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The Interplay of Classes of Algorithmically Random Objects
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Abstract: We study algorithmically random closed subsets of 2ω, algorithmically
random continuous functions from 2ω to 2ω, and algorithmically random Borel
probability measures on 2ω, especially the interplay between these three classes of
objects. Our main tools are preservation of randomness and its converse, the no
randomness ex nihilo principle, which say together that given an almost-everywhere
defined computable map between an effectively compact probability space and an
effective Polish space, a real is Martin-Löf random for the pushforward measure
if and only if its preimage is random with respect to the measure on the domain.
These tools allow us to prove new facts, some of which answer previously open
questions, and reprove some known results more simply.

Our main results are the following. First we answer an open question in Barmpalias,
Brodhead, Cenzer, Remmel, and Weber [3] by showing that X ⊆ 2ω is a random
closed set if and only if it is the set of zeros of a random continuous function on
2ω. As a corollary we obtain the result that the collection of random continuous
functions on 2ω is not closed under composition. Next, we construct a computable
measure Q on the space of measures on 2ω such that X ⊆ 2ω is a random closed
set if and only if X is the support of a Q-random measure. We also establish a
correspondence between random closed sets and the random measures studied in
Culver [8]. Lastly, we study the ranges of random continuous functions, showing
that the Lebesgue measure of the range of a random continuous function is always
contained in (0, 1).
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1 Introduction

In this paper, we have two primary goals: (1) to study the interplay between algorithmi-
cally random closed sets on 2ω, algorithmically random continuous functions on 2ω, and
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algorithmically random measures on 2ω; and (2) to apply two central results, namely
the preservation of randomness principle and the no randomness ex nihilo principle, to
the study of the algorithmically random objects listed above.

Barmpalias, Brodhead, Cenzer, Dashti and Weber initiated the study of algorithmically
random closed subsets of 2ω in [2]. Algorithmically random closed sets were further
studied in, for instance, Axon [1], Diamondstone and Kjos-Hanssen [9], and Cenzer
and Weber [7]. In the spirit of the definition of an algorithmically random closed set,
Barmpalias, Brodhead, Cenzer, Remmel and Weber defined a notion of algorithmically
random continuous function on 2ω in [3]. The connection between random closed sets
and effective capacities was explored in Brodhead, Cenzer, Toska, and Wyman [5].
More recently, Culver has studied algorithmically random measures on 2ω in Culver
[8].

One of the central results in [3] is that the set of zeros of a random continuous function
of 2ω is a random closed subset of 2ω. Inspired by this result, we here investigate similar
bridge results, which allow us to transfer information about one class of algorithmically
random objects to another.

Two tools that are central to our investigation, mentioned in (2) above, are the preservation
of randomness principle and the no randomness ex nihilo principle. In 2ω, the space
of infinite binary sequences, the preservation of randomness principle tells us that
if Φ : 2ω → 2ω is an effective map and µ is a computable measure on 2ω, then Φ

maps µ-random members of 2ω to members of 2ω that are random with respect to the
measure ν obtained by pushing µ forward via Φ. Furthermore, the no randomness ex
nihilo principle tells us that any sequence that is random with respect to ν is the image
of some µ-random sequence under Φ. Used in tandem, these two principles allow
us to conclude that the image of the µ-random sequences under Φ are precisely the
ν -random sequences.

With the exception of [8], the studies listed above do not make use of these two tools
used in tandem. As we will show, they not only allow for the simplification of a number
of proofs in the above-listed studies, but they also allow us to answer a number of
questions that were left open in these studies.

The outline of the remainder of this paper is as follows. In Section 2, we provide
the requisite background for the rest of the paper. In Section 3, we review the basics
of algorithmic randomness, including preservation and the no randomness ex nihilo
principle. We also provide the definitions of algorithmic randomness for closed sets
of 2ω, random continuous functions on 2ω, and measures on 2ω and list some basic
properties of these objects. Section 4 contains simplified proofs of some previously
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obtained results from [2] and [3], as well as a proof of a conjecture in [3] that every
random closed subset of 2ω is the set of zeros of a random continuous function on 2ω.
We study the support of a certain class of random measures in Section 5 and establish a
correspondence between between random closed sets and the random measures studied
in [8]. Lastly, in Section 6, we prove that the Lebesgue measure of the range of a random
continuous function on 2ω is always non-zero, from which it follows that no random
continuous function is injective. This yields a new proof of this previously established
result (in [3]). We also strengthen a result in [3], namely, that not every random
continuous function is surjective, by proving that no random continuous function is
surjective, from which it follows that the Lebesgue measure of the range of a random
continuous function is never equal to one.

The results in this paper can also be found in [8], which the reader can consult for
additional background material.

2 Background

2.1 Some topological and measure-theoretic basics

For n = {0, 1, . . . n − 1} ∈ ω , the set of all finite strings over the alphabet n is
denoted n<ω. When n = 2, we let σ0, σ1, σ2, . . . be the canonical length-lexicographic
enumeration of 2<ω, so that σ0 = ε (the empty string), σ1 = 0, σ2 = 1, etc.

nω is the space of all infinite sequences over the alphabet n. The elements of nω are
also called reals. The product topology on nω is generated by the clopen sets

JσK = {x ∈ nω : x � σ},

where σ ∈ n<ω and x � σ means that σ is an initial segment of x. When x is a real
and k ∈ ω , x � k denotes the initial segment of x of length k .

For σ, τ ∈ n<ω, σ_τ denotes the concatenation of σ and τ . In some cases, we will
write this concatenation as στ .

A tree is a subset of n<ω that is closed under initial segments, ie, T ⊆ n<ω is a tree if
σ ∈ T whenever τ ∈ T and σ � τ . A path through a tree T ⊆ n<ω is a real x ∈ nω

satisfying x � k ∈ T for every k . The set of all paths through a tree T is denoted [T].
Recall the correspondence between closed sets and trees.

Proposition 2.1 A set C ⊆ nω is closed if and only if C = [T] for some tree T ⊆ n<ω.
Moreover, C is non-empty if and only if T is infinite.
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A measure µ on nω is a function that assigns to each Borel subset of nω a number in
the unit interval [0, 1] and satisfies µ

(⋃
i∈ω Bi

)
=
∑

i∈ω µ(Bi) whenever the Bi ’s are
pairwise disjoint. Carathéodory’s extension theorem guarantees that the conditions

• µ(JεK) = 1 and

• µ(JσK) = µ(Jσ0K) + µ(Jσ1K) + . . .+ µ(Jσ_(n− 1)K) for all σ ∈ n<ω

uniquely determine a measure on nω. We thus identify a measure with a function
µ : n<ω → [0, 1] satisfying the above conditions and µ(σ) is often written instead of
µ(JσK). The Lebesgue measure λ on nω is defined by λ(σ) = n−|σ| for each string
σ ∈ n<ω.

Given a measure µ on nω and σ, τ ∈ n<ω , µ(στ | σ) is defined to be

µ(στ | σ) =
µ(JστK)
µ(JσK)

.

2.2 Some computability theory

We assume the reader is familiar with the basic concepts of computability theory as
found, for instance, in the early chapters of Soare [14].

A Σ0
1 class S ⊆ nω is an effectively open set, ie, an effective union of basic clopen

subsets of nω. P ⊆ nω is a Π0
1 class if 2ω \ P is a Σ0

1 class.

A partial function Φ : ⊆ nω → mω is computable if the preimage of a Σ0
1 subset of mω

is a Σ0
1 subset of the domain of Φ, uniformly; that is, if for every Σ0

1 class U ⊆ mω ,
there is a Σ0

1 class V ⊆ nω such that Φ−1(U) = V ∩ dom(Φ), and an index for V
can be uniformly computed from an index for U. Equivalently, Φ : ⊆ nω → mω is
computable if there is an oracle Turing machine that when given x ∈ nω (as an oracle)
and k ∈ ω outputs Φ(x)(k). We can relativize the notion of a computable function
Φ : ⊆ nω → mω to any oracle z ∈ 2ω to obtain a z-computable function.

A measure µ on nω is computable if µ(σ) is a computable real number, uniformly in
σ ∈ n<ω. Clearly, the Lebesgue measure λ is computable.

If µ is a computable measure on nω and Φ : ⊆ nω → mω is a computable function
defined on a set of µ-measure one, then the pushforward measure µΦ defined by

µΦ(σ) = µ(Φ−1(σ))

for each σ ∈ m<ω is a computable measure.
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The Interplay of Classes of Algorithmically Random Objects 5

3 Algorithmically random objects

In this section, we lay out the definitions of the various algorithmically random objects
that are the subject of this study. For more details, see Nies [12] or Downey and
Hirschfeldt [10].

3.1 Algorithmically random sequences

Definition 3.1 Let µ be a computable measure on nω and let z ∈ mω.

(i) A µ-Martin-Löf test relative to z (or simply a µ-test relative to z) is a uniformly
Σ0,z

1 sequence (Ui)i∈ω of subsets of nω with µ(Un) ≤ 2−n.

(ii) x ∈ nω passes such a test (Ui)i∈ω if x /∈
⋂

n Un .

(iii) x ∈ nω is µ-Martin-Löf random relative to z if x passes every µ-Martin-Löf test
relative to z.

We will often write “random” instead of “Martin-Löf random,” since we are only working
with one notion of randomness in this paper (although there are other reasonable notions
of algorithmic randomness that one might consider). The collection of µ-random
sequences relative to z will be denoted MLRz

µ . When z is computable we simply write
MLRµ , say that x is µ-random, call (Ui)i∈ω a µ-test, etc.

The following is well-known and straightforward.

Proposition 3.2 Let µ be a computable measure on nω and z ∈ mω. If C ⊆ nω is
Π0,z

1 and µ(C) = 0, then C ∩MLRz
µ = ∅.

The following is likely folklore, but was at least observed in Bienvenu and Porter [4].

Proposition 3.3 Let µ be a computable measure on nω. If Φ : ⊆ nω → mω is
computable with µ(dom(Φ)) = 1, then MLRµ ⊆ dom(Φ).

The next result is also folklore; see, for instance, Cenzer and Remmel [6, Theorem
3.4.8(3)].

Lemma 3.4 (Folklore) Let Φ : ⊆ 2ω → 2ω be computable and C a Π0
1 subset of

dom(Φ). Then Φ(C) ∈ Π0
1 , uniformly.

One of the central tools that we will use in this study is the following.
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6 Quinn Culver and Christopher P. Porter

Theorem 3.5 (Preservation of Randomness (Zvonkin and Levin [16]) and No Random-
ness Ex Nihilo (Shen [13])) Let Φ : ⊆ 2ω → 2ω be computable with λ(dom(Φ)) = 1.

(i) If x ∈ MLRλ then Φ(x) ∈ MLRλΦ
.

(ii) If y ∈ MLRλΦ
, then there is x ∈ MLRλ such that Φ(x) = y.

Proof (i) If Φ(x) /∈ MLRλΦ
, then Φ(x) ∈

⋂
n Vn for some λΦ -test (Vi)i∈ω . But then

x ∈
⋂

n Φ−1(Vn) and λ(Φ−1(Vn)) ≤ 2−n. Moreover, because Φ is computable (on its
domain), Φ−1(Vn) = Un ∩ dom(Φ) for some Σ0

1 class Un . Since λ(dom(Φ)) = 1,
λ(Un) ≤ 2−n. Thus x /∈ MLRλ .

(ii) Let (Ui)i∈ω be a universal test for λ-randomness and set Kn = 2ω \ Un , where
Kn ⊆ MLRλ ⊆ dom(Φ) by Proposition 3.3. Then Φ(Kn) is uniformly Π0

1 by Lemma 3.4,
so 2ω \ Φ(Kn) is uniformly Σ0

1 . Because

λΦ(2ω \ Φ(Kn)) = 1− λΦ(Φ(Kn)) ≤ 1− λ(Kn) ≤ 2−n,

the sets 2ω\Φ(Kn) form a test for λΦ -randomness. So if y ∈ MLRλΦ
, then y /∈ 2ω\Φ(Kn)

for some n, ie, y ∈ Φ(Kn). The proof is now complete since Kn ⊆ MLRλ .

The above proof immediately generalizes to computable functions Φ : ⊆ nω → mω

satisfying λ(dom(Φ)) = 1. In what follows, we will occasionally use Theorem 3.5 for
such functions. We will also use a relativization of Theorem 3.5.

Corollary 3.6 Let Φ : ⊆ 2ω → 2ω be a function that is computable relative to z ∈ 2ω

and satisfies λ(dom(Φ)) = 1.

(i) If x ∈ MLRz
λ then Φ(x) ∈ MLRz

λΦ
.

(ii) If y ∈ MLRz
λΦ

, then there is x ∈ MLRz
λ such that Φ(x) = y.

Lastly, the following result, known as van Lambalgen’s theorem, will be useful to us.
Given a measure µ on mω and a measure ν on nω, µ⊗ ν denotes the product measure
on mω × nω.

Theorem 3.7 ([15]) Let µ and ν be computable measures on mω and nω, respectively.
Then for (x, y) ∈ mω × nω, (x, y) ∈ MLRµ⊗ν if and only if x ∈ MLRy

µ and y ∈ MLRν .
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The Interplay of Classes of Algorithmically Random Objects 7

3.2 Algorithmically random closed subsets of 2ω

Let C(2ω) denote the collection of all non-empty closed subsets of 2ω. As noted
in Proposition 2.1, these are the sets of paths through infinite binary trees. Thus to
randomly generate a non-empty closed set, it suffices to randomly generate an infinite
tree. Following Barmpalias, Brodhead, Cenzer, Dashti, and Weber [2], we will code
infinite trees by reals in 3ω, thereby reducing the process of randomly generating infinite
trees to the process of randomly generating reals.

Given x ∈ 3ω, define a tree Tx ⊆ 2<ω inductively as follows. First ε, the empty string is
automatically in Tx . Now suppose σ ∈ Tx is the (i + 1)-st extendible node in Tx . Then

• σ0 ∈ Tx and σ1 /∈ Tx if x(i) = 0;

• σ0 /∈ Tx and σ1 ∈ Tx if x(i) = 1;

• σ0 ∈ Tx and σ1 ∈ Tx if x(i) = 2.

Under this coding Tx has no dead ends and hence is always infinite. Note that every
tree without dead ends can be coded by some x ∈ 2ω.

Definition 3.8 A non-empty closed set C ∈ C(2ω) is a random closed set if C = [Tx]
for some x ∈ MLRλ .

The main facts about random closed sets that we will use in the sequel are as follows.

Theorem 3.9 ([2]) Every random closed set has Lebesgue measure zero.

Theorem 3.10 ([2]) Every random closed set is perfect.

3.3 Algorithmically random continuous functions on 2ω

Let F(2ω) denote the collection of all continuous F : ⊆ 2ω → 2ω. To define a random
continuous function, we code each element of F(2ω) by a real x ∈ 3ω (as carried out in
Barmpalias, Brodhead, Cenzer, Remmel, and Weber [3]). The coding is a labeling of
the edges of 2ω (or equivalently, all nodes in 2<ω except ε) by the digits of x . Having
labeled the edges according to x , the function Fx coded by x is defined by Fx(y) = z if
z is the element of 2ω left over after following y through the labeled tree and removing
the 2’s. (In the case where only finitely many 0’s and 1’s remain after removing the
2’s, Fx(y) is undefined.)
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8 Quinn Culver and Christopher P. Porter

Formally, define a labeling function `x : 2<ω \ {ε} → 3 by `x(σi) = xi−1 (recall that
(σi)i∈ω is the standard enumeration of 2<ω ). Now Fx ∈ F(2ω) is defined by Fx(y) = z
if and only if z is the result of removing the 2’s from the sequence

`x(y � 1), `x(y � 2), `x(y � 3), . . . .

Note that every F ∈ F(2ω) has infinitely many codes.

Definition 3.11 A function F ∈ F(2ω) is a random continuous function if F = Fx for
some x ∈ MLRλ .

Remark 3.12 Fx is continuous (on its domain) because it is computable relative to
some oracle, namely x. Since 2ω is compact and Hausdorff, it follows that Fx is a
closed map and hence that ran(F) is Π0,F

1 .

We will make use of the following facts about random continuous functions.

Theorem 3.13 ([3]) If F ∈ F(2ω) is random and x ∈ 2ω is computable, then
F(x) ∈ 2ω is random.

Theorem 3.14 ([3]) If F ∈ F(2ω) is random, then F is total.

3.4 Algorithmically random measures on 2ω

Let P(2ω) be the space of probability measures on 2ω. Given x ∈ 2ω, the n-th column
xn of x is defined by xn(k) = 1 if and only if x(〈n, k〉) = 1, where 〈n, k〉 is some
fixed computable bijection between ω2 and ω . We write x = ⊕n∈ωxn . We define a
map Ψ : 2ω →P(2ω) that sends a real x to the measure µx satisfying (i) µx(ε) = 1
and (ii) µx(σn0) = rn · µx(σn), where rn is the real number corresponding to the n-th
column of x (that is, rn =

∑
xn(i)=1 2−(i+1) ) and σn is the n-th element in the standard

enumeration of 2<ω. Hereafter we will simply identify each xn with the corresponding
rn . This coding was first given in Culver [8].

Definition 3.15 A measure µ ∈ P(2ω) is a random measure if µ = µx for some
x ∈ MLRλ .

Let P be the pushforward measure on P(2ω) induced by λ and Ψ. Then we have the
following.

Journal of Logic & Analysis 7:7 (2015)



The Interplay of Classes of Algorithmically Random Objects 9

Theorem 3.16 ([8]) Let ν ∈ P(2ω). Then ν ∈ MLRP if and only if ν = µx for
some x ∈ MLRλ .

The support of a measure µ on 2ω is defined to be

Supp(µ) = {x ∈ 2ω : (∀n)[µ(x�n) > 0]}.

It is not hard to see that Supp(µ) = 2ω for every random measure.

In [8], it was shown, among other results, that random measures are atomless (that is,
µ({x}) = 0 for every x ∈ 2ω ) and that the reals that are random with respect to some
random measure are precisely the reals in MLRλ .

4 Applications of Randomness Preservation and No Ran-
domness Ex Nihilo

In this section, we demonstrate the usefulness of preservation of randomness and the no
randomness ex nihilo principle in the study of algorithmically random objects such as
closed sets, continuous functions, and so on.

As a warm-up, we provide a new, simpler proof of a known result from Barmpalias,
Brodhead, Cenzer, Dashti, and Weber [2].

Theorem 4.1 Every random closed set contains an element of MLRλ and every
element of MLRλ is contained in some random closed set.

Proof We define a computable map Φ : C(2ω) × 2ω → 2ω that pushes forward the
product measure λC ⊗ λ to λ and satisfies Φ(C, x) ∈ C for every (C, x) ∈ C(2ω)× 2ω.
Having done this, preservation of randomness and no randomness ex nihilo imply that
the image of a (λC ⊗ λ)-random pair is λ-random and any λ-random is the image
of some (λC ⊗ λ)-random pair. The result then follows because by van Lambalgen’s
theorem (Theorem 3.7), a pair (C, x) is (λC⊗ λ)-random if and only if C is λC -random
and x is λ-random relative to C .

The map Φ provides a path through C (when viewed as the paths through a tree)
by using x to tell us which way to go whenever we encounter a branching node.
Specifically, having Φ(C, x) � n = σ such that JσK ∩ C 6= ∅, we define Φ(C, x)(n) = 0
if Jσ1K ∩ C = ∅ and Φ(C, x)(n) = 1 if Jσ0K ∩ C = ∅. If neither Jσ0K ∩ C = ∅ nor
Jσ1K ∩ C = ∅, then we define Φ(C, x)(n) = x(n).

Journal of Logic & Analysis 7:7 (2015)



10 Quinn Culver and Christopher P. Porter

The map Φ is clearly computable. It pushes λC⊗λ forward to λ because if Φ has output
σ ∈ 2n after n steps, then Φ outputs a next bit of 0 if and only if either Jσ1K ∩ C = ∅
or both Jσ1K∩ C and Jσ0K∩ C are non-empty and x(n) = 0. The former happens with
probability 1

3 , and the latter happens with probability 1
6 = 1

3 ·
1
2 by independence. The

proof is now complete since 1
3 + 1

6 = 1
2 .

Let F ∈ F(2ω). We define the zeros of F to be ZF = {x : F(x) = 0ω}, which is clearly
a closed subset of 2ω. In Barmpalias, Brodhead, Cenzer, Remmel, and Weber [3], the
following was shown.

Theorem 4.2 ([3]) Let F ∈ F(2ω) be random. Then ZF is a random closed set
provided it is non-empty.

In [3] it was conjectured that the converse also holds, but this was left open. We show
that this is the case. To do so, we provide a new proof of Theorem 4.2, from which the
converse follows immediately. We also make use of an alternative characterization of
random closed sets due to Diamondstone and Kjos-Hanssen [9].

Just as a binary tree with no dead ends is coded by a sequence in 3ω (see the paragraph
preceding Definition 3.8), an arbitrary binary tree is coded by a sequence in 4ω, except
now a 3 at a node indicates that the tree is dead above that node. That is, given x ∈ 4ω,
we define a tree Sx ⊆ 2<ω inductively as follows. First ε, the empty string, is included
in Sx by default. Now suppose that σ ∈ Sx is the (i + 1)-st extendible node in Sx . Then

• σ0 ∈ Sx and σ1 /∈ Sx if x(i) = 0;

• σ0 /∈ Sx and σ1 ∈ Sx if x(i) = 1;

• σ0 ∈ Sx and σ1 ∈ Sx if x(i) = 2;

• σ0 /∈ Sx and σ1 /∈ Sx if x(i) = 3.

This coding can be thought of as a labeling of the nodes of 2ω by the digits of x; a 0 at a
node means that only the left branch is included, a 1 means that only the right branch is
included, a 2 means that both branches are included, and a 3 means that neither branch
is included. Note that every closed set except 2ω itself has infinitely many codes.

Let µGW be the measure on 4ω induced by setting, for each σ ∈ 4<ω,

µGW(σ0 | σ) = µGW(σ1 | σ) = 2/9, µGW(σ2 | σ) = 4/9, and µGW(σ3 | σ) = 1/9.

Via this coding we can also think of µGW as a measure on Tree, the space of binary
trees. Then the probability of extending a string in a tree by only 0 is 2/9, by only 1 is

Journal of Logic & Analysis 7:7 (2015)



The Interplay of Classes of Algorithmically Random Objects 11

2/9, by both 0 and 1 is 4/9, and by neither is 1/9. We call a tree T GW-random if it
has a random code, ie, if there is x ∈ MLRµGW such that T = Sx (here GW stands for
Galton-Watson, since GW -trees are obtained by a Galton-Watson process).

Lemma 4.3 (Diamondstone and Kjos-Hanssen [9]) A closed set C is random if and
only if C is the set of paths through an infinite GW-random tree.

By means of Lemma 4.3 we prove:

Theorem 4.4 (i) For every random F ∈ F(2ω), ZF is a random closed set provided
that it is non-empty.

(ii) For every random C ∈ C(2ω), there is some random F ∈ F(2ω) such that
C = ZF .

Proof We define a computable map Ψ : F(2ω) → Tree that pushes forward λF to
µGW such that the set of paths through Ψ(F) ∩ dom(F) is exactly ZF . Given our
representation of functions as members of 3ω and binary trees as members of 4ω, we
are really defining a computable map Ψ̂ : 3ω → 4ω that pushes forward λ to µGW .

Given F ∈ F(2ω), which we think of as a {0, 1, 2}-labeling of the edges of the full
binary tree, we build the desired tree by declaring that σ ∈ Ψ(F) if and only if the labels
by F of the edges of σ consists only of 0’s and 2’s. More formally, as in the paragraph
preceding Definition 3.11, F comes with a labeling function `F : 2<ω \{ε} → 3 defined
by `F(σi) = j if and only if x(i) = j where x is the given code for F . So σ ∈ Ψ(F) if
and only if `F(σ�k) ∈ {0, 2}<ω for every 0 < k ≤ |σ|. Clearly this map is computable.

Now we show that the map Ψ pushes λF forward to µGW . Suppose σ ∈ Ψ(F), which,
as stated above, means that `F(σ�k) ∈ {0, 2}<ω for every 0 < k ≤ |σ|. Then

σ0 ∈ Ψ(F) & σ1 /∈ Ψ(F) ⇔ `F(σ0) ∈ {0, 2} & `F(σ1) = 1.

The right-hand side of the equivalence occurs with probability (2/3)(1/3) = 2/9.
Similarly,

σ0 /∈ Ψ(F) & σ1 ∈ Ψ(F) ⇔ `F(σ0) = 1 & `F(σ1) ∈ {0, 2},

where this latter event also occurs with probability 2/9. Next,

σ0 ∈ Ψ(F) & σ1 ∈ Ψ(F) ⇔ `F(σ0) ∈ {0, 2} & `F(σ1) ∈ {0, 2},

with the latter event occurring with probability (2/3)(2/3) = 4/9. Lastly,

σ0 /∈ Ψ(F) & σ1 /∈ Ψ(F) ⇔ `F(σ0) = `F(σ1) = 1,
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12 Quinn Culver and Christopher P. Porter

where the event on the right-hand side occurs with probability (1/3)(1/3) = 1/9.
Now by construction, it follows immediately that any path through the tree Ψ(F) is
a sequence X such that either F(X) = 0ω (in the case that `F(X�n) = 0 for infinitely
many n) or F(X)↑ (in the case that `F(X�n) = 0 for only finitely many n).

By preservation of randomness and no randomness ex nihilo, a tree is GW-random if
and only if it is the image of some random continuous function F . The conclusion then
follows by Lemma 4.3.

One consequence of Theorem 3.13 and Theorem 4.4(ii), not noted in Barmpalias,
Brodhead, Cenzer, Remmel, and Weber [3], is that the composition of two random
continuous functions need not be random.

Corollary 4.5 For every random F ∈ F(2ω), there is some random G ∈ F(2ω) such
that G ◦ F is not random.

Proof By Theorem 3.13, there is some R ∈ MLR such that F(0ω) = R. By Theorem
4.1, there is some random C ∈ C(2ω) containing R. By Theorem 4.4(ii), there is a
G ∈ F(2ω) such that G−1({0ω}) = C .

It follows that G(F(0ω)) = 0ω, which implies with Theorem 3.13 that G ◦ F is not
random.

Another consequence of Theorem 4.4 is that we can answer another open question
from [3] involving random pseudo-distance functions. Given a closed set C ∈ C(2ω), a
function δ : 2ω → 2ω is a pseudo-distance function for C if C is the set of zeros of δ .
In [3] it was shown that if δ is a random pseudo-distance function for some C ∈ C(2ω),
then C is a random closed set, but the converse was left open. By Theorem 4.4, the
converse immediately follows.

Corollary 4.6 Let C ∈ C(2ω). C has a random pseudo-distance function if and only
if C is a random closed set.

5 The support of a random measure

In the previous section, we established a correspondence between random closed sets
and and random continuous functions: a closed set C is random if and only if it is the
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set of zeros of some random continuous function. In this section, we establish similar
correspondences between random closed sets and random measures.

Since the support of a measure µ, ie, the set Supp(µ) = {x ∈ 2ω : ∀n µ(x�n) > 0} is
a closed set, one might hope to establish such a correspondence by considering the
supports of random measures. However, it is not hard to see that for each random
measure µ, Supp(µ) = 2ω.

If we consider a different computable measure on P(2ω) than the measure P defined
above in Section 3.4, then such a correspondence can be given. In the first place, we
want a measure Q on P(2ω) with the property that no Q-random measure has full
support. In fact, we can choose a measure Q such that each Q-random measure is
supported on a random closed set.

Theorem 5.1 There is a computable measure Q on P(2ω) such that

(i) every Q-random measure is supported on a random closed set, and

(ii) for every random closed set C ⊆ 2ω, there is a Q-random measure µ such that
Supp(µ) = C .

Proof We will define the measure Q so that each Q-random measure is obtained by
restricting the Lebesgue measure to a random closed set. That is, each Q-random
measure will be uniform on all of the branching nodes of its support.

We define Q in terms of an almost total functional Φ : 3ω → 2ω. On input x ∈ 3ω, Φ

will treat x as the code for a closed set and will output the sequence y = ⊕i∈ωyi defined
as follows. For each i ∈ ω , we set

yi =


1∞ if x(i) = 0
0∞ if x(i) = 1
10∞ if x(i) = 2

If we think of the columns of y as encoding the conditional probabilities of a measure
µy , then if (σi)i∈ω is the standard enumeration of 2<ω, these conditional probabilities
are given by

pσi =


1 if x(i) = 0
0 if x(i) = 1
1/2 if x(i) = 2

That is, Φ(x) = y, where y represents the unique measure µy such that µy(σ0 | σ) = pσ
for each σ ∈ 2<ω. Let Q be the measure on P(2ω) induced by the composition of Φ

and the representation map Ψ : 2ω →P(2ω) defined in Section 3.4.
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We now show that Φ maps each x ∈ MLR to a Q-random measure supported on a
random closed set. Let x ∈ MLR and set Φ(x) = y. By preservation of randomness,
Ψ(Φ(x)) = µy is Q-random.

Next, since x ∈ MLR, [Tx] is a random closed set. We claim that Supp(µy) = [Tx].
Suppose that σ ∈ 2<ω is the (n+1)-st extendible node of Tx . Then one of the following
holds:

(a) σ0 ∈ Tx and σ1 /∈ Tx ;

(b) σ0 /∈ Tx and σ1 ∈ Tx ; or

(c) σ0 ∈ Tx and σ1 ∈ Tx .

Moreover, we have

• Condition (a) holds iff x(n) = 0 iff µy(σ0 | σ) = 1 and µy(σ1 | σ) = 0.

• Condition (b) holds iff x(n) = 1 iff µy(σ0 | σ) = 0 and µy(σ1 | σ) = 1.

• Condition (c) holds iff x(n) = 2 iff µy(σ0 | σ) = µy(σ1 | σ) = 1/2.

One can readily verify that µy(σ_i | σ) > 0 if and only if σ_i ∈ Tx . Thus

Z ∈ Supp(µy)⇔ µy(Z�n) > 0 for every n

⇔ µy(Z�(n + 1) | Z�n) > 0 for every n

⇔ Z�(n + 1) ∈ Tx for every n

⇔ Z ∈ [Tx].

We have thus established that µΦ(x) is supported on the random closed set [Tx].

Lastly, we verify that the conditions (i) and (ii) hold. For (i), given any Q-random
measure ν , by no randomness ex nihilo there is some x ∈ MLR such that ν = µΦ(x) ,
which by the above discussion is supported on a random closed set. To show (ii), let
C ⊆ 2ω be a random closed set. By definition there is some Martin-Löf random z ∈ 3ω

such that C = [Tz]. Hence Ψ(Φ(z)) is a Q-random measure ν . By the above discussion,
ν has support [Tz] = C , which establishes the claim.

Instead of changing the measure on P(2ω) we can also establish a correspondence
between random closed sets and random measures by considering not the support of a
random measure but what we refer to as its 1/3-support.

Definition 5.2 Let µ ∈P(2ω) and set

Tµ = {σ : (∀i < |σ|) [ µ
(
σ�(i + i) | σ�i

)
> 1/3 ]} ∪ {ε}.

Then the 1/3-support of the measure µ is the closed set [Tµ].
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Theorem 5.3 A closed set C ∈ C(2ω) is random if and only it is the 1/3-support of
some random measure µ ∈P(2ω).

Proof We define an almost-total, computable, and Lebesgue-measure-preserving map
Φ : 2ω → 3ω that induces a map Φ̃ : P(2ω)→ C(2ω) such that Φ̃(µ) = [Tµ]. Given
x = ⊕xi ∈ 2ω such that µ(σi

_0 | σi) = xi for each i, then for σ ∈ Tµ (which must
exist since ε ∈ Tµ ),

• if µ(σ0 | σ) ∈ [0, 1/3), then σ1 ∈ Tµ and σ0 /∈ Tµ ;

• if µ(σ0 | σ) ∈ (2/3, 1], then σ0 ∈ Tµ and σ1 /∈ Tµ ;

• if µ(σ0 | σ) ∈ (1/3, 2/3), then σ0 ∈ Tµ and σ1 ∈ Tµ ; and

• if µ(σ0 | σ) = 1/3 or µ(σ0 | σ) = 2/3, then Φ(x) is undefined.

Clearly Φ is defined on a set of measure one since it is defined on all sequences x such
that xi 6= 1/3 and xi 6= 2/3 for each i. Observe that each σ ∈ Tµ extends to an infinite
path in [Tµ]. Thus, if σ is the (n + 1)-st extendible node in Tµ , then the each of the
events

• σ0 ∈ Tµ and σ1 /∈ Tµ ,

• σ0 /∈ Tµ and σ1 ∈ Tµ , and

• σ0 ∈ Tµ and σ1 ∈ Tµ ,

occurs with probability 1/3, as each of these events corresponds to the case that
µ(σ0 | σ) ∈ [0, 1/3), µ(σ0 | σ) ∈ (2/3, 1], or µ(σ0 | σ) ∈ (1/3, 2/3), respectively.
It thus follows that the pushforward measure induced by λ and Φ is the Lebesgue
measure on 3ω. By preservation of randomness, each random measure µ is mapped to
a random closed set, and by no randomness ex nihilo, each random closed set is the
image of a random measure under Φ. This establishes the theorem.

6 The range of a random continuous function

In Barmpalias, Brodhead, Cenzer, Remmel, and Weber [3], it was shown that for each
y ∈ 2ω,

λ({x ∈ 2ω : y ∈ ran(Fx)}) = 3/4.

from which it follows that every y ∈ 2ω is in the range of some random F ∈ F(2ω).
In this section, we prove that λ(ran(F)) ∈ (0, 1) for every random function F . First
we will prove that λ(ran(F)) > 0 for each random function, from which it follows
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that no random function is injective, a fact previously shown by [3] using a different
proof, and that the range of a random function is never a random closed set. This latter
result improves result of [3] according to which the range of a random function is not
necessarily a random closed set. Our proof that the measure of the range of a random
function is positive requires us to prove some auxiliary facts about the measure induced
by a random function.

To prove that λ(ran(F)) < 1 for every F ∈ F(2ω), we will show that no random function
is surjective, from which the result immediately follows. Our result on surjectivity also
improves a result of [3] according to which not every random function is surjective.

We begin by proving the following, which is similar to a result in Culver [8] for random
measures.

Lemma 6.1 Let λF be the measure on F(2ω) induced by the correspondence between
F(2ω) and 3ω. Then the measure PF on P(2ω) induced by the map F 7→ λ ◦ F−1 has
barycenter λ; ie,

λ(σ) =

∫
P(2ω)

µ(σ) dPF(µ)

for each σ ∈ 2<ω.

Proof By change of variables, it suffices to show that

(1) 2−|σ| =
∫
F(2ω)

λ(F−1JσK) dλF

for each σ ∈ 2<ω. Without loss of generality, we assume σ = 0n. We proceed then by
induction on n.

Equation (1) holds when σ = ε since each random F is total by Theorem 3.14.

Now supposing that equation (1) holds for 0n , we show it also holds for 0n+1. Suppose
then that

∫
F(2ω) λ(F−1J0nK) dλF = 2−n. To compute

∫
F(2ω) λ(F−1J0n+1K) dλF , we note

that by symmetry
∫
F(2ω) λ(F−1J0n+1K) dλF = 2 ·

∫
F(2ω) λ(J0K ∩ F−1J0n+1K) dλF and

proceed to compute sn+1 :=
∫
F(2ω) λ(J0K ∩ F−1J0n+1K) dλF .

Recall that any F ∈ F(2ω) can be viewed as a labeling by 0’s, 1’s, and 2’s of
the nodes of full binary branching tree (where the root node is unlabeled). We
will compute

∫
F(2ω) λ(J0K ∩ F−1J0n+1K) dλF , which is really the expected measure of

J0K ∩ F−1J0n+1K, by considering the three equiprobable cases for the label of the node
0 for an arbitrary F ∈ F(2ω). The point is that a label 0 contributes to producing an
output beginning with 0n+1 and then we only need to obtain 0n to get 0n+1, the label 1
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rules out the possibility of producing an output beginning with 0n+1, and the label 2
neither contributes to nor rules out the possibility of producing an output beginning with
0n+1 and then we need to obtain 0n+1 above one of the nodes 00 or 01 to get 0n+1.

Case 1: If the node 0 is labeled with a 0, then the measure of all sequences extending
the node 0 that (after removing 2’s) yield an output extending 0n+1 is equal to
1/2 times the measure of all sequences that yield an output extending 0n . Since
what happens above the node 0 is independent of what happens at the node 0,
the expected measured of F−1J0n+1K is, in this case, 1/2 · sn = 1/2 · 2−n.

Case 2: If the node 0 is labeled with a 1, then the measure of all sequences extending
the node 0 that (after removing 2’s) yield an output extending 0n+1 is equal to 0.

Case 3: If the node 0 is labeled with a 2, then the measure of all sequences extending
the node 0 that (after removing 2’s) yield an output extending 0n+1 is equal
to 1/2 times the measure of all sequences extending the node 0 that yield an
output extending 0n+1. Since what happens above the node 0 is independent of
what happens at the node 0, the expected measured of F−1J0n+1K is, in this case,
1/2 · 2sn+1, where the 2 coefficient of sn+1 comes from the fact that the 0n+1

could be above the node 00 or 01 and the expected measure of J0K ∩ F−1J0n+1K
is the same as the expected measure of J1K ∩ F−1J0n+1K, by independence.

Putting this all together gives

sn+1 =
1
3
· 1

2
· 2−n +

1
3
· 0 +

1
3
· 1

2
· 2sn+1

which yields sn+1 = 2−n/4, as desired.

Lemma 6.2 (Hoyrup [11], relativized) Let Q be a computable measure on P(2ω)
with barycenter µ. Then for any z ∈ 2ω,

MLRz
µ =

⋃
ν∈MLRz

Q

MLRz
ν .

Theorem 6.3 If F ∈ F(2ω) is random, then λ(ran(F)) > 0.

Proof Fix a random F ∈ F(2ω). We show that ran(F) always contains an element
of MLRF

λ . Since ran(F) is Π0,F
1 by Remark 3.12, it follows by Proposition 3.2 that

λ(ran(F)) > 0.
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By preservation of randomness relative to F , if x ∈ MLRF
λ , then F(x) ∈ MLRF

λ◦F−1 .
But by Lemmas 6.1 and 6.2, MLRF

λ◦F−1 ⊆ MLRF
λ , so F(x) ∈ MLRF

λ , as desired.

We have a new proof of the following result from Barmpalias, Brodhead, Cenzer,
Remmel, and Weber [3].

Corollary 6.4 If F ∈ F(2ω) is random, then F is not injective.

Proof For any y ∈ 2ω, a relativization of Theorem 4.4(i) shows that F−1({y}), if
non-empty, is a random closed set relative to y provided that F is random relative
to y. Since ran(F) has positive Lebesgue measure, there is some y ∈ ran(F) that is
random relative to F (and so clearly F−1({y}) is non-empty). Then by van Lambalgen’s
theorem, F is also random relative to y. So F−1({y}) is a non-empty random closed
set and hence has size continuum by Theorem 3.10. Thus F is not injective.

Corollary 6.5 If F ∈ F(2ω) is random, then ran(F) is not a random closed set.

Proof By Theorem 3.9, every random closed set has Lebesgue measure 0. But by
Theorem 6.3, the range of a random F ∈ F(2ω) has positive Lebesgue measure, and
thus the conclusion follows.

From the proof of Corollary 6.4 we can also obtain the following.

Corollary 6.6 Let F ∈ F(2ω) be random. Then the measure λF induced by F is
atomless, that is, λF({x}) = 0 for every x ∈ 2ω.

Proof Let F ∈ F(2ω) be random and suppose that z ∈ 2ω is an atom of λF , ie,
λF({z}) > 0. It follows that z ∈ MLRF

λF
, since z is not contained in any λF -nullsets.

Moreover, since λF({z}) > 0, F−1({z}) is non-empty. As we argued in the proof of
Corollary 6.4, F−1({z}) is a random closed set and thus has Lesbesgue measure zero
by Theorem 3.9, contradicting our assumption.

We now turn to showing that λ(ran(F)) < 1 for every random F ∈ F(2ω). Instead of
proving this directly, we will first prove the following.

Theorem 6.7 If F ∈ F(2ω) is surjective, then F is not random.
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To prove Theorem 6.7, we provide a careful analysis of the result from [3] stated at the
beginning of this section, namely that for each y ∈ 2ω,

λ({x ∈ 2ω : y ∈ ran(Fx)}) = 3/4.

This result is obtained by showing that the strictly decreasing sequence (qn)n∈ω defined
by

qn = λ({x ∈ 2ω : ran(Fx) ∩ J0nK})

converges to 3/4 and using the fact that

λ({x ∈ 2ω : ran(Fx) ∩ J0nK}) = λ({x ∈ 2ω : ran(Fx) ∩ JσK})

for each σ ∈ 2<ω of length n. This sequence (qn)n∈ω is obtained by using a case
analysis to derive the following recursive formula:

(2) qn+1 =
3
2

√
1 + 4qn −

3
2
− qn.

For details, see Barmpalias, Brodhead, Cenzer, Remmel, and Weber [3, Theorem 2.12].

For F ∈ F(2ω) and σ ∈ 2<ω, let us say that F hits JσK if ran(F) ∩ JσK 6= ∅. Thus, qn

is the probability that a random F ∈ F(2ω) hits JσK for some fixed σ ∈ 2<ω such that
|σ| = n.

We will proceed by proving a series of lemmas. First, for each n ∈ ω , let εn satisfy
qn = 3/4 + εn . Since

(i) qn > qn+1 for every n, and

(ii) limn→∞ qn = 3/4,

we know that each εn is non-negative and limn→∞ εn = 0. Moreover, we have the
following.

Lemma 6.8 For each n ≥ 1,

(a) εn+1 ≤ 1
2εn ,

(b) εn ≤ 2−(n+2),

(c) εn+1 ≥ 1
2εn − 2−(2n+5), and

(d) εn ≥ 1
2n+5−1 .

Proof First, let n ≥ 1. If we substitute 3/4 + εn+1 and 3/4 + εn for qn+1 and qn ,
respectively, into Equation (2), we obtain (after simplification)

(3) εn+1 = 3
√

1 + εn − 3− εn.
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Since
√

1 + x ≤ 1 + x
2 on [0, 1], from (3) we can conclude

εn+1 ≤ 3
(
1 +

εn

2
)
− 3− εn =

1
2
εn,

thereby establishing (a). To show (b), we proceed by induction. Using the fact from [3]
that q1 =

√
45−5
2 , it follows by direct calculation that

ε1 =

√
45− 5

2
− 3

4
≤ 2−3.

Next, assuming that εn ≤ 2−(n+2), it follows from (a) that

εn+1 ≤
1
2
εn ≤

1
2

2−(n+2) = 2−(n+3).

To show (c), for each fixed n ≥ 1, we use a different approximation of
√

1 + x from
below. By (b), since εn ≤ 2−(n+2), we use the Taylor series approximation 1 + x

2 of√
1 + x centered at 0 on [0, 2−(n+2)] with error term

max
c∈[0,2−(n+2)]

1
4(1 + c)3/2

x2

2
=

x2

8
.

Thus, √
1 + x ≥ 1 +

x
2
−
(
2−(n+2))2

/8 = 1 +
x
2
− 2−(2n+7)

on [0, 2−(n+2)]. Combining this with Equation (3) yields

εn+1 ≥ 3(1 +
εn

2
− 2−(2n+7))− 3− εn ≥

1
2
εn − 2−(2n+5).

Lastly, to prove (d), first observe that

(4) ε1 =

√
45− 5

2
− 3

4
≥ 2−4

and thus it certainly follows that

ε1 ≥
1

26 − 1
.

Next, using (c), we verify by induction that for n ≥ 2,

(5) εn ≥
1

2n−1 ε1 −
(
2−(n+5) + . . .+ 2−(2n+3)).

For n = 2, by part (c) we have

ε2 ≥
1
2
ε1 − 2−7.

Supposing that

εn ≥
1

2n−1 ε1 −
(
2−(n+5) + . . .+ 2−(2n+3)),
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again by part (c) we have

εn+1 ≥
1
2
εn − 2−(2n+5) ≥ 1

2

( 1
2n−1 ε1 −

(
2−(n+5) + . . .+ 2−(2n+3)))− 2−(2n+5)

=
1
2n ε1 −

(
2−(n+6) + . . .+ 2−(2n+4))− 2−(2n+5)

=
1
2n ε1 −

(
2−(n+6) + . . .+ 2−(2n+5)),

which establishes Equation (5). Combining Equations (4) and (5) yields

εn ≥
1

2n−1 2−4 −
(
2−(n+5) + . . .+ 2−(2n+3)).

=
1

2(n+3) − 2−(n+4)(2−1 + . . .+ 2−(n−1))
=

1
2(n+3) − 2−(n+4)(1− 2−(n−1))

≥ 2−(n+3) − 2−(n+4)

≥ 2−(n+4)

≥ 1
2n+5 − 1

.

Lemma 6.9 For n ≥ 1, we have
qn+1

qn
≤ 1− 2−(n+6).

Proof By Lemma 6.8(d),

εn ≥
1

2n+5 − 1
=

2−(n+5)

1− 2−(n+5) ,

which implies (
1− 2−(n+5))εn ≥ 2−(n+5) = 4 · 2−(n+7) ≥ 3 · 2−(n+7).

Multiplying both sides by 1/2 yields
1
2
(
1− 2−(n+5))εn ≥

3
4

2−(n+6).

Expanding the left hand side and using the fact from Lemma 6.8(a) that 1
2εn ≥ εn+1 ,

we have
1
2
εn +

(1
4

+ . . .+ 2−(n+6)
)
εn ≥

3
4

2−(n+6) + εn+1,

which is equivalent to

(1− 2−(n+6))εn +
3
4

(1− 2−(n+6)) ≥ 3
4

+ εn+1.
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This yields the inequality (
1− 2−(n+6))qn ≥ qn+1,

from which the conclusion follows.

Lemma 6.10 For n ≥ 1, we have(
2
(qn+1

qn

)
− 1
)2n

≤ 1
32
√

e
< 1.

Proof First, it follows from Lemma 6.9 that

2
(qn+1

qn

)
− 1 ≤ 1− 2−(n+5)

and hence

(6)
(

2
(qn+1

qn

)
− 1
)2n

≤
(

1− 2−(n+5)
)2n

.

Next, it is straightforward to verify by cross-multiplication that

2n+5 − 1
2n+5 ≤ 2n+6 − 1

2n+6

and
2n+5 − 1

2n+5 ≤
(

2n+6 − 1
2n+6

)2

,

from which it follows that(
2n+5 − 1

2n+5

)2n

≤
(

2n+6 − 1
2n+6

)2n+1

.

Lastly, we have

lim
n→∞

(
1− 2−(n+5)

)2n

=
1

32
√

e
.

From Equation (6) and the fact that the sequence
(
(1−2−(n+5))2n)

n∈ω is non-decreasing
and converges to 1/ 32

√
e, the claim immediately follows.

The proof of following result is essentially the proof of the effective Choquet capacity
theorem in Brodhead, Cenzer, Toska, and Wyman [5]. We reproduce the proof here for
the sake of completeness.

Lemma 6.11 The probability that a random continuous function F hits both J0K and
J1K is 2q1 − 1, and the probability that F hits both Jσ0K and Jσ1K for a fixed σ ∈ 2<ω

of length n ≥ 1, given that F hits JσK, is equal to 2
(qn+1

qn

)
− 1.
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Proof First, let us write the probability that F hits JσK for some fixed σ as P(F ∈ Hσ).
Now since P(F ∈ H0) = q1 , it follows that P(F ∈ H1 \ H0) = 1 − q1 (here we use
the fact that every random function is total). By symmetry, P(F ∈ H0 \ H1) = 1− q1 .
Since F is total with probability one, it follows that

P(F ∈ H0 ∩ H1) = 1−
(
P(F ∈ H0 \ H1) + P(F ∈ H1 \ H0)

)
and thus

P(F ∈ H0 ∩ H1) = 1− ((1− q1) + (1− q1)) = 2q1 − 1.

Next, let σ be a string of length n ≥ 1 and let i ∈ {0, 1}. Since P(F ∈ Hσ) = qn and
P(F ∈ Hσ_i) = qn+1 it follows that

P(F ∈ Hσ_i | F ∈ Hσ) =
P(F ∈ Hσ_i & F ∈ Hσ)

P(F ∈ Hσ)
=

P(F ∈ Hσ_i)
P(F ∈ Hσ)

=
qn+1

qn
.

Consequently,

P(F ∈ Hσ1 \ Hσ0 | F ∈ Hσ) = P(F ∈ Hσ0 \ Hσ1 | F ∈ Hσ) = 1− qn+1

qn
.

Thus,

P(F ∈ Hσ0 ∩ Hσ1 | F ∈ Hσ) = 1−
1∑

i=0

P(F ∈ Hσ_i \ Hσ_(i−1) | F ∈ Hσ)

= 1−
((

1− qn+1

qn

)
+
(
1− qn+1

qn

))
= 2
(qn+1

qn

)
− 1.

To complete the proof of Theorem 6.7, we now define a Martin-Löf test on F(2ω) that
covers all surjective functions. Let us say that a function F ∈ F(2ω) is onto up to level
n if F ∈ Hσ for every σ ∈ 2n. By Lemmas 6.10 and 6.11, the probability of a function
being onto up to level n is

(2q1 − 1)
n−1∏
i=1

(
2
(qi+1

qi

)
− 1
)2i

≤
(

1
32
√

e

)n

.

Thus, if we set
Un = {F ∈ F(2ω) : F is onto up to level n},

and
f (n) = min{k : ( 32

√
e)−k ≤ 2−n},

which is clearly computable, then (Uf (n))n∈ω is a Martin-Löf test with the property that
F ∈ F(2ω) is onto if and only if F ∈

⋂
n∈ω Uf (n) . This completes the proof.
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Corollary 6.12 If F ∈ F(2ω) is random, then λ(ran(F)) < 1.

Proof Suppose λ(ran(F)) = 1. Then since ran(F) is closed, it follows that ran(F) = 2ω.
But then F is onto, so it cannot be random.

We also have the following corollary.

Theorem 6.13 No measure induced by a random function is a random measure in the
sense of Definition 3.15.

Proof Let F ∈ F(2ω) be random. Then by Corollary 6.12, λ(ran(F)) < 1. Thus, it
follows that 2ω \ ran(F) is non-empty and open, so JσK ⊆ 2ω \ ran(F) for some σ ∈ 2<ω.
Thus, λF(σ) = 0. By contrast, for every random measure µ, we have µ(σ) > 0, and
the result follows.
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