < vsuchthat u, C o C gy, and i | & = (up, thpy1,-..,uy). If B agp, we are
done; otherwise, we obtain a contradiction by showing that i | § is 3-good, for some
0B C «. There are two cases to consider.

Casel. u, C «.

Then, forevery u, C 8 C o, i | o =i [ (3 is also the F-pedigree for x over A and
u = tpg(x;A) = tpa(x; A) = up.

By the inductive assumption, (i | a)"M,Xu, hence also (¥ [ 3)"MsXu, and
fCug e flt) C, gt) forall f,g € VEU N Ss. It remains to show that the last
statement holds with C,, replaced by Cg.

It suffices to prove that, for f € Sg, f((@ | 3)7) Cq 0 implies f((@ | 3)™) Cg 0.
[Indeed, from (z T, 0 = z Tg 0) it follows that, forall y, zCpy < 25,0V zC
ye=2zE30V zEyszEgy.]

But f((ii | $)*) C, 0 means [apply i '] that Ult(V;u) E f = Exyu(c), for some ¢ €
Sa. As f € Sg, we have ¢ € Sg, hence f((ii | 3)7) = c € Sg, ie, f((i | 3)T) Cp 0.
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Case 2. u, Ha.

Then n > 0 and we consider all 8 J «g such that u,_; T 8 C u,. We have
i1 B = ottty st)) = (up) ~ii [ @, (i B =@ | a,andu =
tpg(x;A) = u,—1. We note that u,M,u for all 3 E v C «; by the inductive
assumption, also (i | a)™M,X u,,.

We first prove that (ii [ 3)"MgX u.

By Definitions 9.8 and 6.2, Yu = X ,(Xu’), where ' ranges over the domain of
u. Let X € Sg, X C domXu = {J,, (/) ~ domXu’, and X € Yu; then
Y= {u' € domu: (X)) € X0’} € u. As Y € Sg and u,Mgu, we get u, € Y,
ie, X,y € Xu,. As u, € So, (X)) € Sa, and so (i@ | a)t € X)) » 1€,
@] Bt = (uy) ~ (@] @)™ € X. This proves (i | f)TMzX u.

By the inductive assumption we have the isomorphism j, of [UH(V; un)]Sa and
Sal@ [ )], =, €,En).

From Sglu,] < S, we get that j,, restricted to Sg[u,], is an isomorphism of
(ULt (V)55 and (Splua]i | a)t],=,€,Ca) = (Sl | B)T],=, €,Ca) [the
ultrapower is defined because u, € Sg[u,]].

We also have the isomorphism j of [U/¢(V; 1)]% and (Sglunl, =, €) < (S, =, €) given
by i(f) = f(u,); especially, j(Idgom ) = un [Theorem 3.7].

j induces an isomorphism [also denoted j] of

) 55 @)U and UV u,) o),

Observing that [U/4(V; WS = (VN Sg,...) and Idgomu € Sg, and using i~ Nuy) =
ldgomy = (' : u' € domu), we get j~'(u,) = (W : ' € domu) = (uy : ' €
domu) [recall the definition of u, the TOU associated to u].

If 7O = {0} U {(«) : ' € domu} denotes the u-subtree of Ty of level 1, we have
further (ug,y : u' € domu) = ((u/ TOYW') : ' € domu). [For the last step, recall
that > 7 is identified with dom u(0) = dom u via the map (i) — u’.]

We can thus write u/T" for j=!(u,) in (*). Furthermore, by the Factoring The-
orem, QTU),u [restricted to Sg] is an isomorphism of (U4(V; X u), Eu;ldT(l))Sﬁ and
[([Uer(V; )/ TOY V0158 = [1401(V; 0 /T(l))][MK(V;u)]Sﬁ ‘

The composition ¥ := j, ojo QT<1>,u is an isomorphism of (U4(V; X u), Eu;ldTU))Sﬁ
and (Sgl@id | B)t],=,€,Cy); it remains to show that ¥ = jg, 4, and that, for
f8€VEINSy, fEug e V() Ep V(g).
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Let f € V=" N Sg; we show that W(f) = f((@ | $)T). First, Qo) o(f) = f/T =
{fury + u' € domu), where u-almost everywhere domfi,, € X, and fi,n (1) =
fUu') ~ 1). Hence [ULV;u)]%# E “domf/TD € Lu/TV”, so, second, j(f/T") =
(F/TDYun) = fuuy € Splun] and Sglu,] E “domf,, € Lu,”, hence also [as
Splun] < Sal, So F “domfy,,y € Yw,”. Finally, V(f) = ja(fiu,)) = fu,) (@ |
)" = f((un) ~ @ [ )" =f(@ | B)).

This argument also shows that if f =x4 Esu(c), then V(f) = ¢ € Sg, and if f #5y
Exu(c) for any c, then W(f) ¢ Sz. Thatis, W preserves the level 0: f Ty Exy(0) if
and only if W(f) T 0. Moreover, since the last equivalence is true for all 5’ such that
B E (' C a, we have f Ty €x4(0) if and only if ¥(f) C,, 0.

If £54(0) Cu £, g, then £ Ty g iff W(f) Co W(e) iff W(f) Co 0 V U(f) C Ug) iff
W(f)Cp 0 V U(F) C W(g) iff U(f) Ty U(e). O

Theorem 10.10 (SST*) Let i be the a-pedigree for x over A and let V be the
«-pedigree for y over B, where y = f(x) and A,B,f € S,, f: A — B. Let
u:=tpa(x;A) and v := tp,(y;B) Then v = f(u) and ranV = f[ran ii].

If ¢: u — v is the morphism canonically induced by f, then the following diagram
commutes.

ja;x,
ULV wy e :

¢* [ Sa

(Salul, =, €,Ca)

N

ja;y,B

(UL (V5 v)]5e (SalVl, =, €,C0)

Proof We fix ag-pedigrees i for x over A and V for y over B, where y = f(x) and
A, B, f € Sq,, and prove that «y is the least level o 3 o such that the assertions hold
foru | aand V| a.

If xC a,thenalso y C o, u:= tpa(x;A) =x, v:=tpo(y;B) =y, v=Ff(u),
Yu=Xv=1{{0}}, ¢0) =0, ¢*=1d, and S,[u] = Su[V] = S,. The diagram
commutes trivially.

By Granularity, there is a least v 2 «y such that the assertion is true for # | « and
V | a. We assume that o J «g and obtain a contradiction. Let u, C o C tt4 1.

Casel. u, C «.

We considerany 3 J o suchthat u, C 3 C «. Then u := tpg(x;A) = tpa(x;A) = u,
and f(u) T B,s0u | B=1u | aand V | B =V | a are 3-pedigrees and v :=
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tps(y; B) = tp,(y; B). The diagram commutes for «, by the inductive assumption.
We have to prove that it commutes with § in place of . As jga(f) =f((Ud | B)T) =
fl@ 1 04)+) = ja;x,{(f), we have jBxA = JowA I Sﬂa similarly jﬁy = jayB [ Sﬂ
As ran(V | () = flran(i | B)] and f € Sg, we have Sg[v | 8] = Sglran(v |
] € Sglran(i [ $)] = Sglii | #]. The morphism ¢: u — v is €-definable from
A,B,f € Sg, and so it belongs to Sg. It follows, by Transfer between S,, and Sg, that

* | Sg is a morphism of [L/#(V; w)]%8 into [U41(V;v)]°8 . The commutativity of the
diagram is of course preserved.

Case 2. u, Ho.

Then n > 0 and we consider any # I o such that u,—; C 8 C u,, so u :=
tpg(a;A) = u,—1. Let vo := tpo(y; B).

Subcase A: vy € Sg.
Claim. Then f(u) = vg.
Proof of Claim.

According to Definition 9.3 of f(u), one considers w := f _ ¢lul] for the appropriate &.

If Y € wN S, then f_¢[Y] € uN Sp, hence u, € f_¢[¥] and vo = f(u,) € Y. We
conclude that w is a principal ultrafilter generated by vg, and f(u) = m(w) = vy. O

Returning to the proof of Subcase A, we have f(u) = vo as well as f(u,) = vo,

V] a=v]B, and v:=vy = tpg(y;B). Asin Case 1, ran(v¥ | 3) = flran(d | 3)],
[V | 51 C Sglu | B, and jg., p is the restriction of j,.,  to Sz. In the definition of

the induced canonical morphism ¢: u — v [proof of Proposition 9.9] this is the case

(i); ie, for u-almost all u’, p((u)) = 0 and ¢,y = o, where @ : u' — v are the

induced canonical morphisms. Consider g € V> N Sg. On the one hand,

(*) i8:,8(8) = JoyB(8) = Jara (") (8))

by the inductive assumption.

On the other hand, @*(9)((') ~ 1) = gl((u) ~ D) = g(L" ®) = (L") ()
u-almost everywhere, so [proof of Theorem 10.9] QTm,u(cp*(g))(u’) = (go”,)*(g),

Qo w(*(8)) = (¥")*(g), and
(%) jﬁ;x,A(SD*(g)) = joa;x,A((‘Pun)*(g))-

Comparing (*) and (**) gives jg., 5(8) = igxa(®*(g)), ie, the commutativity of the
diagram for .

Subcase B. vy € S, \ Sg.
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We let v := f(u); then v € Sg N B B.
Claim. voMpgv.

Proof of Claim. u € B:A, v € B,B, for suitable {,n € Sg. Let w :f<§[u]; from
u,Mgu we get vo = f(un)Mgw [Proposition 3.5], so w is nonprincipal [vy ¢ Sgl,
w ~ f(u) by definition of the latter, and, consequently, voMgv. |

It follows that ¥ [ 3 = (v) ~ V| . Asin Case 1 now, ran(v | 3) = f[ran(i | 3)] and
V[ B8] C Spli [ 1.

Consider g € V>V N Sg. On the one hand, jg.,8(8) = jay,BG* (270 +(g)), where
j” is the j from the proof of Theorem 10.9, Case 2, for y,v in place of x,u, and
Qro v(g)(v) = for V' € v; then (270 V(g)) 8(vo) and

(*) jﬂ;y,B(g) = jauy,B(8(w)) = 8wy (V| ) = g(¥ | ).

On the ot/her hand, <p/*(g)((u’) ~ 1) = gy ~ 1) = g(fu)) ~ @“ (1) =
8Fay (P (M) = (@) (8 (1) u-almost everywhere, so Qroy (P (@) =
(¢“')*(g<f(u,)>) u-almost everywhere, and then, by definition of j = j* and Trans-

fer, jX(QTl,u(‘P*(g))) = (99””)*(g<f(un)>). But f(u,) = vo and " is the naturally
induced morphism of u, to vo. Hence [note that 8(p) € Sa, so we can use the
inductive assumption to justify the second equality]

(**)

15642 (8)) = JarA (@) (€1vp)) = Jary.B& () = 8oy (V [ ) = g(V | ).
By comparing (*) and (**) we get jg., 5(8) = igxa(®*(g)), the commutativity of the
diagram for 3. |

The theory SST* is used in this paper mainly as a technical tool. Our main interest is
in two related theories that are introduced next.

We write xM,U as shorthand for:

“There exists a good «-pedigree i = (u, : n < v) for x over some A € S, such that
U= uo”.

We note that U is then an a-type of x.

The theory SST® is SST plus (Va)(B,), where

Bo) x,y)VU,F € Sp)[tanF C Dom U A xM, U A x = F(y)) =
3V € S)(U = F(V) A yM,V)].

Journal of Logic & Analysis 1:8 (2009)



66 Karel Hrbacek

Later, we consider one more axiom:

(F,) (Yx)(VU,V,F € S)l(tanF C DomU A xM,U A U = F(V)) =
GENOMV A x = F(y)l.

The theory SST’ + (Va)(F,,) is denoted SST?. 1t is equivalent to GRIST [see Sec-

tion 12]. We refer to the conjunction of (Va)(B,) and (Va)(F,) as the Back and
Forth Property.

Theorems 10.7, 10.9, and 10.10 establish the following.
Corollary 10.11 SST* I SST”.
In particular, every stratified ultrapower satisfies SST’ [Corollary 8.5].

Corollary 10.12 (ZFC) Every realization of SST*? := SST” + Axiom of Primi-
tivity is isomorphic to a stratified ultrapower of the universe.

In this sense, SST*” [or SST*?] axiomatizes stratified ultrapowers.

Proof Working in SST’”, let aMyU, where a € A € Sy, be such that (Vx)(3f €
So)(x = f(a)). By Theorem 10.9, jo.q.4 is an isomorphism between [L/{t(V; Y U)S
and (V, =, €, ) [because So[u"] = Spla] = V].

Working now in ZFC; if 911 is a realistic interpretation of SST*?, the previous statement
holds in 991, and there is an isomorphism of interpretations [[U/¢1(V; 3% £(U))1501™ and
[(V,=, e, D)™ = M, forasuitable U. As So™" is isomorphic to V, 91 is isomorphic
to U(V; X U). O

Definition 10.13 (SST?) S,[[x]] := Sa[i], where i is some good «-pedigree for x.

If i and V are «-pedigrees for x, then S, [i] = S,[V] by Proposition 10.4, so this class
is uniquely determined by x. From the isomorphism property (j) and Corollary 8.5 it
follows that (S, [[x]], =, €, C,) F SST*.

As an immediate consequence we have:

Inner Standardization into Sy, is a consequence of the remaining axioms of SST’.

Proposition 10.14 Proposition 10.5, Corollary 10.6 and Theorems 10.7, 10.9 and 10.10
hold in SST’.
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Proof Theorems 10.7 and 10.9 are immediate consequences of B, .

Proposition 10.5: Let i = (uy, . .., u,) be an «-pedigree for x and o T (3. Trivially,
Sall{", 5)11 E “i is a pedigree for x”. As S,[[(&, 3)]1]1 E SST*, Proposition 10.5 holds
in S, [[(#, B)]], yielding n € w such that u, C 8 C u,4) [or n = v and u, C 3].
Then i | (3 is defined, and it is a 3-pedigree for x.

Theorem 10.10: Given a-pedigrees i and v for x and y, resp., and f as in Theo-
rem 10.10, consider S, [[(i, V)]]. Note that i and Vv are a-pedigrees in S,[[{d, V)]],
and Theorem 10.10 holds in S, [[(#, V)]], yielding ¢ € S, and a diagram that has the
required properties in S, [[(i, V)]]. It is easy to check that these properties remain true
inV. |

Proposition 10.15 (ZFC)
If p: U? — U" is a morphism and ULt(V;U') E “ii is a pedigree for f over £s,,,1(A)”,
then ULt(V;U?) E “p*(if) is a pedigree for p*(f) over &y, w2 Q).

Proof *: U(V;U") — UMV;U?) is an €-elementary embedding, preserves C,
and @*(bx1(A)) = tx72(A) for all A € V. [In this proof, we identify £(A) and
A when there is no danger of misunderstanding.] It follows immediately that ¢* (i)
satisfies the conditions (i) and (ii) from Definition 10.1. We prove (iii) and (iv) by
induction on rank 72 [T? := T p; T! .= T ]

As usual, everything is trivial when rank 72 = 0, so we assume T2 = {0} U Ujes G) ~

Tj- We let Dl = DT’ for T' := TZE}')’ and l)2 = DT” for T" := TZ(/{lz)

By Lo$ Theorem, i € V34" i5 a function whose values /! -almost everywhere are
finite sequences of stratified ultrafilters over A, that is, without loss of generality for
all 1 € ST, ii(t) = (uo(t), . . . (1)) where (1) € w. Then @*(i)) € V=Y’ is the
function defined for all s € 3 dom ¢ by @*(#)(s) = (up(?), . . . (1)), for t = @(s).
Let A € VEU be such that ULV U?) E X < @*(v); ie, without loss of generality for
all s € ¥ dom ¢, A(s) < v(p(s)). We note that UH(V;U?) E go*(ﬁ')gzuz(,,) = @™ (),
for all n € w [where u,: t+— u,(t)]. There are two cases to consider.

Case (¢).

@((j)) = 0 and @ : u5.> — U', for all j € [domely € U*(0). We note that
@*(h)yy = ;) () forany h € VEU' in this case.

By the inductive assumption, cpfﬁ(ﬁ) is a pedigree for c,oz.> (f) over A in Z/IEI(V;M%I.)).
By the Factoring Theorem, (U4(V; S U?), Crep2) F “e*() is a pedigree for ¢*(f)
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over A”. But ug =yx;p1 Esyp(w) for some w € V, so ¢*(ug) =x1p2 tspow) €
742

ng(v’u ); this means that ™ (i) is also a pedigree for *(f) over A in ULH(V; X U?) =

ULV S U?), Type).

Case (p).

[elo: [T%10 — [T'lo. U'(0) = [@lolU*(O)] and @ : Uy — Uy,
[dom ]y € U(0). We note that @}, () = @* () for any h € V=U' in this

case. We distinguish two subcases.

for all j €

Subcase (i): Ut(V;UY)YE D! C u;.

Then also ULV; S UY), Cyi.p1) F i is a pedigree for f over A”. By the Factoring
Theorem, Ult(V; L{<1i>) E “@ is a pedigree for f;; over A” for U'(0)-almost all
i. So, by the inductive assumption, Ut(V; L@)) = “¢*&>(ﬁ¢(g>)) is a pedigree for
<p>5>(f¢(<]->)) over A” and UEI(V;U@) E “cp*(i[)(n is a pedigree for *(f)() over
A”, for U?(0)-almost all j. The Factoring Theorem leads to the conclusion that
ULV S U?), Crep2) F “@* (i) is a pedigree for *(f) over A”. As in case (c) now,
@*(uo) =12 tyy2(w) for some w € V, so p*(up) € SZOM’(V;MZ) , and we have also
ULV; S U?) E “* (i) is a pedigree for ©*(f) over A”.

Subcase (ii): U(t(V;U") E D' Bu.

Let ii™ denote a function defined by @™ (¢) := (u;(t), ... uy(t)) for XU -almost all
t € XT'. The notational ambiguity is harmless, as U¢1(V; 2 U") E it = iit. Then
uUuv; U, Cyi.pt) E “ut is a pedigree for f over A”.

By the Factoring Theorem, U/{#(V; L{gl.>) E “L_t'z;> is a pedigree for fi; over A” for
U'(0)-almost all i. The inductive assumption ges that U1V, Z/I?ﬁ) E “go*(ﬁ+)<j> is
a pedigree for ¢*(f); over A” for U 2(0)-almost all j.

By the Factoring Theorem one more time, UA(V;XU?), Erep2) F “p*@t) is a
pedigree for *(f) over A”; also

ULV U, Tpp) E 0™ @) = (9™ uo)) ~ 9" @) N @ (o) E0 A @*(u) BD>”.

In order to prove that ¢*(i) is a pedigree for ¢*(f) over A in U/t(V; Y U?), it remains
to show that UlH(V; S U?) E “by10(X) € @*(ug) = @*(u1) € ty2(X)”, for all
X € V. But uy =x;;p1 &57p1(w) for some w € B, A, hence ¢*(up) =2 ts72(w) and
the antecedent implies that X € w. It follows that U/t(V;U") E u; € £y, (X) and
finally Ult(V;U?) E o*(u1) € Ey2(X). ]
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Proposition 10.16 (ZFC) If ¢: > — U' is a morphism and Ut(V;U") E “0 C
h A (Vx € s n(A)(x T h = (x,y) € R)”, then ULV, U?) F (Vx € E52(A)[x T
@ (h) = {x,*(y) € ¥*R)].

Proof We proceed by induction on the rank of /2.
Case (c¢).

By the inductive assumption, we have L{EI(V;Z/%) FE (Vx € (A)x C cpzk].)(h) =
(x, cp’<‘j>(y)) € cp’<‘j> (R)) for each j € [dom ¢]y € U?(0). Hence, by the Factoring Theo-
rem, (ULV; S U?), Crpp2) F 0T @ () A (Vx € BA)[(x C @*(h) = (x,*(¥)) €
@*(R)]”. As D? Cye @ (h) implies x Typ.pe @ () < x T 9™ (h), we have
ULV UP) E (Vx € BA)[x T ¢*(h) = (x,9*(¥) € *(R)].

Case (p).
Subcase (i): U(V;U") E D' C h.

Then UOV;SUY), Copp) F0C h A (Vx € 8A)(x C h = (x,y) € R)”, and by
the Factoring Theorem, UEt(V;Z/I<1I.>) F“0C h(,-> A (Vx € 8A)(x C h<,-> = (x,y<,->> S

Ry)” holds for XU 1(0)-almost all i. By the inductive assumption, U/¢1(V; L{(21.>) F
“0C @ (g A (Vx € BA)x T ¢*(h); = (x, go*(y)@> € ¢*(R)(3]”, and the
conclusion follows as in case (c).

Subcase (ii): U/t(V;U') = D! B h.

Then @*(h) B2 ¢*(D") B2 D?, and UL(V;U?) E “x € B(A) A x T *(h)” implies
that UH(V;U?) E “x € BA) A x T 07, ie, x = £X) for some X € A. Since
UV, U E (](X),y) € R for all such X, Ult(V;U?) E (X)), ¢*()) € @*(R) for
all such x. o

Proposition 10.17 (SST’) LetA€S,, x€ A and x,ii € Sallyll.
If (S.lly]l, =, €,Cn) F “U is the pedigree for x over A”, then i is the «-pedigree for
X over A.

Proof Transfer [ Sy[[y]] < V ] immediately implies that ¥ = (u, : n < v) where
v € wNSyllyll, every u, € B, A, and up € S,, u, = x. We have to prove that (iii)
and (iv) from Definition 10.1 are also satisfied.

If (iii) fails, then there are n < m < v such that u,, =, u,. If (iv) fails, then there is

n<vand X € u, such that X C,, up+ and u, ¢ X. Let z = (y, (n,m)) in the first
case and z = (y, (n,X)) in the second case.
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Let v! and ¥? be a-pedigrees for y over B and z over C resp., where B,C € S,
and m;: C — B. Then y = m(z) and Proposition 10.14 [Theorem 10.10] gives a
commuting diagram [ ¢ is induced by 77 ].

UV 225 L (Sl = €, Ca)
" [ Sa <

ja;y,B

(U (V5 v))]Se Sallyll, =, €,Ca)

As n,m € S,[[z]] in the first case, and n,X € S,[[z]] in the second case, (iii) or (iv)
fails in S, [[z]], so S, [[z]] ¥ “i is the pedigree for x over A”.

Let 8 1= jou 5, X =gy (0, A= g p(A).
Sa F ZFC, so Proposition 10.15 holds in S,. But, in S,, Ut(V; V(l)) F“Sisa

pedigree for X over A”, therefore ULV, V%) F “p*(S) is a pedigree for *(X)

over ©*(A)”, Jaz,c(@*(S) = U, jazc(@* (X)) = X, jazc(p*(A) = A, and so
(Sallzll, =, €,Cn) F “i is the pedigree for x over A”, a contradiction. O

Corollary 10.18 (Closure under pedigrees)
It x € A €S, and x € Sy[[y]], then the «-pedigree for x over A belongs to S,[[y]].

Proof (S.[[yll,=,€,Ca) F SST*, so (Sullyll, =, €,Ca) F “(3lu)( is a pedigree
for x over A”. By Proposition 10.17, this @ € S,[[y]] is the a-pedigree for x over
A. d

Corollary 10.19 S, [[y]] is the smallest U < V such that S, C U, y € U, and with
each x € U also an o -pedigree for x is in U.

Proposition 10.20 (ZFC) Let U € B_,A and let U be its associated TOU.

Define D := Dy := Dy, E = Ey := Er, € V=T by Dy(t) =t and Ey(t) = t,,
where t = (ty,...,t,) € X Ty; Ey(t) = U ift =0 (ie, U € ByA) [see Corollary 7.3].
Then UlH(V;U) E “(¢xu(U)) ~ D is the pedigree for E over txy(A)”.

Moreover, UL(V;U) F (Vf 3 0)du € w)(fEHD,).

Proof We write € for £xy throughout. The case when U € 3)A is trivial. Otherwise,
by Definition 9.8, for all + € X Ty, t, € ByA = A; it follows that U/t(V;U) F
E € ¥(A). From this definition it is equally clear that U¢t(V;U) E “(&(U)) ~ D is
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a sequence of stratified ultrafilters with domain = v + 2 € w and D, = e”, where
v(t)y=nforall t = (ty,...,1,) € XTy.

We prove the clauses (iii) and (iv) in the definition of pedigrees.

If Ulr(V;U0) F pu < v, then u(t) < v(t) = n for ¥ U-almost all ¢+ € X Ty, and
we define D, by D,(f) := t,4. The notational ambiguity is again harmless, as
ULV, U) £ Dy, = D,,. Wenote that T(D,,) =y TL ={tm:m< p)At € 2Ty}
[Corollary 7.3(c)], and /\T(DH)(t) = u(t)+1 for 3 U-almost all ¢ [Definition 6.9]. Hence
UV;U) E “uy < pp < v =D, T D" As TO = {0} <y T(Dyo)), we have
also Ult(V; U) E &(U) C Dg. These results establish (iii).

Also, for every f € V=V with 7O <y T(f) there is p <sy v such that App(f) =
p(t) + 1 for ¥ U-almost all 7. Then Ar(r) =u Arp,) and UV U) F fBD,.

It remains to prove (iv).

If UiV, U) F “g € 8(U) N g T Dy”, then g = €(S) for some S € U, and for all
(v) ~ 1 € X¥Ty where v € S, we get Dyo)((v) ~ 1) =v €S =g((v) ~7),ie,
UV, U)E Dy € g.

If U(V;U) F “g e D, AN/ =p+1 A gC D7, then T(g) sy T(D,) and
there is g € VTP guch that, for ¥ U-almost all 7, g(r) = g(s) € D, (t) where
s =1] (ut)+1) = (to,...,tus). Then for all v € g(s) and all appropriate ',
Dy(s ~ (v) ~ 1) =v e gls) = gls ~ (v) ~1'). We see that for ¥ U-almost all ¢,
D, (1) € g(t),ie, UlK(V;U) F D,y € g. This completes the verification of (iv). O

Proposition 10.21 (ZFC) Let U/(V;U) E “U is the pedigree for f over x1(A) A
ug = ¥y (U)”. There is a morphism @: U — U such that Ult(V;U) E @ | X Ty =
u™ . In particular, UIt(V;U) E “@*(Dy) = u+ " and ULV;U) E “©*(Ey) =f".

In this precise sense, “the pedigree for f is a morphism onto the TOU associated to
the type of f”. We note that ¢ is uniquely determined: if ¢’ is another morphism as
in 10.21, then ' | X Ty =su @ | X Ty.

Proof We proceed by induction on rank 7.

If rank 7y = 0, then Y = 0, f =xy txy(a) forsome a € A, U =a, U =0, and
 is the trivial morphism ¢(0) = 0. So U(V;U) E“p | £ Ty = u™” is true.

Let Tyy = {0} U U, (i) ~ T;. We assume without loss of generality that ranf C A.
By the inductive assumption, for each i € I let UlH(V U ;) F “it is the pedigree
for fiy over sy, (A) A (@) = sy, (U)7, and let ¢;: Uy — U' be a morphism
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such that Uli(V;Uy) E “p; | BTy, = @@)*”. Define v by (i) ~ f) = ii'(t) for
i €1t €XTy,; then v/TV = (i@ : i € I) and ULULNV;Uyy) = i € T);UO0)) F
“3/TW is the pedigree for f /T over £514(A)/T"”’; hence, by the Factoring Theorem,
U(V;U) E “V is the D) -pedigree for f over €57/(A)”.

Case 1 (collapsing)

There is some U such that U’ = U for all i € C € U(0).

Then ULH(V;U) F “vo = txy(U)”, and hence ULt (V;U) E “V is the pedigree for f
over £x7/(A)”. We let ii := V and define ¢ by

{cp(m = @((i) =0

(i) ~ 1) = p(1)

forall i € C and 7 € dom ;.

It is clear that ¢ is a morphism of ¢/ to U. We also have, for all i € C and
t € domepyy € SUL, (i) ~ 1) = @i(D) = @) (1) = V(i) ~ 1) = @ (i) ~ 1), 50
@ | DTy =sy ii*.

Case 2 (preserving)

Let h: I — B,,A bedefined by h(i) = U',andlet U € Bo.A be suchthat U ~ h[U(0)]
[see Proposition 9.2]; U is nonprincipal. We let ii(r) = (U) ~ W(r), for t € ¥ Ty. It is
easy to verify that U4«(V;U) E “i is a pedigree for f over €x7,(A)”. We define

p(0) =0;
p((i)) = (U") fori € h~![dom U] € U(0);
@((i) ~ 1) = (U") ~ @i(D).
It is easy to verify that ¢ is a morphism of ¢/ to U. Also, for all i € [ and

t € STy, P(i) ~ 1) = (U) ~ @u@) = (U) ~ @) @) = @) ) = V(i) ~ 1)
=ut (i) ~ 1. ]

Definition 10.22 (ZFC) Let D, and 91, be realizations of SST’.

® is a morphism of 91; to M, iff ¢ is an €-elementary embedding of M; to N>
[in particular, (Vx,y € IM)(x Con, ¥y & P(x) Con, P(y))] and & preserves good
pedigrees, that is, (Yo, x,u € 99%)(i is a good «-pedigree for x = P(i) is a good
®(ar)-pedigree for O(x)).

Proposition 10.23 (ZFC) If p: Uy — Uy, then ™ : ULV ;U)) — ULV ;U») is a
morphism.
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Proof This is a corollary of Proposition 10.15 and Proposition 10.5. O

We prove that every morphism ®: Ut(V;U)) — ULV ;U») is of the form * for an
essentially unique ¢: Uy — U .

Proposition 10.24 (ZFC) Let U be a TOU and D := Dy := Dr,, be defined by
D) =t fort € A:=XTy. If U(V;U) E “U is the pedigree for D over ts1(A)
and ug = sy (U)”, and x := xy,: U — U is such that UL(V;U) E x | STy = ut,
then x is an isomorphism of U and U.

Proof By induction on the rank of U/.
If 4 = 0, then U = 0 and the trivial morphism 3, is an isomorphism.

Assume that T = {0} U U, (i) ~ T; and for each i € I, ULH(V;Uy) E “V' is
the pedigree for D' over A’ and~ vy =ty u<,->(Vl)”, where of course D' := D“<i> and
A; = ¥T;, and X;: Uy — V' are the corresponding isomorphisms. We note that
Vi) = (vp(D), ... ,v’yi([)(t)> is a finite sequence of elements of B, A; for XU ; -almost
all z. For i # i we have A;NAy = 0.

Let p;: A; — A be defined by p;(t) = (i) ~t,and 0, :C A — A; by 0;((i) ~ 1) =1¢. It
follows from the remark after Proposition 9.6 that p; is an isomorphism of Vi € B A,
and pi(V;) € BA. We define i’ by u'(t) = <E(v6(t)),...,E(vf,[(,)(t)» and x;
by x;(t) := pi(x;(1)); then UL(V;U;y) F “ii' is the pedigree for Dy over A and
Uy = EEU@(U’)”, U' = pi(V"), and x;: Z/l<,-> — U’ is an isomorphism [note that
ULV Uy) E“ i’ = E(pp) o V' A V' =E(o;) o’ 7, and apply Theorem 10.10].

The mapping h: i +— U' is one-one because E(Vi) concentrates on p[A;] and p[A;] N
plAy] = 0 for i # i’ [see the remark following Definition 9.5]. Hence the preserving
case in the proof of Proposition 10.21 occurs, U € B,,A is defined by U ~ h[U(0)],

and x((i) ~ 1) := (U) ~ x;(0).
It is easily verified that x;, has the required properties. O
Proposition 10.25 (ZFC) For every morphism ©: ULt (V;Uy) — ULV ;U,) there

is ¢: Uy — U, such that ® = @*. If also ¢': Uy — Uy and ® = (¢')*, then
@ | T = | T for some maximal T <4, Tyy, -

Proof Apply Proposition 10.24 to ! and D, to obtain &', U', and an isomorphism

X = Xyt U' — U'. Since ® is a morphism, we have U/t(V;U?) E “®(ii') is the
pedigree for ®(D;;1) over £5;2(A) A (I>(u(1)) =ty (U 1y, By Proposition 10.21 there
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is a morphism ) : U* — U'. The composition ¢ := X_l

U* o',

o 1 is then a morphism of

We have ¢*(Eyi) =s2 @(Dyr) and x*(Ey1) =xy1 Dy, by Proposition 10.21.
Hence (IJ(Dul) =y uy2 ’l,b*(EUl) = Uy? ’l,b*((X*)—l(Dz,{l)) =y 2 QD*(Dul) =y 2 Dul o
(P [ XTp) =12 o | XTope.

Forall f € VEU e have, as in the proof of Proposition 2.5 Claim 2, that U¢t(V;U,) F
[ =t n(N(Dy), hence ULL(V;Up) E (f) = tx o (/)(P(Dyy1)). We finally con-
clude that @(f) :Euzf o) (D(Dul) :2u2f o) (QO r pM Tuz) =2 u? QD*(f)

Assume now that @: U> — U, @': U? — U, and ® = p* = (¢)*. It follows
that @ [ X Ty =s12 @ (Dip1) =502 (@) (D) =512 ¢’ | £ T2 The conclusion
follows by Proposition 6.16. a

11 Stratified Limit Ultrapowers.

11.1 Stratified limit ultrapowers.

A directed system of TOUs consists of the following data: a directed preordering
(D, <), a system of TOUs U = (U, : d € D), and a system ¢ = (¢, : d < d')
such that, forall d < d' < d", ¢y 0 #0, @ € Qyg = p: Uy — Ua, p,¢" €
baa = ¢ =su, ¢,and ¢ € ¢y, ¢' € Py 4 implies po’ =5y, ¢" for some
"€ Py

A directed system of TOUs induces a system of interpretations (Ut(V;Uy) : d € D),
and a system ® = (®; 4 : d < d’) of morphisms @y 41 ULV Uy) — ULV Uy )
that commute with the canonical embeddings: ®4 4 o €21, = £n1,, and such that
d<d <d" = ‘I)d,d” = (I)d’,d” o (I)d,d’; namely, (I)d,d’ = " for any ¢ € ¢d,d’ [it is
independent of the choice of ¢].

The stratified limit ultrapower of the universe LU/{#(V;U, ¢) is the direct limit of
this system.

For a more concrete description of this interpretation, we observe that the given data
induces a directed system of ultrafilters U := (XU : d € D), ¢ := (¢aa :d < d'),
where ¢g 0 :={p [ ETy 1 ¢ € Gy}

The limit ultrapower LU Ct(V; fJ, qg) described in Section 5 is a realization of ST, and
each ®g.: UK(V;XUz) — LUV U, ¢) is a morphism of interpretations for the
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{€, st}-language, that is, an €-elementary embedding commuting with the canonical
embeddings [Proposition 5.1].

The interpretations LULH(V; U, ¢) and LULH(V; @, gg) have the same universe, the same
€* and =" [interpretations of € and =, resp.] and the same P, ..

The relation C is interpreted in LUt(V; U, ¢) by C*, where f C* g iff (3d” € D)(d <
d" Nd < d" A (I)d,d”(f) Eud,, (Dd’,d”(g)), fOI'f S Vzu‘l, g c Vzud/ .

We note that f € S; < f =" £5y,(c) for some ¢ € V, and ®, . preserve L, that is,
forf,g e V=W, [y, g fC"g.

Theorem 11.1 LU/¢t(V; U, ¢) is a realization of SST’.
Foreachd € D, ®4.: Ut (V;Uy) — LUV U, ¢) is a morphism.

Proof The axiom of Relativization follows immediately from the definition of C*
and the fact that it is satisfied by each 5y, .

Transfer:

We prove that, for any €-formula P and any fi,...,fr &F h, LUKNV;U,¢) F
(Fg)P(g.f) implies LULH(V; U, ¢) = (g T h)P(g,f). Transfer into S, then follows
by the usual induction on the complexity of P.

Let h € V>4, fi € V=Y and fi % h for all i. From the definition of C* and
the facts that all ®; 4 preserve C and (D, <) is directed, we get d > E, d; and
g € VEUi guch that UH(V;Uy) E $g,a(f) C @ (h) and LUKV, U, ¢) F P(g,f).
As &4, is an €-elementary embedding, ULH(V;Uy) F P(g, Pa, a(f1); - - - Pap.a(fi)-
By Proposition 8.1, U¢t(V;U,) = SST, and it follows that there is g € V> such
that Ul(V:Uy) F g E 5 () N P(g, Py, a(f1); - - - Paa(fi). Applying the T-
preserving, €-elementary @, ., we get LUKV, U, @) Eg T h A P(g,f) [Pu(8) =
g, <I>d7*(<1>37d(h)) =* (I)E,*(h) = h, etc.], ie, LUKV; U, ¢) = (g T hP(g,f). ]

(Va)(By):

Lemma 11.2 If Uit(V;Uy) E “ i is an h-pedigree for f over A C h”, then
LUKV, U, ¢) E “ i is a good h-pedigree for f over AT h”.

Proof LUIH(V;U,¢) is an €-elementary extension of U{(V;Uy), and Ty, is the
restriction of C* to V>% . From these observations it immediately follows that
conditions (i) and (ii) from the definition of pedigree hold in LU{H(V; U, ¢).
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Let LUV, U, p) FE “n<m AN X € up, N X Cpp uyy1”. Without loss of generality
n,m,X € V=Ur for some d' > d. By Proposition 10.15, ULt(V;Uy) F “® 4 4 (id)
is a ®4 4 (h)-pedigree for @4 (f) over ®,44(A)”. In particular, ULH(V;Uy) F
Q40 ()y Co ) O, (W) [where @4 (i), denotes the n-th term of the finite
sequence P, (i) in the sense of ULH(V;Uy )], and so, applying @4 , and observing
that @4 (Py o (i0),) = uy etc, LULV; U, ¢) E u, Cp uy,. This proves condition (iii).

Similarly, Ut(V;Uy) E @y 4(ih),11 € X, and hence LULH(V; U, ¢) F u,11 € X. This
proves condition (iv).
It remains to verify that LU¢1(V; U, ¢) satisfies the condition (j).

Let X, g, g’ be such that LUM(V;U, ) E “X, g, ChAXEXuy A g, g € V=%~
Without loss of generality X, g, g’ € V>U for some d’ > d and UL(V;Uy) F
“X,g,g/ C CI)d,d/(/’l) ANXeX (I)dﬂ'/(llo)”. As (I)d,d’(ﬁ) is a good @d,d/(h)—pedigree in
UGNV Uy), ULV Up) F @y (@) € XA Co, oy 8 8(Paar ) o, (i)
g (@ @)1 Applying @y ., LUKV;U, ¢) F “it € X A (g Ty, & < gl") Cy,
g, o
The proof of Lemma 11.2 shows that ®, ., takes pedigrees in U{t(V;Uy) into good
pedigrees in LULH(V; U, ¢); ie, that @4, is a morphism.

Finally, let LUlt(V; U, ¢) E “fMuU AU € B (A)Nf=F(@g) NAFC h”. Wefixd
sothat f, g, h, A, F € VZY _ Let UlH(V;Uy) E “ii is a good h-pedigree for f over A”.
By Lemma 11.2, LUt(V; U, ¢) satisfies this statement as well, and, by uniqueness
of pedigrees [true in LULH(V; U, ¢) E SST], LUlt(V;U, o) E U = uy, hence also
ULV ;Uy) E U = uy.

There exists V so that

*) ULV U,) E “V is a good h-pedigree for g over B, where B C h”.
Theorem 10.10 holds in U4t(V;Uy;), so

(**) ULHV;Ug) F ug = F(vo).

By Lemma 11.2 and &4, being €-elementary, (*) and (**) hold in LU/H(V;U, ¢).
So, letting V := vg, we have LUt(V;U,¢) E“VEh A U=F(V) A gM,V.” This
shows validity of (Va)(By) in LUV, U, ¢).

Inner Standardization is a consequence of (Va)(B,), as pointed out in the remark
following Definition 10.13. |

Theorem 11.3 Every realization of SST® is isomorphic to a stratified limit ultrapower
of the universe.
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This theorem is not used anywhere in the paper, and we omit its proof, which follows
the lines of the proof of Proposition 5.2, with S[[x]] in place of S[x].

11.2 Internally iterated ultrapowers.

The next subsection is devoted to the construction of a special kind of stratified limit
ultrapower. The technique used in this construction was developed in [13] and called
there internally iterated ultrapower.

We fix a linearly ordered set (A, <). For « € A, A(> o) :={f € A:a < (}. Let
Seqh, := J{I' : F C A, F finite}. For s € Seqly, 5\ := {f € I" : s C f}.

We say that P C Seqf\ is a partition if (Vf € ™@Als € P)(s Cf),ie, P:= {Ivf\ 15 €
P} is a partition of I* in the usual sense. For a partition P, domP := Usepdoms;
min P := the least element of dom P, if it exists. [By convention, the least (greatest,
resp.) element of the empty set is +o0o (—oo, resp.), so if P = {0}, min P = 400 and
max P = —00.]

Let P, Q be partitions; by definition, P < Q iff (Vt € Q)(ds € P)(s C 1); we denote
this unique s by mp o(f). We then say that Q is a refinement of P and 7p ¢ is the
projection of Q onto P. Clearly < is an ordering, mpp = Idp, Tpo © Tor = TPR
for P<<Q < R. Forany P,Q let PVQ := {sUt € Seql, : s € P,t € Q}. Itis easy to
check that PV Q is a partition, P,Q < PVQ and P,Q <R = PVQ <R.

We define vp : P — A by vp(s) = max(doms). We say (P : s € P) is summable
if P C Seqf\ is a partition and for each s € P, Py C Seqf\(>yp(s)) is a partition.
Then Q := Y epPs := {sUt : s € P,t € Py} is a partition, domQ = domP U
Usep dom Py, min Q = min P.

Definition 11.4 F} is the least collection of partitions of Seq/, containing the trivial
partition {0} and all partitions P% := P*! := {{(c,i)} : i € I} for o € A, and closed
under ¥ . In detail, we construct by transfinite recursion:

FA©) := {{0}}

FRE+ 1) :=FLE) U {SeepePa:a €A A (Va € POP, € FL L (O}
FL) = Ue,y FA©) for n limit

Fi = Ugeon FAE-

We note that the construction always terminates; in fact, 7:11\(5 +1) = }*le(f) for
¢ =k, where |I| = k. For P € FL, rank P is the least & such that P € F4(&).
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Proposition 11.5 (i) P> € F| forall a € A.

(i) If P € FL, P, € .7-"/{ for all s € P, and (P; : s € P) is summable, then
Y sepPs € f/[\

Proof (i) PY = X 4cpa{0} € Fa(1).

(ii) We proceed by induction on rank P. Let P = ¥ ,cpo P, ; by inductive assumption,
for each a € P*, X ,ep,Pur € Fa. Hence X cpPy = X yepa(Xtep,Paur) € Fa-
[Note that every s € P uniquely decomposes as a U t where a € P*, o < mint, t €
P,.] m|

Let U be an ultrafilter over I. U, := j,[U] where j,: I — P is the isomorphism
defined by j, (i) = {(a,i)}. Wehave A € U, < {i € I : {(a,i)} € A} € U, for all
A C P,

We define an ultrafilter Up over P € F4 by recursion:
Ujoy is the principal ultrafilter over {0}.

If P =X cpaPy, then, for ACP, AcUp < {acP*:{sc€P,:aUsc A} €
Up,} € U,. [Hence, Up is isomorphic to Xy, Up, viathe map aU s — (a,s).]

From associativity of the Rudin-Frolik sum we get by induction: if Q = ¥ ;cpPy, then

Up = Y y,Up,.

Proposition 11.6 If P,Q € F4, then PVQ € F} and Up = 7p pyolUpyol,
Ug = mo,pvolUpvol.

Proof By double induction on rank. We assume that the claim holds for all P € Fy
of rank less than ¢ and all Q € F,. We prove that it then holds if rank P = £ and
Q € Fj, by induction on 7 := rank Q.

The case when either P or Q is {0} is trivial, solet P = X ;cpa Py, Q = X ,cpsQp.
From the definition of V one sees that:

If a =3, then PVQ = ¥ 4epa(P,VQ,).

If @ < 3, then PVQ = ¥ 4cpa(P,VQ).

If o« > 3, then PVQ = X ,cps(PVQp).

In each case the terms of the sum belong to F, by inductive assumption, hence
PvQ € Fy.
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To prove the claim about ultrafilters, we work out the case @ < [ in detail. If
ACPorACPVQ,anda € P,,weletA,:={s:aUs € A}.

We now have: A € Up = {a € P*: A, € Up,} € U, = [by the inductive
assumption] {a € P* : 75!, o [AJ] € Up,vo} € Us = {a € P : (mp pyolAla €

Ur,wo} € Ua = Tp pyglAl € Upyg.

Similarly: B € Up = [by the inductive assumption] (Va & Pa)(wéj,,an[B] c
Up,v0) = {a € P*:myp oolBl € Upvo} € U = {a € P*: (wypyolBDa €
Ur,v0} € Us = T4 pyolBl € Upsg. |

Corollary 11.7 If P < Q, then Up = mp g[Up].
Proof P < Q implies PVQ = Q. O

With each partition P € F /1\ there is associated a uniquely determined tree Tp in the
sense of Section 6.

Let T': Seqf\ — V<% be the one-one mapping defined by I'(s) = 7, where s =

{(a0,i0), ..., (ak—1,ix—1)} € Seql and 1 = ((a, ip), .- ., (u—1,ik—1)), With ag <
. < og—1. [For our purposes, this is more suitable than the simpler mapping

§ = (o, .-y ik—1) -]

The tree Tp is obtained by replacing each s € P by I'(s), and closing under subse-
quences. A more formal definition is by recursion:

If P= {0}, then 7p = {0}.

If P =X ,epaP,, and for each a = {(«, i)}, T; := Tp, is the tree associated to Py,
then Tp := {0} U ;¢ (e, i) ~ T;.
With some license, we use a to denote {(«,i)}, ((a,i)), or (a,i), whichever is

appropriate.

The elements of the partition P are in one-one correspondence with the leaves of Tp:
[[Pl=XTpand P=T"'[STp]. Fort € Tp, P,:=T"'[ST,] <Pisin F}.

An ultrafilter U over I and a partition P € F le determine a TOU Up over Tp:
If P = {0}, then Up = 0, and if P = ¥ 4cpaP,, then Up(0) = U, and Up(a ~ t) =
Up, (1) otherwise.

Proposition 11.8 X Up = I'[Up]| and Up = I~ [SUp]. If T <4, Tp, then there is
Pe Fy, PIP,suchthat ST CT[P), T € SUp, T =y, Tp and P =% _ Pryy).
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Proof Straightforward induction on the rank of P. O

For T <u, Tp we define P/’YVw = (P, : 1€ ET) =su, (Prgs) @ s € 7’>. We have
ULV; S Up) E“P/T € Fyly) A Up/T = Uy 7. [Here £ = tsy,, and we identify U
and #(U) in the last term.]

Proposition 11.9 Let P,Q € F4 and P < Q. The projection npg: Ug — Up
naturally induces a morphism of TOUs mwp g : Ug — Up so that the following diagram
commutes.

Ugp EUQ
TP,0 Pr,0
r
Up Y Up

Proof By induction on the rank of Q. The case when either P or Q is {0} is trivial,
solet P =X 4epaPy, Q=X ,cpsQp. As P 1Q, we have to have 5 < a.

Case 1: 3 = «. This is a preserving case.

For each a € P* = Q% we have Tp, 0, Up, — Up,. We define mpp(a) = a and
wpola ~t)=a ~mp,,(t) for t € Tp,. The verification of the claims is trivial.

Case 2: § < «. This is a collapsing case.

It then follows from the definition of < that P<1Q), forall b, so we have wp g, : Ug, —
Up forall b € QB. We define Wpr(b) = {0} and Tl'p’Q(b ~1 = WP,Q;,(I) fort € TQb .
The verification of the claims is again trivial.

It is also easy to see that wpgr = wppomor if PIQ IR. O

I'* is an isomorphism of U4(V; X Up) and UL(V; Up). In view of the preceding dis-
cussion, we henceforth informally identify these two interpretations. The isomorphism
I'* can be used to copy the stratification Ty, of UL(V; X Up) over to UL(V; Up), and
we may write simply U¢H(V; Up) in place of ULH(V; X Up).

From Propositions 11.6 and 11.9 it follows that (F{,<), U := Up : P € F4),
¢ = ({ppr} : P < Q) specify a directed system of TOUs. The internally iterated
ultrapower of the universe modulo U along A is the direct limit of this system, the
stratified limit ultrapower LULH(V; U, ¢).

However, in order to construct an interpretation that satisfies SST#, we need to internally
iterate not a single ultrapower, but a limit ultrapower [such as the iterated ultrapower
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9 of the universe along (Us : 6 € A) constructed in Section 5 in order to obtain an
interpretation for BST ]. Before describing this construction, we have to develop some
further theory.

Letl,J, 7: J — I, and ultrafilters U over I, V over J suchthat U = 7[V], be fixed. 7
induces a mapping T : Seq{X — Seqf\ by 7(s) := Tos; we note that dom 7(s) = doms.
If PC Seqf\ is a partition, 7P := 7~1P] C Seqf\ is a partition, dom 7P = dom P,
and v;p =vpoT. Let 7p: TP — P be defined as 7 | TP.

It is easily seen that if (P, : s € P) is summable, then (T(Pz()) : t € TP) is summable
and 7(X sepPs) = Xierp T(Prp).

It P,OC Seqf\ are partitions and P < Q, then 7P < 7Q and the following diagram

commutes. TrP 10
b

TP ~—F 70

TP TQ

P,

P o

Proposition 11.10 IfP € F., then TP € F{, rank 7P < rank P, 7p: V,p — Up isa
morphism of ultrafilters, and Tp naturally induces a morphism of TOUs Tp: V:p — Up
so that the following diagram commutes.

VTP EVTP
TP \ Tp
r
Up X Up

Also, for P < Q € F!, the following diagram commutes.

TrP,rQ
Vip ~——7% Voo
TP TQ
T
UP PvQ UQ

Proof By induction on rank P. The nontrivial case is P = X ,cpa,P,. We note that
7({(a, D)) = (o, 7(0)), TP = P* and TP = ¥ jcpasT(Prpy). As 7: V — U,
clearly 7 | P*’: V, — U, and, by the inductive assumption, 7 | T(Prw): Virp) —
Up., - A straightforward computation shows that 7p: V:p — Up. We omit the tedious
verification of the remaining claims. a
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Let now (D, <) be a directed preordering, Uy an ultrafilter over K, for each d € D,
and 7541 Uy — Uy amorphism such that 754 = Idg, and d < d' < d" = 1440 =
Taa © Tar.qav . [We are assuming that each ¢4 had a unique representative 74 4 ; this
is done for simplicity, and is the case in the construction below of the interpretation for
SST*. At the cost of further notational complications, the theory can easily be made
to work for any directed system of ultrafilters.]

Definition 11.11 D := {J,p{d} x Fy*
(d,P) < (d,P)itfd <d A 40P <P, for (d,P),(d' P')cDy
$da,p.a.p = (Taa)p O Tr, PP

Uap := (Uy)p is the ultrafilter over the partition P associated with Uj.

It is easily seen that < is a directed preordering of Dy .

We point out in particular that

(@) (d,P) <(d',7qaP) and g p.a' 7, ,p = (Taa)p,ford <d', d,d' €D;
(b) (d,P) < (d,P') and g pa r, ,p = 7ppr, for PP, P,P € F\".

Propositions 11.9 and 11.10 imply that @, p.y» pr == (Taa)p © o, g PP Uy pr —
Uqgp, that the diagram below commutes, that ¢4 p.qp = Idp, and that pg p.gr pr =
Capa p 0 paparpr if (d,P) < (d',P') < (d",P"), as well as boldface versions of
these identities.

r
Ud/ ,P’ Ud/ ,P’
Yd,Pd' P! Pd,P;d' P
r
Uap Uap

Thus (Dy, <), U= Uup : (d,P) € Dr); ¢ = {Pupap}:{dP) <(dP))
specifies a directed system of TOUs. We call LU{t(V;U, ¢) an internally iterated
limit ultrapower of the universe along A and (U, : d € D). It is an interpretation
for SST", of course.

11.3 An interpretation for SST*.

Finally, we fix a (nonempty) dense total ordering A without endpoints [to be specific,
the usual ordering of rational numbers], and let (A, <) and (Us : 6 € A) be as defined
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in Section 5. As in Section 5, D = Pg,(A) is the class of all finite subsets of A,
directed by inclusion C. To each d = {61,...,0,} € D where §; < ... < §, we
assign the ultrafilter Uy := Us, ® ... ® U;, over Ky :=1I5, x ... x1I5,; Uy := {{0}}.
For d C d', 7,44 is the canonical projection of K, onto Kz, so Uy = 744 [Ug].

The internally iterated limit ultrapower of the universe along A and (U, : d € D) is
denoted Sp (V) = (V*, =", €*, C*).

Our goal is to prove that 3 (V) satisfies SST?. We need three technical lemmata.

Proposition 11.12 Ifd = {§; < ... < d,}, Us, is k-good, and P # {0}, then Uy p
is k-good.

Proof First, P # {0} implies P = X 4cpaP,, and so Uygp = (Ug)p = Xy, Udp (o
is k-good, if Uy is. Second, Uy = Us, ® ... ® Us, is k-good, if Us, is. O

Proposition 11.13 Let A be a dense total ordering without endpoints. Let V be a
TOU and U an ultrafilter over I such that V(t) <ggx U forall t € Ty ~ X Ty. Then
there is P € .7-"/1\ with rank P = rank V and a morphism ¢ : Up — V. In particular,
the assertion holds if U is k-good, with k > |V(t)| for all t.

Proof By induction on rank of V. If V = 0, all is clear.

Let Ty = {0} UU;e, (/) ~ Ty;- Wefix o € A. The set A(> o) = {B € A: a0 <3}
is dense with no endpoints. By the inductive assumption, there exist P; € .7:/’\(> @)
with rank P; = rank V; and morphisms ;: Up, — V; forall j € J. Letf : [ — J
be such that V(0) —f[U] We let P := X ((4,)yepePri) and define ¢ by (0) = 0,
P({(a, 1)) = (f(D)), Py = Pr)- Ltis easy to verify the required properties of P and
¢ [case (p) occurs]. O

Proposition 11.14 (Amalgamation Theorem) Let 1) : W — V be a morphism of
TOUs. Let A be a dense linear ordering without endpoints PecFl,and p: Up — V
a morphism. Let U be a /ﬁ—good ultrafilter over 1, where r > |U|, |V(t)| W(t)| for
all approprzate t,and 7: 1 — I be such that U = T[U] Then there is P € .7-"1 and
a morphism 'w L{P — W such that 7P < P and, for @ P I=TpOT pp, Q,b(zp(s)) =

p(p(s)) for ZZ/{;, -almost all s; ie, the following diagram commutes zuﬁ -almost
everywhere.

W — U
’lj) A~

( PI=TPOT pp
V L Up
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Proof By induction on rank of W. If rank W = 0, then W =V = 0. We let
P = 7P [so Topp = Id p]l and ¥(t) = O for all t € Tp. From 7P: U;p — Up the
claims follow trivially.

If rank W > 0, then Ty = {0} U [Uycx (k) ~ Ty, . We have to distinguish two cases.
Case (c): v is collapsing, ie, ¥((k)) = 0 for all k € C := [dom ]y € W(0).
We fix o € A with & < minP.

Fork € C then Yyt Wyy — V and, by inductive assumption, there are P € ]:/7\(>a)
and ¢k pk — W< k) SO that g o @y = Py o 1Apk [for @y := Tpom pp ], ie, the
diagram below commutes X ﬁ;,k -almost everywhere.

Py ~
Wi Up,
Py Pk
V L Up

N, I — K such that g[U] = W(0) and rang C C, and define P :=
E{m,ﬂ)}em o(0)» and

$(0) =
P(((,0) ~ 1) = (8(D)) ~ Pyp)(1) for t € T

80"

Then (3h({(r, ) ~ 1) = YD) ~ Py (1)) = [because (€)] = 1 40y (P (1) =
[inductive assumption] = @(Pyp (1)) = p(@({((a, 0)) ~ 1)). [Note WTP,Pg(@(t) =
7 p (0, 0) ~ D],

Case (p): 1 is preserving, ie, Ty = {0} U U, (j) ~ Ty, [¥lo: € K — J and
V(O) = ['l,b]O[W(O)], ’l,b<k> : W<k> - V’l,b((k)) forke C = [d0m¢]0 S W(O)

Let T := ¢ '({0}) <¢, Tp and let t € ©T. Then [¢]; : C [Tpl, — J, V(0) =
[l [U@®)], and Pinfa) Z/{,,\@ — V<[¢],(a)>, where [p]/(a) € J, for a € A, =
[dom ¢], € U(r). Note that [Tp], = {(«a,i) : i € I} for some « € A [dependent on ],
and U(t) is Uy, modulo the identification of («, i) and {(«,i)}.

By inductive assumption, for every pair (a, k) such that 1 ((k)) = ([¢li(a)) =: (j) € J,
there exist P,a € Fh AGo) and a morphism ¢, ak: L{P — W\ so that the following

diagram commutes X U P —almost everywhere, where ¢ got ak oTr

P”" (a) TP~ (a) :Pt,a,k :
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Wk ¢t,a,k I:{\PI »
Yy Prak
V] (Ptf\(a) ut/_\<a>

Letting f; = [¢];, g = [%¥]o, and ﬁ(ﬁ) (a, 7'(6)) for ¢ €1 [so that /() —f,[U]]
and applying Proposition 3.13, we get g, :C T — K so that g,[U] = W(0) and

FFA0) =5 &(@i(0)) for L € D, € U.
We define P, and 1,b,: Mﬁt — W:
P =3 {(CX’Z)}epan, where P! = P, 30,20 for (eD, P':= TPI,\@(@> otherwise;

P({(a, ) ~ 5) = @(0) ~ ;Pt,ﬁ(é),g,(a(s)’ for £ € D, € U:

and show that the diagram

W P, Z;l\i),
P Pt
v Pt u,

commutes X U4 -almost everywhere, where @, := Tp, 0 T _p, p,.

We note that min P, = « and @,({((a, 0)) ~ s) = (o, fi(£)) ~ B: 10).20)(8)s and
calculate:

cp,(@,(((a,é)) ~ ) = ‘Pt(<(a7ﬁ(£))> ’\ @;,f‘,(g),gt(z)(s)) =

(Lel(f1(0))) ~ ‘Pt,\(ﬁ(m(at,ﬁ(z),g,(e)(s)) = (fi(fi())) ~ ‘P,,\@(g))(@,j;(e),gf(@(s)) =
<gt(gt(€))> ~ ¢<§,(£)>(d’,f(f)g,(@)(@) = <[7/’]0(§t(€))> ~ 'ﬂb@,(ﬁ))(@b,,f,(g),gt(g)(s)) =

YD) ~ B, 40 0008 = Y(ab((a, 0) ~ 5),
for all ¢ € D, and all appropriate s.

Let P € .7-"’ be such that £ T - Pand ©T ¢ EZ/{~ We observe that Tp: LA{ 5 — Uz

TP P
define T := 7'~ [T] - TP and note that 3T € EZ/{ =
We finally define:
P:= Zseﬂf“, where P* = ﬁr;,(s) ifseXT, PP= TPr,(s) otherwise

P(s)=0forseT
1Ap(s ~t) = @TP(‘Y)(I) fors € ©T and appropriate ¢ € IA’TP(S).
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We omit the easy verification that Tp is a morphism and check the commutativity.
B(s) = 1p(s) for s € T;

P(s ~ 1) = Tp(s) ~ Pr (1) for s € X T and appropriate ¢ € f’TP(S).

For s € f‘, p(p(s)) = p(1p(s)) = 0 because Tp(s) € T; '(p(@(s)) = 1(0) = 0 as well.

For s € T and appropriate t € ﬁTP(s), p(p(s ~ 1) = @(1p(s) ~ ngTP(S)(t)) =
P Py (1) = YA (1) = Y(a(s ~ 1). O

Main Theorem 1. 3 (V) satisfies SST?.

Proof It remains to prove that Sp (V) E (Va)(Fy).

Claim. Let (d,P) € Dy, f€ VU, Ue B A, V€ B (AxB),and U =F(V).
If ULV, L{) F fMot, 42U, d D) d, and Uj; is k-good for sufficiently large «,
then there exist P and g € VU, such that (d, P> < (d,P) € Dy and UV, U E

Moty (V) A @7(f) = b g(F)(g)", where U = Uy, U = Uyp. U = U,
U= =U; 3, and P = P D

Proof of Claim. By Proposition 9.9, F: B — A induces a canonical morphism
1 : V — U of the TOUs associated with U and V.

Let U0V, Z/~{) E “i is the pedigree for f over £, ;7(A)”; note that then L{Et(V;Zj{) E
up = ty,;7(U). By Proposition 10.21, there is a morphism ¢: ¢ — U such that
ULV U) E “p*(dy) = i@ A p*(ey) =f7. Wefix d € D so that d C d and U, is
K- good where K is sufficiently large for the Amalgamatlon Lemma to apply. There is
then P and 4 Z/{ — V so that <d P) < (d, P) and the following diagram commutes
> U -almost everywhere [ U-: L{P and @ = ¢ Pap -

v P

u
4 ¢
U

NG}
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If we write c_iU(t) =t and ey(t) = t, for t = (ty,...,t,) € X Ty [or ey(t) = U if
t = 0] as in Proposition 10.20 and apply ¢* to its assertion, we have UZt(V; LNI) =
“(En (1)) ~ go*(c?U) is the pedigree for *(ey) over £,.7(A)”. Hence U&(V;ﬁ) E
“(t, A(U)> ~ $*(p*(dy)) is the pedigree for @*(f) over t,;;(A)”. In particular,
UV U) E “(f)Moty, (V).

By Proposition 10.20 we have U{#(V; V) E “<EE V(V)) ~ dy is the pedlgree for ey
over Exv(B)”, so UlH(V; Z/I) E (e Eu(V)> 1,b (dy) is the pedigree for 1# (ey) over

ty,;(B)”. In particular, UV U) E (ev)Motg, (V).
Subclaim. U/1(V;V) E ¥*(ey) = txv(F)(ey).

Proof of Subclaim. Assume U ¢ By,A, V ¢ ByB. We recall [Proposition 10.20]
that ey ((vo,...,vn)) = v, ey({uo,...,ux)) = uy, and, as 7 is the canonical mor-
phism induced by F, ¥((vo,...,v;)) = (..., F(v,)) X V-almost everywhere, and
F(v,) = F(ey({vo,...,vn))) [see the proof of Proposition 9.9 and Definition 9.3].
Hence ©¥*(ey)((vo, .-, vn)) = et (v, ..., va)) = ey((...,F(v,))) and F(v,) =
P*(ey)({(vo,...,vn)) X V-almost everywhere.

It follows that ¥*(ey)((vo,-..,vn)) = F(ey({vo,...,vy))) X V-almost everywhere,
ie, UlK(V; V) E ™ (ey) = txv(F)(ey). The cases when V € ByB or U € (B3,A are
similar. O
From the Subclaim we get ULH(V;U) E 4 (1h*(er)) = by (F)(3 (ey)); but also
Y (Prer)) = eu(h o) =y eulp o) = P (P (er)) =55 @7 (f). We let
g 1= 1 (ey) and conclude that ULH(V;U) F @ (f) = t;;(F)(g) A gMoty (V). O
The Claim immediately implies that S (V) satisfies Fy:

If SA(V) E fMot(U), we fix (3, IB> € Dy sothat f € V=Y. Then also UEI(V;Z/N{) F
fMotg, 7(U) [Lemma 11.2] and we use the Claim to obtain (d, ﬁ) and g so that
ULV U) E“P7(f) = g (F)(@) A Moty (V).

From this, SA(V) E “f = 8(F)(g) A gMot(V)” follows, again by Lemma 11.2.
Before proceeding, we restate the Claim:

If (d,P) € Dy and ULH(V;Us 3) E “u,v,a,b, FCO A u€ Boga A vE Bogh N u=

F(v) A fMou”, then there exist d, P and g€ VP such that (3, 7’) < (2, 1?’> € Dy and
ULV Uy P E<“p™(f) = @ (F)(g) N gMyp*(v)”, where @ := ®;p.qp- [Note that
P = E (V) for v = £, 7(V), and similarly for F’; also, without loss of generality
domg = P ]
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We use the Factoring Theorem to prove that 35 (V) satisfies F, for arbitrary level «.
Let S\(VW)E“fM,UANU€EBANVEBBANU=FV)NABU,V,FCa”.
We fix (d,P) € Dy so that f,a,A,B,U,V,F € V>Ur; the preceding statement is
then satisfied in UlH(V;Up). [By Theorem 10.7, ULt(V;Up) E fM,U’ for some
U € B.A, so SA(V) EfM,U" by Lemma 11.2, and U =* U’ by Proposition 10.3.]
By Proposition 7.2 and Corollary 7.3(a) applied to «, there is a tree T(a) <z4, Tp such
that h Ty, v & T(h) <y, T(@).

By Proposition 11.8 and subsequent discussion, there is a Pc ff", P < P, such that
Y T(a) CT[Pl, ©T(a) € XUz, and T := T =y, T(c). Evidently, Ult(V;Up |
T(cv)) is isomorphic to U/H(V;Uz). By the Factoring Theorem, we see that the ul-
trapower (UL(V; X UPp), Cyyp:p,.) is isomorphic to [UL(V; Up | T)IHVEUp) via the iso-
morphism 7, defined by Q7,,(g) = g/ T.

From Ult(V; X Up) E fMLU we get ULV ;X Up), Cttp:n;) E fMoU. Applying the
isomorphism {2 and writing ¢ for ¢x Us »

ULV S Us) E “(e(d), P/T) € D)) A U(V;Up/T) E [U/T,V/T,A/T,B/T,
F/T COAU/T € B (A/T)AV/T € Bo.(B/T)NU/T = F/T(V/T)Af/TMU/T]".

UL(V; X Up) satisfies ZFC and therefore the restated Claim. Hence UU(V; X Uz) F
3d',q,8"(d', q) € Dery>up) A (8(d), P/T) < {d',q) A domg' =g N ULV U,) F
“QDZ(d),P/T,d’,q(f/T) - (p:(d),P/’T,d/,q(F/T)(g,) A g/MOQO:(d),P/T,d/,q(V/T)”]

We observe that, without loss of generality, d' =y, U {’(3) for d D d. This is true
because there is d 2 d such that UL(V; X Up) F “E(ﬁ) is €(k)-good”, for arbitrarily
large x. We write 7 for 7, and apply the morphism 75 to obtain [writing now ¢ for
ts U and observing that 7*(vp) = v_31:

UV U p) F Cg, (KA, 4) € Deayowy A (B, T (P/T) < (8@). q) A

domg' =g A ULV SU) E Py o T F/T) =

* * T / / * * 7\
Prar,rpreargT E/TNE) N &M@y, . pveian. o™ VTN

Claim. g =y, IA’/T?, where 7, 5P < Pe F/I\(ﬁ.
Proof of Claim.
For almost all € 7P we have (d, 7*(P/T)(t)) < (d,q(t)) and ¢(r) € ]-'/1\(?» )"

Modifying ¢ if necessary, we can assume this is true for all ¢ € TP. As P/ )(t) =
(P/T)(T(t)) = Pr(, we have (d, Pr;)) < (d,q(t)), which means 7P < q(r). We
canthus define P:= X% _ 5 q(1). AsP=2% _3P;, TP =%, 57Prq JP. a
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Hence (d, P) < (d,P); we let ¢ := Papap- Also, g =su, g/ 7P for some g € VP,
Claim. UV SUR) E Py oo iyeiirg = 91 7P-

Proof of Claim. For YU p-almost all £ we have ¢, —.p/5yar gy = Pup i’ P,

=Tomp - For all s € P, now (1) ~ s) = p(t ~5) = T(m p3p(t ~ 5) =
Tt~ 7 ppt~s) = T(t) ~ ?(wpmj,t(s)) =) ~ @ 4P d’,f’,(s)' We conclude that
(@/TP)O) = 01 = Lyp. b, = Pare /Do gD o

We now have

ULV SU ) B UNY Up,7) E (@/TPY(*(f/T) = (p/TP)*(r*(F/T))g/T)
A (g/TDMo(sp/TPY"(T*(V [T)]™.

We use the Factoring Theorem for Morphisms 7.12 (*%%) [let ' = Up, u' = Uz,
U =Us, U =Ugp, UT? =Up/TP, ¢ = ¢ypap» §=¢ | TP = Tpl 10
conclude that UU(V; XU _3) F “ULH(V; Z/{TJ/TT) F e (f)/TP = (¢*(F)/TP)(g/TT) A
(g/TT)Mo(@*(V)/TP)]”. By the Factoring Theorem this means that, finally,

ULV ZUp), Cuip 2) F “p™(f) = @ (F)Q) N gMop*™(V)7, e, UV Up) F
“P () = I ENQ N gMer ™ (V).

By Lemma 11.2, SA(V) E “f = F(g) A gM, V™. O

We consider one additional auxiliary axiom.

Block Idealization:
Forall 0C 3, A, BC 0,and RC § suchthat R C A X B,

(Va € PMA)a C 6 = @y)(vx € a)((x,y) € R)] =
Gy C B)(¥x € A) (x T B = (x,y) €R).

Theorem 11.15 <3 (V) satisfies Block Idealization.

Proof Assume that SA(V)E“RCA*xB* AOC 3 A RC 3 A (Va € PINA¥))
la C B = @)Vx € a){x,y) € R)]”. We fix (d,P) € Dy so that R, € VY,
where U := Uy p and Uj, [hence, Uy] is k-good [d = {61 < ... < 6,}] for fixed
k > |A|. By Proposition 11.8 there is P < P such that T(3) =y T5; we let U := Usp

and fix v such that T(y)* =y T(3). Then R € VU, y € VU = y C* 3, and
Ul(V; U) F “(Ya € Pin;A))la C v = @y)(vx € a)((x,y) € B AsyC* [
and each U(f) = Uy is k-good, it follows by Proposition 8.1 that UL(V; U) F (k-
Idealization)S". Hence there is y € VY such that U(V; ﬁ) F “(Vx € tg(A)(x C
B = (x,y) € R)”and so UL(V;U) F“yE B N (Vx € (5(A)KX C B = (x,y) €ER)”.
By Proposition 10.16 finally SA (V) F “y C GA(Vx € AM)(x C B = (x,y) €ER")”. O
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12 GRIST.

In this section we prove the equivalence of SST* with the axiomatic system GRIST
formulated in the Introduction, derive some of its basic metamathematical properties,
and give a number of consequences that are useful for development of mathematics in
GRIST.

12.1 Metamathematics of SST?.

First we draw some model-theoretic consequences of Main Theorem 1. Most of the
proofs are either obvious or entirely analogous to those given in Section 5, and are
omitted.

Corollary 12.1 SST? has a realization in ZFC.

Corollary 12.2 SST? is a conservative extension of ZFC. In particular, SST* is
consistent relative to ZFC.

Corollary 12.3 Every model M of ZFC has an extension to a model N of SST¥ with
N|SY=M.

Corollary 12.4 If N; and N, are models of SST?, with Ny | S)' = N | S)? = M,
then they are L, -elementarily equivalent, where L is the €-C -language with a
name for each x € M. If also |[N;| = |Na| = No, then N; and N, are isomorphic, by
an isomorphism which is identity on M.

Corollary 12.5 Every countable model of ZFC has a unique (up to isomorphism)
extension to a countable model of SST?.

Corollary 12.6 IfN; is a model of SST’ and N, is a model of SST¥, with N; I SONI =
N> | SONZ = M and |[N;| = |N;| = Ry, then there is an € -elementary embedding of N
into Ny which is the identity on M.

In view of Theorem 11.1, this result implies that every stratified limit ultrapower of
the universe, constructed internally in M = ZFC, M countable, has an €-elementary
embedding into the unique extension of M to a countable model of SST*. In this
sense, SST? is the theory of the “universal” stratified limit ultrapower.
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Corollary 12.7 (Completeness over ZFC) If T O ZFC is a complete consistent
theory (in the €-language), then T + SST? is a complete consistent theory (in the
€ -C -language).

Corollary 12.8 Let P be a statement in the € -C -language.
If ZFC = “ (V) E P, then SST* - P.

Proof Assuming the contrary, SST* A — P has a countable model N and M := N |
Sg = ZFC. By Corollary 12.4, N has to be isomorphic to N’ := 3, (V)M obtained by
constructing S (V) inside M; but N’ F P. m]

Corollary 12.9 SST? I- Block Idealization.

We give this indirect argument via Theorem 11.15 in order to avoid technicalities
attendant on a direct proof of this fact.

Corollary 12.10 SST? is finitely axiomatizable over ZFC.

Proof Proposition 1.2 shows that Transfer follows from a finite number of its instances.
This result (see also [3]) shows that SST is finitely axiomatizable over ZFC. We get
SST*? by adding the axioms (Va)(B,) and (Va)(Fy,). O

The following Normal Form Theorem, an analog of Theorem 5.4 for BST, is a funda-
mental metamathematical result about SST*.

Theorem 12.11 (SST?) (Normal Form Theorem) Let P(xy,...,x;) be any €-C-
formula. There is an € -formula Q(U) (obtained effectively from P ) such that, for all
a and all (xy,...,xx))M U, Pxy,...,x) < Q).

In particular, P“(xy,...,xx) <
AU)Y({x1, - x)MoU A QU)) & (VUX((x1, - .., x) MU = Q).
Proof We proceed by induction on the complexity of P.

Let i be an a-pedigree for x = (xi,...,xx) with up = U. The function Ey is
defined in Proposition 10.20. In the isomorphism j,: [U4t(V; U — Salit],
ja(Eu) = EU(IT'_) =X = <x1, N ,xk> and ja(ﬂ'i o] EU) = X fori = 1, e ,k.

We have

Xi € Xj & T oEy exny M oEky & {t € X Ty : mi(Ey@®) € Wj(EU(I))} e ¥ U,
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xi Coxj & moky Exy mjo Ey & ~VT' <xyu Ty)(mjo Ey € AL mioEy €
V=YY, where U :=U | T'.

The induction step is clear for A and —.

We now consider P(xy, ..., x;) of the form (dy)Pi(x1,...,xt,y). By the inductive
assumption, there is Q; such that, if (xj,...,x;,y)M,V, then

(*) Pty x6,y) & Qi(V).

Let Q(U) be the formula (V)7 (V) =U A Q1(V)).

If P%(xy,...,xx) holds, fix y such that P{(x,...,xk,y) holds. By B, there exists

V € S, such that U = 7__x(V) and (xi,...,x,y)M,V. From (*) we get Q;(V).
Hence Q(U) holds.

Conversely, if Q(U) holds, then [by Transfer into S, ] there is V € S, such that
71,..x(V) = U and Q(V). By F, there exists y with (xi,...,x,y)M,V. Hence
P(x1, ..., Xk, y) holds, and P*(x1, ..., x;) holds. ]

Corollary 12.12 If (x,...,x;) and (x},...,x;) have the same «-type, then they are
a-indiscernible, ie, P*(x1, ..., xx) < P}, ...,x,) for all €-C-formulas P.

Corollary 12.13 (Boldface Normal Form Theorem) Let P(a,x1,...,xx) be any €-
C -formula. There is an € -formula Q(a, U) (obtained etfectively from P ) such that,
for all & and all U with (x1,...,xx)MyU,

(Va € Sa)(P%(a,x1, ..., x) < Qa, U)).

Proof Let P’(a,x) be the formula (Jzy,...,z0)x = (z1,--.,2k) A P(@, 215+, 2%))
and Q'(V) the €-formula corresponding to P’(a, x) by the Normal Form Theorem.
By Proposition 9.7, for every a € S,, A := {a}, and U € BB, there is a unique
U, € B..(A X B) such that 71(U,) = a and 72(U,) = U. Hence (x1,...,x) M, U <
{a, {x1,...,x))MyU,. We let Q(a, U) be the formula Q'(U,). O

12.2 Equivalence of GRIST and SST*.
‘We need one further technical result.

Definition 12.14 (ZFC) We fix V € 8,B \ BB and define an ultrafilter U™V €
Be(A x B), foreach U € B.A \ ByA, by recursion.
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If U e B1ANByA, UV := U® V. We remark that U ® V is used only for
convenience; one could employ instead any W such that 7 [W] = U and m[W] = V.

At stage £ > 1 we assume that the one-one mapping o<¢: U’ — (U')~V of B_.A \
BoA to B_¢(A x B) has been defined, rank(U")~V = rank U’, 7((U')~V) = U’, and
m((U)~V) = V for all such U'. For U € B.A \ B_¢A, the ultrafilter o¢[U] is
then nonprincipal and does not contain 3, (A x B) for any n < . Hence o¢[U] €
Bé(A X B) \,@<€(A X B),and we let U™V := o¢[U]. We observe that T [U~V] = U
and M [U~V] = Wv7g<§(AX3); hence T (U~V) = U and mp(U~V) = V.

Proposition 12.15 (SST?) LetB,V € S,, V € BB~ ByB. Forevery 3 1 « there
is z 8 0 such that zZM,V .

Proof Fix xH 3, x € A € S,, and an «-pedigree u = (ug, ...,u,) for x over A
with U := ugp, so xMU. As f O «a, v > 0and U ¢ ByA. F, implies that
there exists z such that (x,z)M,U~V. As T(U~V) =V, zM,V [Proposition 10.14,
Theorem 10.10]. It remains to prove that z H x.

Let v = (vo,...,v,) be an a-pedigree for (x, z) over A x B; in particular, vo = U™V.
Let yBv,_1; (vu—1,v,) is a y-pedigree for (x,z) over A x B.

Claim 1. Each v,,, m < p, is of the form (U")™~V for some U’ € B, A \ ByA.
Proof of Claim 1.

Consider the largest m < p for which v,, = (U’)~V for some U’. Then either
rank U’ > 1 and v,y € {(U)™V : U" € domU'} € (U)~V, and we have a
contradiction, or rank U’ = 1, 50 v;41 € BpA and m + 1 = p. O

Hence v, = (U')~V. It follows that y C z,x; otherwise, either U’ or V would be
principal. The conclusion follows from:

Claim 2. If v C X C y, then every y-pedigree for (x,y) has length at least 3.
Proof of Claim 2.

Assume that (vg,v;) is a y-pedigree for (x,y) of length 2. Then (T (vp), T2(vy)) is a
~-pedigree for y, so vi 3 y; also, (71(vo), T1(v1)) is a y-pedigree for X. We note in
particular that 7 (vg), T2(vp) are both nonprincipal. Let 6 HX; then vy C 6 C v; and
(v, v1) is also a d-pedigree for (x,y). By Corollary 10.14 [Theorem 10.10] it follows
that {71 (vo), T1(v1)} is the range of a §-pedigree for X, a contradiction, because x € S;
while 77 (vg) is nonprincipal. |

Journal of Logic & Analysis 1:8 (2009)



94 Karel Hrbacek

Main Theorem 2. The theories GRIST and SST? are equivalent.

Proof that SST? - GRIST:
Relativization.
Let x,A,V €S,, V€ B,A N ByA. By F,, there exists yM, V; then x [ y.

To prove density, let x T y be given. We let aHx, GHy,andfix A,U,B,V € S, such
that V.€ 8B\ ByB, U € 3,A~B3,A and zH3, zM,V. By F,, there exists w such
that (w,z)M,U~V; the a-pedigree for (w, z) is (uo, u1, uz) [because rank U™V = 2]
and o T u; C up. The proof of 12.15 establishes that w B z, hence u, = (w,z) B3
and x Cuy C y. O

Transfer.

Let « C § and xp,...,x C . We fix A € S, such that x := (xj,...,x) € A and

note that xMgW, 4 for all 3 2 «. By the Normal Form Theorem, P(x1, ..., xt)
& Q(Wen) & PPy, ..., xp). O
Granularity.

The Normal Form Theorem provides a formula Q(U) such that (xj, ..., x)MyU im-
plies P*(x1,...,xx) < Q(U). Let (u; : i < v) be the 0-pedigree for (xi,...,xx).

By Proposition 10.5, for u; C a T wuiy1, {(x1,...,%)Mqu;, and for u, C «,
(x1, ...y x)Mguy, . If PY(xy,...,x) holds for some «, then Q(u;) holds for some i,
and there is a least i for which Q(u;) holds. Then « B u; for this i has the required
properties. a
Idealization.

We prove the implication from left to right; the converse is an immediate consequence
of the fact that SST - “a € PTMANS, = a CANS,” [cf. 3.11].

Let P’(x, z) be the formula (A, X, y)(z = ((A,X,),y) A P(x,A,X,y)) and let Q(W)
be the formula corresponding to P’(x, z) by the Normal Form Theorem.

Let (u, : n < v) be an a-pedigree for (A, x), and U := u, where u, C 3 C w4
[U := u,, if u, T 3]; then (A,Xx)MgU. Given a € PinA, a C (3, there is y such
that (Vx € a)PP(x,A, X,y); let V be such that ((A,x,),y)MgV and U = 7(V). For
allx € a, (x,((A,%,),y))MgV,, hence Q(V,). So the following €-statement holds:

(Va € PA)a C 8= AV)(Vx € a)(U = T1(V) A Q(VY)].
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By Collection (in V) and Boundedness, there is a set B € S, such that (3V) can be
replaced by (3V € B). We now use Block Idealization, transferred from level O to level
«, [define R(x, V) by (Vx € a)(U = 7 (V) A Q(V,)) and note R = (] to conclude
that

@V eBNSy(VxcAxC 8= U=71(V) A QV))I.

Fix such V and use Fg to get y such that ((A,X),y)MgV. Then for all x T 3 we
have (x,((A,X,),y))MgV,. If x C [ and x € A, then also Q(V,) holds; hence,
PA(x,A,%,y) holds. O

Standardization.

Let 4 = (uo,...,u,) be a O-pedigree for (A,x). As a 1 0, there is n such that
u, C o C uyyy [orn = v and u, C «]. Let 8B u, and let Q(W) be the
e-formula from the Normal Form Theorem such that (y, (A,X))M,W implies that
(yeA N PUH(y,AX) & QW).

We note that for all 5 C v C « the y-type V of (A,Xx) can be taken as u, [the
7v-pedigree is (uy,...,u,)]. Then, for all y C ~, the v-type of (y, (4,%)) is Vy, and
(yeA API(y,AX) < Q).

We fix A € Sg suchthat A C A andlet B:= {z € A: Q(V,)}; B € Sg because
V € Sp and Q is an €-formula.

ForyCynowyeB & ycA N Q(Vy) & yeA N PV(y,AX). O O
Corollary 12.16 SST? |- SST*.

Before establishing the converse, we deduce some consequences of GRIST.

First, an immediate consequence of Transfer is that all axioms (and hence, all theorems)
of GRIST remain valid if C is replaced by C,, for any «. In other words, (V,€,C,) F
GRIST. In the terminology of [14], GRIST is fully relativized.

Several variations of the theory FRIST are introduced in [13]. Below are the axioms
of FRIST as presented in [16]; this version is called FRBST, in [13]. *

ZFC (with Separation and Replacement for € -formulas).
Relativization: C is a dense total pre-ordering with a least element 0 and no greatest
element.

*Actually, FRIST Standardization is stated in [16] with (Vx € Sy) in place of (Vx). This is
an oversight. As in [13], the axiom of Boundedness has to be added to the axioms of [16]. The
present version implies Boundedness by the argument in Remark (2) before Proposition 3.1.
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Transfer: Forall o, (Vi € So)(P°(X) < P*(X)).
Standardization: For all X,

(Vx) Ay € So) (Vz€Sp) zeye=zex A Pz x,X).

Idealization: Forall 0 C 3, A,B € Sy and X,
(Va € A™ N Se)(dy € B)(Vx € a) ’Pﬁ(x,y,)"c) < (dy e B)(Vx € ANSy) ’Pﬂ(x,y,)"c).

Proposition 12.17 GRIST F FRIST.

Proof FRIST Standardization:

Let R(x,x) be the formula (Iy CE 0O)(VzE O)z €y < z€ x A P(z,x,X). GRIST
Standardization implies that (Vo 1 0)(35 a)RP(x, %) (let ~v = (). By Granularity,
there is a C-least o such that R%(x, x) holds. The two statements together imply that
this o« H0, ie, R(x, X) holds. O

FRIST Idealization:

Let Q(x,y,Xx, 3) be the formula obtained from P(x, y, X) by replacing each occurrence
of zC wwith z C 3 V z & w (z,w any variables). Note that, for all v C (3,
2Cpw & 25, BV zEyw, e, Q(x,3,% 3) & Plx,y,%).

In this notation, the antecedent of = in FRIST Idealization is (Va € Pi"A)[a C
0= (dy € B)(Vx € a)Q(x,y,X, 3)]; let R(A, B, x, 3) denote this formula. If there is
v C 3 such that “R7(A, B, %, 3), let 3 be the least such v (Granularity); otherwise
let 38 3. In either case 3 3 0 and (Vy C B)R(A, B, %, 3) holds [this is a special
case of Local Transfer; see 12.22]. Hence (Vv EﬁB)(Va € PinAYa C v = Ty €
B)(Vx € a)QP(x,y,%,3)) [note Q7 < P’ < QF because v, 3 C 3]. By GRIST
Idealization now there is y such that (Vx € A)(x C § = Q8(x, v,X,3)), and in
particular, (Vx € A)(x C 0 = P?(x,y,%)). O O

Corollary 12.18 (GRIST) Forevery o, (V,€,S,) E BST.

Proposition 12.19 (GRIST) (External Induction) Let P(x,Xx) be any € -C -formula.
If, for all standard ordinals £, (V' < &)P(n,x) = P(£,X) holds, then (VS'E)P (€, %)
holds.

In particular, if P(0, x) holds and P(n,x) = P(n+ 1,Xx) holds for all standard n € w,
then (V*'n € w)P(n,x) holds.
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Proof Assume —P(&p,x) for some standard &y. By FRIST Standardization, there
is a standard set X such that, for all standard n, n € X & ne€ &+ 1 A ~P(n,X).
The set X # 0, because &y € X, so it has the least element &; and & is standard. This
gives a contradiction. |

Proposition 12.20 (GRIST) («-Finite Choice) Let P(x,y,X) be an €-C -formula.
If a € S, is finite and (Vx € a)(Iy)P*(x,y,X), then there exists a function f with
domf = a such that (Vx € a)P*(x,f(x), X).

Proof It suffices to prove the assertion for the case when o 50 [then apply Transfer]
and a = n € w N Sy. This is easily done by External Induction. |

Proof that GRIST + SST*:

GRIST Transfer immediately implies Transfer from/into S,. Inner Standardization
into S,, follows from FRIST Standardization, and GRIST Idealization implies Block
Idealization (let P be the formula y T 0 A (x,y) € R). The remaining axioms of
SST* are included among those of GRIST. SST* implies SST” (Corollary 10.11). It
remains to prove (Va)(Fy).

Proof Itsuffices to prove Fy; the general case follows by Transfer. Given U, V, F € Sy
such that U = F(V) and xMyU, we need to show that for some y, x = F(y) AyMgV.

We proceed by external induction on rank of V. The claim is clear when rank V = 0.
Let V € BB\ BB, U € BeA, and (uy, ..., u,) be the 0-pedigree for x over A
with ug = U = F(V). There are two cases to consider.

Case 1. F[V] is principal, generated by U.

We fix 8 such that 0 © 38 C uy [just 0 T 3, if v = 0]; then also xMgU. From
VX)X € V= U € F[X] = (Iv € X)(F(v) = U)] it follows, by Block Idealization,
that there is v € Sg such that (VX € V(X T 3 = v € X A F(v) = U). By the
inductive assumption transferred to level 3 [note that rank v < rank V'], there is y such
that x = F(y) A yMgv. Since vM, V for all 7y C (3, it follows that yMgV'.

Case 2. F[V] is nonprincipal.

We let 3B u; [v > 0], so xMgu;. Then F[V] = U and from (VX € V)X C 5 =
F[X] € U = u € FIX] = (v € X)(u; = F(v))] it follows, by Block Idealization,
that there is some v € Sg suchthat (VX € VIXC 8 =v e X A F(v) = u;]. By the

inductive assumption transferred to level 3 again, there is y such that x = F(y) AyMgy
and hence yMyV . O
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12.3 Consequences of GRIST.

In this subsection we derive a number of further consequences of GRIST. Some of
them throw additional light on the structure of the theory. Others have been found
useful for development of analysis in the framework of GRIST [17]. Some of these
consequences are generalizations of principles derived from RIST by Péraire and from
BST by Kanovei and Reeken; in those cases, the original formulations can be found in
the indicated references. The last few propositions give examples of principles valid
in BST but whose analogs for €-C-formulas fail in GRIST [of course, the original
versions for €-st-formulas hold, as all (V, €,S,) satisfty BST].

Proposition 12.21 (Support Principle) Given a formula P(xy,...,x;) in the €-C-
language and sets x, . . ., xg, there is a level set {ayp, ap, . .., ay,} such that ap B0 C
apC...Cayandforalli <nandall 8 with a; C 3 C ajyq

Po(R) & PPE) & - P ().
Proof Let Q be the formula corresponding to P by the Normal Form Theorem and let

U = (ug, . ..,u,) bethe 0-pedigree for (X). Recall that (X)Mgu, forall u, T 3 T w41
and hence P (x) & Qu,) < ph (). Define recursively: ag := upHO;if o;—1 Buyy,

let a; = u,, for the least n > m (if any) such that Q(u,,) < —Q(uy,). O
Proposition 12.22 (Local Transfer) Let P(xi,...,Xk,Xk+1,--.,X,) be any €-C-
formula. For any sets Xxy1,...,%, and any « there is v 1 « such that, for all

aClBCyandallxi,...,.xy T o, PYUxi,....,x%0) < PPxi,... x0).

Proof Without loss of generality we can assume k = 1, n = 2, and write a for x;, x
forx,. If x C o, P%a,x) & Pﬂ(a,x) holds for all # J « and all a C « by Transfer.
Otherwise, let Q(a, U) be the €-formula corresponding to P(a,x) by the Boldface
Normal Form Theorem. Let i = (uy, . .., u,) be an a-pedigree for x and let U := uy,
so that xM,U. Note that v > 0 andlet yBHu; J . If « C 8 C ~, then i is also
a (3-pedigree for x, so xMgU holds, and P“(a,x) & Q(a,U) & PB(a, x), for all
al a. O

Here is another version of Standardization.

Proposition 12.23 Forany o 1 0 and any A, x1, . . ., X, there exists B [ « such that
MWwCa(yeB < yeA N PYy,A xi,...,x0)).
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Proof As in the proof of FRIST Idealization in 12.17 [with « in place of 3], let
Q be the formula obtained from P by replacing each occurrence of z = w with
z E a V z C w Applying Standardization to @, we get B C 3 C « such that,
foral GCyC o, MWW YWyeB&eyeA N QV(y,A, X)), and consequently

MWCa(yeBsyeA N PYy,AX). O
Proposition 12.24 LetV € 3,B~\ B,_B forn € So, n > 0, V € Sy. For every
level set {ay, vy, ..., ap} such that B0 C oy C ... C «p there is zMyV such that
every pedigree (ug, . ..,u,) for z has v =n and u; B o, for all i < n.

Proof By External Induction.
The statement is true for n = 1 by Proposition 12.15.

Assume it is true for n and let V € 8, B ~\ B8,B. Then there is viMV such that
viBa; and (V,v;) is apedigree for v; over 3, B, by Proposition 12.15 where we regard
V as an element of 3(3,B)\3,B. Wehave v, € 3,B~\3,_B,as 3,B~\3,_B€ V.
The statement for n transfers to level «; Hvy, where {a; C ... C a,} is an «; -level
set of cardinality n. Hence, by inductive assumption, there is zM,,v; such that an
o -pedigree ¥ = (uy,...u,) for z over B has u; = v; and up By, ..., u, B ay.
Clearly (ug := V,uy,...,u,) is a pedigree for z over B and u; Hay, forall i <n. O

Definition 12.25 P(xy,..., X1, ..,¥s) denotes a formula of the €-C-language
where the variables y1,...,y, appear only in the scope of C [not € or =].

Proposition 12.26 (Polytransfer; Péraire [29])
LetaCaoa C...Cayand C B C...C 0,. Then
(V)ﬂ, S Xk € Sa mSﬂ)(Pa(xl7' cy Xk gy . 7an) ~ ,Pﬁ(xlv s )xk;ﬁla s 7/6n))

Proof Without loss of generality we assume k = 1 and write a for x;. Fix V €
So N (B8,B~ B,_1B). By Proposition 12.24 there are zMyV, z’MgV and their

pedigrees i = (uo, ..., u,) and i’ = (ujy, ..., u,),resp.,suchthat u;Bay, ..., u,Bay,
uy BB, ...,u, 8 0., up =V = uj. Note that i is an «-pedigree for z and i’ is a
(-pedigree for z as well. Then clearly

(*) Pa(a; OZ], e 70411) <~ Pa(a; Mla s 7“”) <~ 7DO[(a7 Z) and

(*%) Pl@ B, ..., B & Plasuy, ... up) & Pa, )

where P (x, z) is the formula expressing (3u)[u is a pedigree for z A u = (ug, ..., uy)
AN Px;ug,...,u,)]. Let Q(a,U) be the formula corresponding to P(x,z) by the
Boldface Normal Form Theorem. As zM,V, zMgV,and a € S, NSz, P%a,z2) &
Q(a,V) < P5a,7). o
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Proposition 12.27 (Partial Transfer; Péraire [29]) For any o C 3,
(VX € S)IE)(PY(x, X0) A Q¥(x, %)) = (I)N(P(x,X0) A QP(x, X A)].

Proof Fix «, x € S, and x such that P%(x,x; a) A Q%(x,X; «). By Local Transfer
there is some 3 7 « such that @7 (x, ¥; 3') holds, ie, (3x)(P*(x, ¥; o) A Q7 (x, %, 3)
holds. Given 3 1 «, apply Polytransfer to the sequences of levels o 3’ and o C 3
to obtain (Ax)(P(x, ;) A Q°(x,x; 3)). o

Proposition 12.28 («-Standard Size Choice; Kanovei and Reeken [22])

Let P(x,y,x1,...,x;) be an € -C-formula. For every a and every A € S, such that
Vx € ANS)3y)P(x,y,x1,...,x;) there exists a function f with domf = A such
that (Vx € AN S)P(Cx, f(x), X1, ..., Xk).

Proof We fix X = xq,...,x;, «, and A satisfying the assumptions. Let P’(z,y)
be the formula (3x,x)[z = (x, (X)) A P(x,y,%)], and let Q(V) be the €-formula
corresponding to P’ by the Normal Form Theorem. If (x)M,U and x € S,, we
then have (Fy)P*(x,y,%) & @V)[71(V) = U, A Q(V)] [see Proposition 9.7 and the
proof of 3 step of the Normal Form Theorem]. By ZFC Selection, which holds in
(Sa, €), there are functions V,B € S,, defined on A, such that V(x) € 8, B(x) and
Vx e Am(V(x)) = Uy, A Q(V(x))]. It remains to prove the following.

Claim. There is a function Vv with domV = A such that (Vx € A N S)[Px) =
(v(x)0, - . ., V(X)) 1s an a-pedigree over B(x) with v(x)o = V(x) and v(x),y =
((x, (X)), y(x)) for some (uniquely determined) y(x).

The function f on A defined by x — y(x) then has the property that, forall x € ANS,,

((x, (X)), f)MLV(x) A Q(V(x)), so (P)*((x, (X)),f(x)) holds, ie, P(x,f(x),X)
holds.

Proof of Claim.

For every x € A NS, there is some «-pedigree Vv over B(x) with vo = V(x) and
Vo) = ((x, (X)),y) for some y. By Local Transfer 12.22, there is § 7 « such that
for every x € A NS, there is some (-pedigree Vv over B(x) with vo = V(x) and
v = {((x,(%)),y) for some y. By a-Finite Choice, for every a € PTMA NS,
there is a function v such that, for every x € a, W(x) is a F-pedigree over B(x) with
v(x)o = V(x) and v(x),y = ({x, (X)), y(x)). Using Idealization we obtain a function
v with domV = A such that, for every x € a, V(x) is a S-pedigree over B(x) with
v(x)o = V(x) and v(x),u = ({x, (X)), y(x)). Finally, as v(x)g = V(x) C « and
v(x)1 O B 3 a [if v(x) > 0], ¥(x) is an a-pedigree. O m]
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Proposition 12.29 (Map Standardization; Kanovei and Reeken [22])
For every A € S, there exists f € S, such that domf = A and

(Vx € ANSHIEy € S)IP(x,y,X) = P(x, f(x), D).

Proof It suffices to give a proof for « 50 and then use Transfer. Let R(x, z, X) be the
formula “z € On A [(3y € Sp)(y € V, A Px,y,X) V Vy € Sp) ~P(x,y,)]” [V,
is the z-th level of the cumulative hierarchy]. By 0-Standard Size Choice, there exists
a function g with dom g = A such that (V'x € A)YR(x,g(x)). Let £ € On N Sy be
such that rang C &. Then (V'x € A)[(FY)P(x,y,%) = Iy € VeoP(x,y,%)]. By
FRIST Standardization we obtain C € Sy such that, for all x,y € Sy, (x,y) € C &
x€A Nye Ve AP(x,y,x). Using Axiom of Choice in (S, €), we obtain a function
f € Sp with domf = A such that (Vx € A)[(Fy)((x,y) € C) = (x,f(x)) € C]. For this
function, (V¥tx € A)[(FYY)P(x,y,Xx) = P(x,f(x),x)] then holds. ]

Proposition 12.30 (Unique Definability; Kanovei and Reeken [22])
If x is uniquely definable in GRIST from parameters in Sy, then x € So. If x ¢ Sy,
then for each o« 1 0 there exist y 5 « such that x and y are € -C -indiscernible.

Proof Let xMoU. If rank U = 0, then U = x and x € Sy.

If rank U > 0, we prove that for every v 1 O there is y H v such that yMyU, and
hence all such y are €-C-indiscernible.

We fix V € 8/B\ ByB, V € Sy, and use Proposition 12.15 to obtain z H v such that
ZMyV. As (U~V) = V, by Fy thereis y such that (y, z) MoU~V. As 7 (U™V) = U,
yMoU holds. Let yH 3; 8 3 0. In the course of proof of Proposition 12.15 [let
« = 0 there] we established:

Ifx85, 630, xMyU and (x,z)MoU™V, then z B x.
Applying this to y in place of x, we get yHzH . |

Proposition 12.31 If A # 0, then there is x € A such that xBHA.

Proof If A C 0, the assertion is true by Transfer into Sy, so we assume A 7 0. Let
B HA and fix A € Sg such that A C A. If there is a € P™A such that a T G and
A Ca,then A C a C 3, acontradiction. Therefore (Va € PiA)a = 3 = (3y)(Vx €
a(y#x NycA A yCgO0)]. [The y C 3 clause follows by Transfer into Sg.] By
Idealization there is y suchthat x C 3=y #x A yc A A yCgO0forall x € A, ie,
y€eAand yHp. a
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Proposition 12.32 (Levels of Elements of Sets )
(a) If A is infinite, then (V3 J A)(@x)(x € A A xB ).
(b) (Vx € A)(x C «) if and only if A is finite and A C «.

Proof (a) If A is infinite and A H «, then there is a one-one mapping f € S, of w
onto A. By Proposition 12.15, for every [ there is v € w such that v H 3. For § J «
then 6B v Hf(v) € A. For 8 H « the existence of a € A, a B (3, follows from the
preceding proposition.

(b) is a consequence of (a), the preceding proposition, and Proposition 3.11. a

Proposition 12.33 Collection Principle for € -C -formulas fails in GRIST.

Proof Let P(n, U) be the formula nMoU. By By, (Vn € w)(3'U € B w)P(n,U).
By Fy, (VU € B w)(3n € w)P(n,U). But 3w is a proper class. ]

This corollary illustrates the one principal metamathematical difference between BST
and GRIST. In BST, the collection of all types of elements of a set A is a set BA.
Because of this, BST can be extended to a theory of external sets, HST, that satisfies
Collection and other useful axioms. In GRIST it is a proper class B,,A. The failure
of Collection implies the impossibility of extending GRIST to an HST-like theory.
The issue of external sets is discussed further in the Conclusion.

Kanovei and Reeken [22] formulated a second version of Idealization, which they call
Local Idealization, and showed that it holds in BST. An analogous principle for the
€-LC-language is false in GRIST.

Local Idealization: Forall o C 8, BC «, and all x, ..., xg,
(V finite a)[a C o = 3y € B)(Vx € a) P°(x,y, B, x1, ..., x0)]
& (Fy € BY(W) [x C a = PP(x,y,B,x1, ..., x0)].

Proposition 12.34 Local Idealization fails in GRIST.

Proof Fix 5 1 0. For every finite {Uj,...,U,} C B, w in Sy there is x € w such
that each U; = f(V) for some f € Sg, where V := tpg(x;w). [Indeed: fix x; such
that U; = tpg(xi;w), let y := (x1,...,x,), and U := tpg(y;w"); then U; = m;(U).
Then let V := p(U) and x = ¢(y), for some one-one mapping ¢ € Sy of w" onto w.]
Local Idealization implies existence of x € w such that every U € B, w N Sy is of
the form U = f(V) for some f € Sg, where V := tpg(x; w). However, this means that
every U € B, w N Sp has rank less than or equal to rank V, a contradiction. a
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Remarks Itis shown in [13], Theorem 5.1, that FRIST where Idealization is replaced
by Local Idealization (the theory called FRBST in [13]) is a conservative extension
of ZFC; in the interpretation given there Granularity holds as well.

Proposition 12.35 Dependent Choice fails in GRIST.

Proof Let R(x,y) be the formula x C y. Dependent Choice would imply that:
(*) There is a sequence d = (a, : n € w) such that a, T a4
holds for all n € w. We show that this is not possible.

Let d be such a sequence; then (*) holds in (Sy[[d]], €, C), which is isomorphic to
ULV, V) for @MoU. We get a contradiction by proving [in ZFC] that (¥) fails in
every ULt (V;U).

Let U be of the smallest rank for which (*) holds; clearly rankZ/ > 0. Note that
0 C ay, for n > 0 [a,—1 C a, B0 is impossible]; hence, with D := Dzay, we have
UUV;U),Cp,) E (Vn > 1)(a, T apy1) ,ie, ULV;U),Cp,) E (¥). By the Factoring
Theorem, UL(U(V;U ) = i € T);UW0)) F (%), ie, {i € I : UKV;Uy) F (9} €
U(0). This is a contradiction with the inductive assumption. O

12.4 Variations of GRIST.

(1) Unbounded GRIST.

Unlike BST or GRIST, Nelson’s IST allows Idealization without any bounds on the
variables x and y; this feature contradicts Boundedness. An extensive discussion of the
comparative advantages of IST and BST can be found in [22]; in particular, Kanovei
and Reeken showed that IST does not have a realization in ZFC.

It is possible to formulate a GRIST-like theory that extends IST; we call it Unbounded
GRIST. Its axioms are obtained from those of GRIST by

(1) replacing Idealization with Unbounded Idealization:
For all A C 3 and all X,
(V finite a C B)(Ay)(Vx € a) ’Pﬂ(x,y,)"c) S (@A C ﬂ)'P’g(x,y,)"c), and

(2) weakening Standardization [to allow for unbounded sets, without shadows] by
replacing “any A” with “any A C o”.

Unbounded GRIST is an extension of the theory called FRIST in [13].

Journal of Logic & Analysis 1:8 (2009)



104 Karel Hrbacek

Theorem 12.36 Unbounded GRIST is a conservative extension of ZFC.

Proof As in [13], Proof of Theorem 4.7, we work in the theory T whose primitives
are € and a constant symbol v, and whose axioms are:

ZFC (Separation and Replacement for formulas in the language of T)
(30)(v = Vo)
Vxi, .. x € V(PG .. x) & PY(xr, - X))

where P is any €-formula, and P"” is the formula obtained from P by restricting all
quantifiers to v.

It is well-known (and an immediate consequence of Reflection Principle in ZFC) that
T is a conservative extension of ZFC. The interpretation Sy (V) = (V*, =", €* C¥)
for GRIST can thus be constructed in T. We let v := {f € V* : f €* ¢(v)}. It
is straightforward to verify that the restriction of &x (V) to v is an interpretation of
Unbounded GRIST in T. O

Remarks The Back and Forth Property is of course incompatible with Unbounded
GRIST. Specifically, By fails in this interpretation.

(2) Discrete GRIST.

This is the theory obtained from GRIST by replacing

Density: (Vx,y)(x Cy = (32)(x = z C y)) with

Discreteness:

VMo)@)ECy A~ (FDxCzCy) A Vx303y)(yCx A = (Fz2)(y C z C x)).
Theorem 12.37 Discrete GRIST has a realization in ZFC.

We do not give a proof of this theorem. The key idea is to reformulate the Back and
Forth Property in a form valid for discrete preorderings of levels. This requires, first
of all, a re-definition of types. An a-type over A is now a pair (U, L) where U is a
stratified ultrafilter over A and L is a function defined on X Ty (see Definition 9.8)
such that L((Uy, ..., Uy)) = (¢1,...,¢,) where each ¢; € wU {oo}. The idea is that
¢; fixes the number of levels between U;_1 and U; (with Uy := U).

One can suitably modify the developments of Sections 9 - 12 for this notion of type.
In particular, an interpretation for Discrete GRIST is given by 34 (V) where A is the
usual ordering (w, <) of natural numbers.
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Conclusion: GRIST and External Sets.

Nonstandard analysis traditionally distinguishes between internal and external sets.
GRIST is a theory of internal sets only, just like BST and IST. Nelson and his
followers demonstrated that extensive work in nonstandard mathematics can be carried
out within IST. Many such “internal” arguments become easier and/or more natural
in GRIST. Yet, most practitioners consider constructions that fundamentally depend
on external sets, such as nonstandard hulls and Loeb measures, to be an essential
part of nonstandard analysis. This is one reason why we need to address the issue of
extendibility of GRIST to a theory of external sets.

There are also foundational reasons. Theories like BST and IST exhibit a curious lack
of symmetry: among their three major principles, Standardization alone admits arbi-
trary formulas (of the €-st-language); Transfer and Idealization require €-formulas.
The desire to make all of these principles applicable to arbitrary formulas was one
of the original motivations for FRIST. An immediate consequence of Transfer for all
formulas is “Full Relativization”: A valid statement of FRIST (or GRIST) remains
valid upon replacing C by C,, for any a. We paraphrase this by saying that the
universe of GRIST is symmetric under “translations” from S to S, ; every set « has
its own “picture of the internal cosmos”, given by C , but these pictures are invariant
under the choice of oz. However, one exception remains: Separation and Replacement
schemata of ZFC apply in GRIST to €-formulas only. There seems to be no founda-
tional justification for this. The €-C -formulas are just as definite (ie, true or false, for
given values of their free variables) as €-formulas, and should thus define sets. But
if collections like €2 := {n € w : 0 C n} are sets, they can only be external to the
universe of GRIST. We face again the question of extending GRIST to a theory that
also allows external sets.

The analogous problem for BST is discussed extensively in Kanovei and Reeken’s
monograph [22]; see also [14]. Here we briefly consider how the solutions that work
for BST fare for GRIST. It has to be noted up front that the axiom of Regularity has
to fail in any reasonable universe containing external sets (consider the set {2 above),
so the best we can hope for is to satisfy ZFC~ (ZFC without Regularity, but with
Replacement strengthened to Collection).

The theory HST is an extension of BST to a theory of external sets “with the same
ordinals” (ie, the ordinals of the universe of all sets are isomorphic to the ordinals of the
standard universe) satisfying all of ZFC~ except Power Set and Choice. In particular,
Collection holds in HST for all €-st-formulas. It follows from Proposition 12.33 that
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an extension of GRIST to an HST-like theory, where Collection would hold for all
€-LC-formulas, is impossible.

Another way to extend BST to a theory of external sets “with the same ordinals” is
NST (+ WFas — WIF), where all axioms of ZFC~ except Collection hold. It is
easy to see that GRIST can be consistently extended to an NST-like theory, where in
particular the schema of Separation holds for all €-C-formulas. Such theory would
seem to provide all the external sets needed in practice of nonstandard analysis. It
allows work with monads and galaxies, and the construction of Loeb measures [12]
and nonstandard hulls.

The third possibility is to imitate the approach taken by Kawai [24, 25] in order to
extend the universe of IST by external sets (his theory is called KST in [22]). The
universe of KST satisfies all of ZFC ™ ; however, it does not “have the same ordinals”
as the universe S of standard sets, which is itself an external ser in KST. KST also
enables the practice of nonstandard analysis to the full extent. It is not difficult to
modify KST to make its internal universe be that of GRIST, rather than IST.

Both of the last two possibilities seem to answer the practical needs of those who
might like to be able to combine internal methods of GRIST with the external methods
of traditional nonstandard analysis in one theoretical framework. From the founda-
tional viewpoint, however, they appear ad-hoc. Principled comprehensive set-theoretic
foundations for nonstandard methods seem to call for an extension of the “Full Rel-
ativization” idea from internal sets to all sets. This view was strongly advocated by
Ballard in [4]. In the present context, it would mean that every set « has its own
“picture of the cosmos”, including its own standard universe S, internal universe I,
with its =, and a corresponding KST-like external universe £, and these pictures are
invariant under the choice of a. An analogous “three-universes” paradigm occurs in
mainstream set theory, in the study of both elementary embeddings and Boolean-valued
models. Some promising steps towards a formulation of a general theory that would
cover all of these situations have been taken, in particular by Ballard in an unpublished
paper [5]. However, development of a satisfactory system for full relative set theory is
quite a challenge, on both technical and philosophical grounds. We hope to report on
the progress towards such a system in a future publication.
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