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A point-free characterisation of Bishop locally
compact metric spaces

TATSUJI KAWAI

Abstract: We give a characterisation of Bishop locally compact metric spaces
in terms of formal topology. To this end, we introduce the notion of inhabited
enumerably locally compact regular formal topology, and show that the category of
Bishop locally compact metric spaces is equivalent to the full subcategory of formal
topologies consisting of those objects which are isomorphic to some inhabited
enumerably locally compact regular formal topology.

In the course of obtaining the above equivalence, we show a couple of point-free
results which are of independent interest. First, we show that any overt enumerably
locally compact regular formal topology admits a one-point compactification, i.e.
it can be embedded into a compact overt enumerably completely regular formal
topology as the open complement of a formal point. Second, we characterise the
class of enumerably completely regular formal topologies as the subtopolgies of
the product of countably many copies of the formal unit interval.

We work in Aczel’s constructive set theory CZF with Regular Extension Axiom
and Dependent Choice.
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1 Introduction

In locale theory (Johnstone [13]), the standard adjunction between the category of
topological spaces and that of locales restricts to an equivalence between the category
of sober spaces and that of spatial locales. The equivalence allows us to transfer results
between general topology and locale theory.

Aczel [1] showed that the adjunction is constructively valid by replacing the notion of
locale with Sambin’s notion of formal topology [19]. As was stressed by Palmgren [18],
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however, the adjunction is of little practical use constructively since some of the
important examples of formal topologies cannot be shown to be spatial. In particular,
as shown by Fourman and Grayson [11, Theorem 4.10] the spatiality of the formal reals
is equivalent to the compactness of the unit interval, and a proof of the latter requires
the Fan theorem. Since the Fan theorem is not acceptable in Bishop constructive
mathematics [3], the current situation prevents us from applying the results in formal
topology to Bishop’s theory of metric spaces [3, Chapter 4].

To overcome this difficulty, Palmgren [17] constructed another embedding, a full and
faithful functor M : LCM → FTop, from the category of locally compact metric
spaces LCM into that of formal topologies FTop, using the localic completion of
generalized metric spaces due to Vickers [21]. Unlike the standard adjunction, the
embedding M has important properties that a metric space X is compact if and only if
M(X) is compact and that M(X) is locally compact whenever X is locally compact.

In our previous work [14, Chapter 4], we characterised the image of the category of
compact metric spaces under the embedding M using the notion of compact overt
enumerably completely regular formal topology. This means that the category of
compact metric spaces is equivalent to the full subcategory of FTop consisting of those
formal topologies which are isomorphic to some compact overt enumerably completely
regular formal topology.

In the present paper, we extend the characterisation to the class of Bishop locally
compact metric spaces. We introduce the notion of inhabited enumerably locally
compact regular formal topology and show that the class of inhabited enumerably
locally compact regular formal topologies characterises the image of Bishop locally
compact metric spaces under the embedding M up to isomorphism. Specifically, we
show that the category of Bishop locally compact metric spaces is equivalent to the full
subcategory of formal topologies consisting of those objects which are isomorphic to
some inhabited enumerably locally compact regular formal topology (Theorem 7.6).

In the course of obtaining the above equivalence, we show a couple of new results
which are of independent interest. First, we show that any overt enumerably locally
compact regular formal topology admits a one-point compactification (Theorem 6.5).
Second, we characterise the class of enumerably completely regular formal topologies
as the subtopolgies of the product of countably many copies of the formal unit
interval (Proposition 5.4).

The paper is organised as follows. Section 2 and Section 3 contain background on formal
topologies and the embedding of locally compact metric spaces into formal topologies by
Palmgren [17], respectively. The rest of the paper consists of our original contributions.
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In Section 4 we give a sufficient condition under which a formal topology is isomorphic
to the localic completion of a Bishop locally compact metric space (Corollary 4.15).
To this end, we introduce the notion of the open complement of a located subtopology.
In Section 5 we characterise enumerably completely regular formal topologies by the
subtopologies of the countable product of the formal unit interval (Proposition 5.4). In
Section 6 we construct a one-point compactification of an overt enumerably locally
compact regular formal topology (Theorem 6.5). In Section 7 we show that the notion
of inhabited enumerably locally compact regular formal topology characterises that of
Bishop locally compact metric space up to isomorphism (Theorem 7.6).

We work informally in Aczel’s constructive set theory CZF (Aczel and Rathjen [2])
extended with the Regular Extension Axiom (REA) and Dependent Choice (DC). Our
previous work [14, Chapter 4] on which this paper depends was carried out in the same
system. The axiom REA is needed to define the notion of inductively generated formal
topology (see Section 2.1).

For the background on Bishop metric spaces, the reader is referred to Bishop and
Bridges [4, Chapter 4].

Notation 1 We define some terms and notations which we frequently use in this paper.

First, when we say that A is a set, it mean that A forms a set in CZF, and when we say
that A is a class, it means that A is a definable class of CZF, i.e. its member can be
specified using a formula of CZF.

Let S be a set. Then Pow(S) denotes the class of subsets of S . Note that since CZF is
predicative, Pow(S) cannot be shown to be a set unless S = ∅. Fin(S) denotes the set
of finitely enumerable subsets of S , where a set A is finitely enumerable if there exists a
surjection f : {0, . . . , n− 1} → A for some n ∈ N. For subsets U,V ⊆ S , we define

U G V def⇐⇒ (∃a ∈ S) a ∈ U ∩ V.

The complement of a subset U ⊆ S is denoted by ¬U :

¬U def
= {a ∈ S | a /∈ U} .

If r ⊆ X × S is a relation between sets X and S , we define

rD def
= {a ∈ S | (∃x ∈ D) x r a} ,

r−U def
= {x ∈ X | (∃a ∈ U) x r a} ,

r−∗D def
=
{

a ∈ S | r− {a} ⊆ D
}

for any subsets D ⊆ X and U ⊆ S . We often write r−a for r− {a}.
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2 Formal topologies

We recall the relevant facts about formal topology. See Sambin [20] and Fox [12] for
further details.

Definition 2.1 A formal topology S is a triple (S,�,≤) where (S,≤) is a preordered
set and � is a relation between S and Pow(S) such that

AU def
= {a ∈ S | a�U}

is a set for each U ⊆ S and that

(1) U �U ,

(2) a�U & U �V =⇒ a�V ,

(3) a�U & a�V =⇒ a�U ↓ V ,

(4) a ≤ b =⇒ a� b

for all a, b ∈ S and U,V ⊆ S , where

U �V def⇐⇒ (∀a ∈ U) a�V,

U ↓ V def
= {c ∈ S | (∃a ∈ U) (∃b ∈ V) c ≤ a & c ≤ b} .

We write a ↓ U for {a} ↓ U and U � a for U � {a}. The set S is called the base of S ,
and the relation � is called a cover on (S,≤), or the cover of S . For any U,V ⊆ S we
define

U =S V def⇐⇒ AU = AV.

Notation 2 In this paper, the letters S,S ′, T , . . . denote formal topologies. If S is a
formal topology, the symbols S , � and ≤ denote the base, the cover and the preorder
of S respectively. Subscripts or superscripts are sometimes added to those symbols for
clarity. For example, the base, the cover and the preorder of a formal topology S ′ will
be denoted by S′,�′ and ≤′ respectively.

Definition 2.2 Let S and S ′ be formal topologies. A relation r ⊆ S× S′ is called a
formal topology map from S to S ′ if

(FTM1) S� r−S′ ,

(FTM2) r−a ↓ r−b� r−(a ↓′ b),

(FTM3) a�′U =⇒ r−a� r−U

Journal of Logic & Analysis 9:c2 (2017)
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for all a, b ∈ S′ and U ⊆ S′ .

Let S and S ′ be formal topologies. Two formal topology maps r, s : S → S ′ are
defined to be equal, denoted by r = s, if

r−a =S s−a

for all a ∈ S′ .

The formal topologies and formal topology maps between them form a category FTop.
The composition of two formal topology maps is the composition of the underlying
relations of these maps. The identity morphism on a formal topology is the identity
relation on its base.

The formal topology 1 def
=
(
{∗} ,∈,=

)
is a terminal object in FTop. A formal topology

map r : 1→ S is equivalent to the following notion.

Definition 2.3 Let S be a formal topology. A subset α ⊆ S is called a formal point of
S if

(P1) S G α ,

(P2) a, b ∈ α =⇒ α G (a ↓ b),

(P3) a ∈ α & a�U =⇒ α G U

for all a, b ∈ S and U ⊆ S . The class of formal points of S is denoted by Pt(S).

A formal topology often comes equipped with a positivity predicate.

Definition 2.4 Let S be a formal topology. A subset V ⊆ S is said to be splitting if

a ∈ V & a�U =⇒ V G U

for all a ∈ S and U ⊆ S .

Definition 2.5 A positivity predicate (or just a positivity) on a formal topology S is a
splitting subset Pos ⊆ S which satisfies

(Pos) a� {x ∈ S | x = a & Pos(a)}
for all a ∈ S , where we write Pos(a) if a ∈ Pos.

A formal topology is overt if it is equipped with a positivity predicate. A formal
topology is inhabited if it is overt and its positivity is inhabited.

Let S be a formal topology. By the condition (Pos), a positivity predicate on S , if
it exists, is the largest splitting subset of S . Thus S admits at most one positivity
predicate. Note also that every formal point of S is a splitting subset of S . Hence, if S
is overt with a positivity predicate Pos, then α ⊆ Pos for any formal point α ∈ Pt(S).
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2.1 Inductively generated formal topologies

The notion of inductively generated formal topology by Coquand et al. [7] gives us a
convenient method to define formal topologies.

Definition 2.6 Let S be a set. An axiom-set on S is a pair (I,C) where (I(a))a∈S is a
family of sets indexed by S , and C is a family (C(a, i))a∈S,i∈I(a) of subsets of S indexed
by
∑

a∈S I(a). For each a ∈ S and i ∈ I(a), the pair (a,C(a, i)) is called an axiom of
(I,C).

We recall the main result of the work by Coquand et al. [7, Theorem 3.3].

Theorem 2.7 Let (S,≤) be a preordered set, and let (I,C) be an axiom-set on S . Let
�I,C be the relation between S and Pow(S) generated by the following rules:

a ∈ U
a�I,C U

(reflexivity),
a ≤ b b�I,C U

a�I,C U
(≤-left),

a ≤ b i ∈ I(b) a ↓ C(b, i)�I,C U
a�I,C U

(≤-infinity).

Then �I,C is the least cover on (S,≤) such that a�I,C C(a, i) for all a ∈ S and i ∈ I(a).

A formal topology S = (S,�,≤) is inductively generated if it is equipped with an
axiom-set (I,C) on S such that � = �I,C .

Remark 2.8 In Definition 2.2 of a formal topology map, if the formal topology S ′
is inductively generated by an axiom-set (I,C) on S′ , then the condition (FTM3) is
equivalent to the following conditions under the condition (FTM2).

(FTM3a) a ≤′ b =⇒ r−a� r−b,

(FTM3b) r−a� r−C(a, i)

for all a, b ∈ S′ and i ∈ I(a).

Similarly, in Definition 2.3 of a formal point, if the formal topology S is inductively
generated by an axiom-set (I,C) on S , then the condition (P3) is equivalent to the
following conditions:

(P3a) a ≤ b & a ∈ α =⇒ b ∈ α ,

(P3b) a ∈ α =⇒ α G C(a, i)

for all a, b ∈ S and i ∈ I(a). See Fox [12, Section 4.1.2] for details.
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Example 2.9 Let Q be the set of rationals, and let

SR
def
= {(p, q) ∈ Q×Q | p < q} .

Define a preorder ≤R and a transitive relation <R on SR by

(p, q) ≤R (r, s) def⇐⇒ r ≤ p & q ≤ s,

(p, q) <R (r, s) def⇐⇒ r < p & q < s

for all (p, q), (r, s) ∈ SR . The formal reals R is a formal topology (SR,�R,≤R)
inductively generated by an axiom-set on SR consisting of the following axioms for
each (p, q) ∈ SR :

(R1) (p, q)�R {a ∈ SR | a <R (p, q)},

(R2) (p, q)�R {(p, s), (r, q)} for each (r, s) ∈ SR such that (r, s) <R (p, q).

It is well known that the class of formal points of R is isomorphic to the Dedekind
cuts. See Fourman and Grayson [11], Negri and Soravia [16] and Coquand et al. [7] for
further details.

2.1.1 Products

We recall the construction of a product of a family of inductively generated formal
topologies by Vickers [22]1. Let (Si)i∈I be a set-indexed family of inductively generated
formal topologies each of which is of the form Si = (Si,�i,≤i) and generated by an
axiom-set (Ki,Ci) on Si . Define a preorder (SΠ,≤Π) by

SΠ
def
= Fin

(∑
i∈I

Si

)
,

A ≤Π B def⇐⇒
(
∀(i, b) ∈ B

)(
∃(j, a) ∈ A

)
i = j & a ≤i b

for all A,B ∈ SΠ . Define an axiom-set on SΠ as follows:

(S1) A�Π {{(i, a)} ∈ SΠ | a ∈ Si} for each A ∈ SΠ and i ∈ I ,

(S2) {(i, a), (i, b)}�Π {{(i, c)} ∈ SΠ | c ≤i a & c ≤i b} for each i ∈ I and a, b ∈ Si ,

1 In order to construct a product of a family of formal topologies predicatively, we need to
know that each member the family is inductively generated. Whether this requirement is really
necessary is not known. Of course, for the empty and singleton families, the construction of
their product is trivial. Impredicatively, the construction of products of locales is well known
(see Johnstone [13, Chapter II, Proposition 2.12]).
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(S3) {(i, a)}�Π {{(i, b)} ∈ SΠ | b ∈ Ci(a, k)} for each i ∈ I , a ∈ Si and k ∈ Ki(a).

Let
∏

i∈I Si = (SΠ,�Π,≤Π) be the formal topology inductively generated by (S1),
(S2) and (S3).

For each i ∈ I , the projection pi :
∏

i∈I Si → Si is defined by

A pi a def⇐⇒ A = {(i, a)}

for all A ∈ SΠ and a ∈ Si . By the definition of
∏

i∈I Si , the relation pi is a formal
topology map. Then the family

(
pi :

∏
i∈I Si → Si

)
i∈I is a product of (Si)i∈I . In

particular, given any family (ri : S → Si)i∈I of formal topology maps, there exists a
unique formal topology map r : S →

∏
i∈I Si such that ri = pi ◦ r for all i ∈ I . The

formal topology map r is defined by

a r A def⇐⇒
(
∀(i, b) ∈ A

)
a� r−i b

for all a ∈ S and A ∈ SΠ .

For later use, we note the following facts.

Lemma 2.10 Let i ∈ I . Then

a�i U =⇒ {(i, a)}�Π {{(i, b)} ∈ SΠ | b ∈ U}

for all a ∈ Si and U ⊆ Si .

Proof This follows from the definition of the projection pi :
∏

i∈I Si → Si and the
condition (FTM3) for a formal topology map.

Corollary 2.11 Let {i0, . . . , in−1} ∈ Fin(I), and for each k < n let ak ∈ Sik and
Uk ⊆ Sik such that ak �ik Uk . Then

{(i0, a0), . . . , (in−1, an−1)}�Π{{(i0, b0), . . . , (in−1, bn−1)} ∈ SΠ | (∀k < n
)

bk ∈ Uk}.

2.2 Open subtopologies and closed subtopologies

Definition 2.12 A subtopology of a formal topology S = (S,�,≤) is a formal topology
T = (S,�T ,≤) such that

a�U =⇒ a�T U

for all a ∈ S and U ⊆ S . If T is a subtopology of S , we write T v S .

Journal of Logic & Analysis 9:c2 (2017)
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Given a formal topology map r : S → S ′ , the relation �r between S′ and Pow(S′)
defined by

a�r U def⇐⇒ r−a� r−U

is a cover on (S′,≤′). The formal topology Sr = (S′,�r,≤′) is called the image of S
under r .

A formal topology map r : S → S ′ is an embedding if r restricts to an isomorphism
between S and its image Sr .

By the condition (FTM3) for a formal topology map, we have Sr v S ′ for any formal
topology map r : S → S ′ . If T is a subtopology of S = (S,�,≤), then the identity
relation idS on S is an embedding idS : T → S . Hence the notion of embedding is
essentially equivalent to that of subtopology.

It can be shown that r : S → S ′ is an embedding if and only if

a� r−r−∗A{a}

for all a ∈ S . See Fox [12, Proposition 3.5.2].

The following is well known.

Lemma 2.13 Let S be an overt formal topology with a positivity Pos, and let
r : S → S ′ be a formal topology map. Then the image Sr of S under r is overt with
the positivity

r Pos def
=
{

a ∈ S′ | (∃b ∈ Pos) b r a
}
.

Proof It is straightforward to show that r Pos is a splitting subset of Sr . To see that
r Pos satisfies the condition (Pos), let �r be the cover of Sr , and let a ∈ S′ . We must
show that a�r {a}∩r Pos. Let b ∈ r−a, and suppose that b ∈ Pos. Then a ∈ r Pos, so
that b ∈ r−({a}∩ r Pos). Hence r−a� r−({a}∩ r Pos), and thus a�r {a}∩ r Pos.

Definition 2.14 Let S be a formal topology and let V ⊆ S . The open subtopology of
S determined by V is a subtopology SV of S with the cover �V given by

a�V U def⇐⇒ a ↓ V �U

for all a ∈ S and U ⊆ S .

Lemma 2.15 Let S be a formal topology, and let SV be the open subtopology of S
determined by V ⊆ S .

Journal of Logic & Analysis 9:c2 (2017)
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(1) SV is the largest subtopology S ′ of S such that S�′ V .

(2) If S is overt with a positivity Pos, then SV is overt with the positivity PosV given
by

PosV
def
= {a ∈ S | Pos G (a ↓ V)} .

Proof (1) Since S ↓ V �V we have S�V V . Let S ′ be a subtopology of S such
that S�′ V . Suppose that a�V U . Then a ↓ V �U , and thus a ↓ V �′U . Hence
a�′ a ↓ S�′ a ↓ V �′U . Therefore S ′ v SV .

(2) Suppose that S is overt with a positivity Pos, and let PosV be the subset of S as
defined above. Suppose that a�V U and a ∈ PosV , that is a ↓ V �U and Pos G (a ↓ V).
Then a ↓ V �U ↓ V and thus Pos G (U ↓ V), that is PosV G U . Hence PosV is a
splitting subset of SV . Moreover, for any a ∈ S we have a ↓ V � (a ↓ V) ∩ Pos by
the property (Pos) of Pos. Thus a�V (a ↓ V) ∩ Pos�V {a} ∩ PosV . Therefore PosV

satisfies (Pos).

Definition 2.16 Let S be a formal topology and let V ⊆ S . The closed subtopology
of S determined by V is a subtopology SS−V of S with the cover �S−V given by

a�S−V U def⇐⇒ a�V ∪ U

for all a ∈ S and U ⊆ S .

Lemma 2.17 Let S be a formal topology and let V ⊆ S . Then the closed subtopology
SS−V is the largest subtopology S ′ of S such that V �′ ∅.

Proof The proof is analogous to that of Lemma 2.15 (1).

Definition 2.18 Let S be a formal topology and let S ′ be a subtopology of S . Then
the closure of S ′ in S is the closed subtopology SS−Z of S determined by the subset

Z def
=
{

a ∈ S | a�′ ∅
}
.(1)

The closure of a formal topology has an expected property.

Proposition 2.19 Let S ′ be a subtopology of S . Then the closure of S ′ in S is the
smallest closed subtopology of S that is larger than S ′ .

Proof Let SS−Z be the closure of S ′ , where Z ⊆ S is defined as in (1). By Lemma
2.17 we have S ′ v SS−Z . Let V ⊆ S and suppose that S ′ v SS−V . Then V �′ ∅, so
that V ⊆ Z . Hence SS−Z v SS−V .
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Lemma 2.20 Let S ′ be an overt subtopology of S with a positivity Pos. Then the
closure of S ′ in S is the closed subtopology SS−¬ Pos .

Proof Let Z = {a ∈ S | a�′ ∅}. It suffices to show that ¬Pos = Z . Since Pos is the
positivity of S ′ , we have ¬Pos�′ ∅, and thus ¬Pos ⊆ Z . Conversely, if a�′ ∅ and
a ∈ Pos then Pos G ∅, a contradiction. Hence Z ⊆ ¬Pos.

Example 2.21 (See also Example 2.9) Let R be the formal reals. The formal unit
interval I[0, 1] is the closed subtopology of R determined by the subset

{(p, q) ∈ SR | p ≥ 1 ∨ q ≤ 0} .

Equivalently, I[0, 1] can be defined as a formal topology (SR,�I[0,1],≤R) inductively
generated by the axioms of R together with the following axiom for each (p, q) ∈ SR :

(2) (p, q)�I[0,1] {(p, q) | p < 1 & 0 < q} .

2.3 Regularity, compactness and local compactness

Let S be a formal topology. For each a ∈ S define

a∗ def
= {b ∈ S | b ↓ a� ∅} ,

and for each a, b ∈ S define

a ≪ b def⇐⇒ S� a∗ ∪ {b} .

We extend the relation ≪ to the subsets of S by defining

U ≪ V def⇐⇒ S�U∗ ∪ V

for all U,V ⊆ S , where U∗ def
=
⋂

a∈U a∗ . We write a ≪ U for {a} ≪ U and
U ≪ a for U ≪ {a}. By Lemma 2.15, we have that U ≪ V if and only if the
closure of SU is a subtopology of SV .

It is easy to see that U ≪ V implies U �V and that U′�U ≪ V �V ′ implies
U′ ≪ V ′ . Moreover, if r : S → S ′ is a formal topology map, then U ≪′ V implies
r−U ≪ r−V for any U,V ⊆ S′ .

Definition 2.22 A formal topology S is regular if it is equipped with a function
wc : S→ Pow(S) such that

(1)
(
∀b ∈ wc(a)

)
b ≪ a,

Journal of Logic & Analysis 9:c2 (2017)
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(2) a�wc(a)

for all a ∈ S .

Remark 2.23 A formal topology S is regular if and only if

(3) a� {b ∈ S | b ≪ a}

for all a ∈ S . Indeed, if S is regular with a function wc : S→ Pow(S), then

a�wc(a) ⊆ {b ∈ S | b ≪ a} .

Conversely, if S satisfies (3), we define

(4) wc(a) def
= {b ∈ S | b ≪ a} .

Thus, if S is regular, we always have a canonical choice of the function wc : S→ Pow(S)
that is given by (4).

Definition 2.24 A formal topology S is compact if

S�U =⇒
(
∃U0 ∈ Fin(U)

)
S�U0

for all U ⊆ S .

The following are well known in locale theory (see Johnstone [13, Chapter III, Section
1]).

Proposition 2.25

(1) A subtopology of a regular formal topology is regular.

(2) A closed subtopology of a compact formal topology is compact.

(3) A compact subtopology of a regular formal topology is closed.

Proof (1) If S is regular and S ′ is a subtopology of S , then a ≪ b in S implies
a ≪ b in S ′ , from which the conclusion follows.

(2) Let S be a compact formal topology, and let SS−V be the closed subtopology of
S determined by a subset V ⊆ S . Let U ⊆ S and suppose that S�S−V U . Then
S�V ∪U . Since S is compact, there exists U0 ∈ Fin(U) such that S�V ∪U0 , that is
S�S−V U0 .

(3) See Curi [9, Proposition 2.3].
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Proposition 2.26

(1) A product of inductively generated regular formal topologies is regular.

(2) A product of inductively generated compact formal topologies is compact.

Proof (1) Let (Si)i∈I be a family of inductively generated regular formal topologies,
and let (wci)i∈I be a family such that for each i ∈ I , wci : Si → Pow(Si) is a function
which makes Si regular. Let

∏
i∈I Si = (SΠ,�Π,≤Π) be the product of (Si)i∈I . Define

a function wcΠ : SΠ → Pow(SΠ) by

wcΠ(A) def
= {{(i0, b0), . . . , (in−1, bn−1)} ∈ SΠ | (∀k < n) bk ∈ wcik (ak)}

for each A = {(i0, a0), . . . , (in−1, an−1)} ∈ SΠ . Then A�Π wcΠ(A) for all A ∈ SΠ by
Corollary 2.11. Let A,B ∈ SΠ such that B ∈ wcΠ(A). Then A and B are of the forms

A = {(i0, a0), . . . , (in−1, an−1)} ,
B = {(i0, b0), . . . , (in−1, bn−1)}

such that bk ∈ wcik (ak) for all k < n. Then for each k < n, since Sik �ik b∗k ∪ {ak}, we
have SΠ �Π {{(ik, c)} ∈ SΠ | c ∈ b∗k ∪ {ak}} . Thus

SΠ �Π {{(i0, c0), . . . , (in−1, cn−1)} ∈ SΠ | (∀k < n) ck ∈ b∗k ∪ {ak}} .

Let C = {(i0, c0), . . . , (in−1, cn−1)} be an element of SΠ such that ck ∈ b∗k ∪ {ak} for
all k < n. Then, either ck = ak for all k < n or ck ∈ b∗k for some k < n. In the former
case we have C = A. In the latter case, there exists k < n such that ck ∈ b∗k . Then

C ↓ B�Π C ∪ B

�Π {(ik, ck), (ik, bk)}
�Π {{(ik, d)} ∈ SΠ | d ∈ ck ↓ bk}
�Π {{(ik, d)} ∈ SΠ | d ∈ ∅}�Π ∅,

and so C ∈ B∗ . Thus SΠ �Π B∗ ∪ {A}, that is B ≪ A. Therefore, the function wcΠ

makes
∏

i∈I Si regular.

(2) See Vickers [22, Theorem 14.6].

Let S be a formal topology. For each a, b ∈ S define

a� b def⇐⇒
(
∀U ∈ Pow(S)

) [
b�U =⇒

(
∃U0 ∈ Fin(U)

)
a�U0

]
.

Note that� is a proper class in general. The class relation� is extended to the subsets
of S in an obvious way. For any a ∈ S and U ⊆ S , we define a� U def⇐⇒ {a} � U

and U � a def⇐⇒ U � {a}.
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Definition 2.27 A formal topology S is locally compact if it is equipped with a
function wb : S→ Pow(S) such that

(1)
(
∀b ∈ wb(a)

)
b� a,

(2) a�wb(a)

for all a ∈ S .

Remark 2.28 Since the relation � is a proper class in general, the existence of a
function wb : S → Pow(S) is indispensable for the predicative definition of locally
compact formal topologies.

Note, however, that once we know that S is locally compact with an associated function
wb : S→ Pow(S), we have that

a� b ⇐⇒
(
∃U ∈ Fin

(
wb(b)

))
a�U

for all a, b ∈ S . Indeed, the direction ⇒ is immediate from the condition (2) on
wb. For the opposite direction, suppose that we have a finitely enumerable subset
{c0, · · · , cn−1} ⊆ wb(b) such that a� {c0, · · · , cn−1}. Let U ⊆ S , and suppose that
b�U . Then, for each i < n, there exists Ui ∈ Fin(U) such that ci �Ui . Hence,
a�U0 ∪ · · · ∪Un−1 . Since a finite union of finitely enumerable subsets is again finitely
enumerable, we have a� b.

In summary, a formal topology S is locally compact if and only if the relation � is a
set and

a� {b ∈ S | b� a}

for all a ∈ S .

We import the notion of boundedness to formal topology from locale theory (see
Escardó [10, Definition 4.1]).

Definition 2.29 Let S be a formal topology. A subset U ⊆ S is bounded if U � S .
A subtopology S ′ of S is bounded if there exists a bounded subset U ⊆ S such that
S ′ v SU .

The following seems to be new.

Proposition 2.30 Let S be a locally compact regular formal topology. Then a
subtopology S ′ v S is compact if and only if S ′ is closed and bounded.
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Proof Suppose that S ′ is compact. Since S is regular, S ′ is closed by Proposition
2.25 (3), and since S�′ {a ∈ S | (∃b ∈ S) a� b}, there exists U ∈ Fin(S) such that
S�′U and U � S . Then S ′ v SU , and so S ′ is bounded.

Conversely, suppose that S ′ is closed and bounded. Then there exist a subset V ⊆ S
and a bounded subset U ⊆ S such that S ′ = SS−V v SU . Let W ⊆ S and suppose that
S�′W . Then S�V ∪W . Since U � S , there exists W0 ∈ Fin(W) such that U �′W0 ,
and since S ′ v SU , we have S�′W0 . Therefore S ′ is compact.

We note some connections between the relations ≪ and �. The following is due to
Escardó [10, Lemma 4.2].

Lemma 2.31 Let S be a formal topology. For any U,V ⊆ S we have

U � S & U ≪ V =⇒ U � V.

Proof Let U,V ⊆ S and suppose that U � S and U ≪ V . Let W be a subset of S
such that V �W . Then S�U∗∪V �U∗∪W . Thus there exists W0 ∈ Fin(W) such that
U �U∗ ∪W0 . Hence U � (U∗ ∪W0) ↓ U � (U∗ ↓ U) ∪ (W0 ↓ U)�W0 . Therefore
U � V .

Note that a formal topology S is compact if and only if S � S . Thus we have the
following, which is well known in locale theory (see Johnstone [13, Chapter VII, Lemma
3.5 (i)]).

Corollary 2.32 Let S be a compact formal topology. For any U,V ⊆ S we have

U ≪ V =⇒ U � V.

The converse of Corollary 2.32 holds for regular formal topologies (see Johnstone [13,
Chapter VII, Lemma 3.5 (ii)]).

Lemma 2.33 Let S be a regular formal topology. For any U,V ⊆ S we have

U � V =⇒ U ≪ V.

Proof Let U,V ⊆ S and suppose that U � V . Since S is regular we have

V � {a ∈ S | (∃b ∈ V) a ≪ b} .

Then there exists W = {a0, . . . , an−1} ∈ Fin(S) such that U �W and ai ≪ V for
each i < n. Thus W ≪ V , and so U ≪ V .

Journal of Logic & Analysis 9:c2 (2017)



16 Tatsuji Kawai

As a corollary we obtain a well known fact (see Johnstone [13, Chapter VII, Corollary
3.5]).

Proposition 2.34 Let S be a compact regular formal topology. Then S is locally
compact, and the relations � and ≪ coincide.

Example 2.35 (See also Example 2.9) The formal reals R is regular and locally
compact. To see that R is regular, we first show that axiom (R2) of R is equivalent to
the following axiom:

(R2’) (p, q)�R′
{

(r, s) ∈ SR | s− r = 2−k
}

for each k ∈ N.

Let �R′ be the cover generated by (R2’). Let (p, q), (r, s) ∈ SR and suppose that
(r, s) <R (p, q). By choosing k ∈ N such that 2−k < s− r , we have

(p, q)�R′
{

(p′, q′) ∈ SR | q′ − p′ = 2−k} ↓ (p, q)�R′ {(p, s), (r, q)} .

Hence �R′ satisfies (R2). Conversely, we have

(p, q)�R
{

(r, s) ∈ SR | s− r = (2/3)−n(q− p) & (r, s) ≤R (p, q)
}

for each (p, q) ∈ SR and n ∈ N. Thus �R clearly satisfies (R2’).

Now, it readily follows from (R2’) that

a <R b =⇒ a ≪ b

for all a, b ∈ SR . Hence by the axiom (R1), R is regular with the function wcR : SR →
Pow(SR) given by

wcR(a) def
= {b ∈ SR | b <R a} .(5)

To see that R is locally compact, we first observe that

a�RU =⇒
(
∀b <R a

)(
∃U0 ∈ Fin(U)

)
b�RU0

for all a ∈ SR and U ⊆ SR . This can be proved by straightforward induction on �R .
Hence

a <R b =⇒ a� b

for all a, b ∈ SR . Thus R is locally compact with the function wcR : SR → Pow(SR)
defined by (5).
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Example 2.36 (See also Example 2.21) The formal unit interval I[0, 1] is compact.
A direct proof was given by Cederquist and Negri [5]. The following argument is due
to Fourman and Grayson [11, Lemma 4.8].

Since I[0, 1] is a closed subtopology of R, it suffices to show that I[0, 1] is bounded.
But for any (p, q) ∈ SR such that p < 0 and 1 < q, the subset {(p, q)} is clearly
bounded. Moreover, since (0, 1) ≪ (p, q) we have I[0, 1] v R{(p,q)} . Hence I[0, 1]
is compact by Proposition 2.30.

I[0, 1] is also regular by Proposition 2.25 (1) and the function wcR defined by (5) in
Example 2.35 makes I[0, 1] regular.

3 Localic completion of metric spaces

In this section, we recall the embedding of the category of locally compact metric spaces
into that of formal topologies by Palmgren [17]. The reader is referred to Palmgren
[17] for further details.

The embedding is based on the representation of complete metric spaces by formal
topologies, called localic completion, due to Vickers [21].

Definition 3.1 Let X = (X, d) be a metric space with a metric d on X , and let Q>0 be
the set of positive rationals. Define

MX
def
= X ×Q>0.

An element (x, ε) of MX will be denoted by b(x, ε). Define an order ≤X and a transitive
relation <X on MX by

b(x, ε) ≤X b(y, δ) def⇐⇒ d(x, y) + ε ≤ δ,

b(x, ε) <X b(y, δ) def⇐⇒ d(x, y) + ε < δ.

The localic completion of X is a formal topology M(X) = (MX,�X,≤X) inductively
generated by the axiom-set on MX consisting of the following axioms:

(M1) a�X {b ∈ MX | b <X a},

(M2) a�X Cε for each ε ∈ Q>0

for each a ∈ MX , where Cε
def
= {b(x, ε) ∈ MX | x ∈ X}.
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For any metric space X , its localic completion M(X) is always overt and its positivity
is the whole of MX . Moreover, we have

a <X b =⇒ a ≪ b

for any a, b ∈ MX , and so M(X) is regular by the axiom (M1). The class Pt(M(X))
admits a metric ρ : Pt(M(X))× Pt(M(X))→ R≥0 which can be defined using upper
Dedekind cuts:

ρ(α, β) def
=
{

q ∈ Q>0 | (∃ b(x, ε) ∈ α) (∃ b(y, δ) ∈ β) d(x, y) + ε+ δ < q
}

for each α, β ∈ Pt(M(X)).2 Furthermore, the function jX : X → Pt(M(X)) defined by

jX(x) def
= {b(y, ε) ∈ MX | d(x, y) < ε}

is a metric completion of X . Thus jX is a metric isomorphism if and only if X is
complete. Note that since jX is a metric completion, the class Pt(M(X)) is actually
a set which is isomorphic to the usual construction of completion of X , i.e. the set of
Cauchy sequences on X with a suitable equivalence relation.

For each b(x, ε) ∈ MX , we write b(x, ε)∗ for the open ball associated with b(x, ε):

b(x, ε)∗
def
= B(x, ε) = {y ∈ X | d(x, y) < ε} .

We extend the notation (−)∗ to the subsets of MX by defining U∗
def
=
⋃

a∈U a∗ for
each U ⊆ MX . Dually, each point x ∈ X is associated with the set 3x of open
neighbourhoods of x given by

3x def
= {a ∈ MX | x ∈ a∗} .

Note that jX(x) = 3x for all x ∈ X . We extend the notation 3(−) to the subsets of X
by defining 3Y def

=
⋃

y∈Y 3y for each Y ⊆ X .

The following is crucial to the main result of the present paper.

Theorem 3.2 (Palmgren [17, Theorem 2.7]) Let X be a metric space, and let Y be a
dense subset of X . Then M(Y) ∼=M(X).

Next, we recall the definition of the category of locally compact metric spaces.

2In fact, Palmgren defined a metric on Pt(M(X)) using Cauchy reals [17, Section 2], but it is
not difficult to show that the metric ρ is equivalent to the one defined by Palmgren using the
correspondence between Dedekind cuts and Cauchy reals.
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A point-free characterisation of Bishop locally compact metric spaces 19

Definition 3.3 A metric space X is totally bounded if for any ε ∈ Q>0 , there exists
Y = {x0, . . . , xn−1} ∈ Fin(X) such that X ⊆

⋃
i<n B(xi, ε). The set Y is called an ε–net

to X . A metric space is compact if it is complete and totally bounded.

A metric space X is locally compact if each open ball B(x, ε) is contained in a compact
subset of X . A locally compact metric space is Bishop locally compact if it is inhabited.
If X and Y are locally compact metric spaces, a function f : X → Y is said to be
continuous if f is uniformly continuous on each compact subset of X .

The locally compact metric spaces and continuous functions between them form a
category LCM.

Note that any compact metric space is locally compact. Moreover, a locally compact
metric space is complete, and a Bishop locally compact metric space is separable.

If X is a locally compact metric space, we have

a <X b =⇒ a� b

for all a, b ∈ MX . Hence, M(X) is a locally compact formal topology with a function
wb : S → Pow(S) given by wb(a) def

= {b ∈ MX | b <X a}. If X is a compact metric
space, then it can be shown that M(X) is a compact formal topology.

Palmgren [17, Section 5] extended the construction M to a full and faithful functor
M : LCM→ FTop. By an abuse of terminology, we call this functor M the localic
completion. One of the aims of this paper is to characterise the image of Bishop locally
compact metric spaces under the localic completion up to isomorphism.

4 Open complements of located subtopologies

We give a sufficient condition under which a formal topology is isomorphic to the
localic completion of a Bishop locally compact metric space. We exploit the category
OLCM of open complements of locally compact metric spaces by Palmgren [18].

Definition 4.1 The category OLCM consists of the following data. An object of
OLCM is a pair (X,U) where X is a locally compact metric space and U is an open
subset of X . A morphism f : (X,U)→ (Y,V) of OLCM is a function f : U → V such
that for any inhabited compact subset K ⊆ X with K b U , we have

(1) f is uniformly continuous on K ,

(2) f [K] b V ,

Journal of Logic & Analysis 9:c2 (2017)



20 Tatsuji Kawai

where the relation b is given by

K b U def⇐⇒
(
∃r ∈ Q>0)Kr ⊆ U,

Kr
def
= {x ∈ X | d(x,K) ≤ r}

for any located subset K . Here, a subset A of a metric space (X, d) is located if the
distance

d(x,A) def
= inf{d(x, a) | a ∈ A}

exists for every x ∈ X .

Note that an inhabited totally bounded subset of a metric space is located and that the
image of a totally bounded subset under a uniformly continuous function is totally
bounded. Hence, the second condition for a morphism is well-defined.

Palmgren [18] showed that OLCM can be embedded into FTop via a full and faithful
functor OM : OLCM → FTop. The functor OM assigns to each object (X,U) of
OLCM the open subtopology M(X)H(U) of M(X) determined by the subset

H(U) def
= {b(x, ε) ∈ MX | B(x, ε) ⊆ U} .

The category LCM is embedded into OLCM via the inclusion X 7→ (X,X). Note that
OM ((X,X)) =M(X) for any locally compact metric space X .

We recall the notion of located subtopology and a characterisation thereof from our
previous work [14, Chapter 4, Section 1].

Definition 4.2 Let S be a locally compact formal topology. A subset V ⊆ S is located
if it is a splitting subset of S , and moreover satisfies

a� b =⇒ a ∈ ¬V ∨ b ∈ V

for all a, b ∈ S .

A subtopology S ′ of S is located if S ′ is the closed subtopology SS−¬V determined
by the complement ¬V of a located subset V of S .

If wb : S→ Pow(S) is a function which makes S locally compact, then it can be shown
that a splitting subset V of S is located if and only if

a ∈ wb(b) =⇒ a ∈ ¬V ∨ b ∈ V

for all a, b ∈ S .
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Lemma 4.3 Let S be a locally compact formal topology. Then the assignment

(6) V 7→ SS−¬V

is a bijection between the located subsets of S and the overt closed subtopologies of S .

Proof Let V be a located subset of S . Then for any a ∈ S , we have

a� {a ∈ S | b� a}�S−¬V {a} ∩ V.

Hence V satisfies the condition (Pos), so that V is the positivity of SS−¬V .

Conversely, suppose that SS−¬V is the overt closed subtopology of S determined by
a subset V ⊆ S , and let Pos be the positivity of SS−¬V . Let a, b ∈ S , and suppose
that a � b. Since b�S−¬V {b} ∩ Pos, there exists U ∈ Fin({b} ∩ Pos) such that
a�S−¬V U . If U is inhabited, then b ∈ Pos. If U is empty, then a ∈ Pos implies
Pos G ∅, a contradiction. Hence Pos is a located subset of S .

The fact that the assignment (6) is a bijection follows from Lemma 2.20 and uniqueness
of positivity predicates.

By Proposition 2.25 and Proposition 2.34, we obtain the following.

Corollary 4.4 Let S be a compact regular formal topology. Then a subtopology
S ′ v S is located if and only if S ′ is compact overt.

For later use, we note a special case of the result by Coquand, Palmgren and Spitters [6,
Lemma 3.2].

Lemma 4.5 Let X be a locally compact metric space, and let V be a located subset
of M(X). Then for any a ∈ V there exists a formal point α ∈ Pt(M(X)) such that
a ∈ α ⊆ V .

Proof See Coquand, Palmgren and Spitters [6, Lemma 3.2]. The proof requires
Dependent Choice.

Definition 4.6 Let A be a located subset of a metric space X . The metric complement
of A is the open subset X − A of X given by

X − A def
= {x ∈ X | d(x,A) > 0} .

A corresponding point-free notion is the following.
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Definition 4.7 Let S be a locally compact formal topology, and let V be a located
subset of S . The open complement of the located subtopology SS−¬V is the open
subtopology S¬V determined by ¬V .

Let X be a locally compact metric space. In our previous work [14, Theorem 4.1.9],
we showed that there exists a bijection ϕ : Cl+(X)→ Loc+(M(X)) between the class
Cl+(X) of inhabited closed located subsets of X and the class Loc+(M(X)) of inhabited
located subsets of M(X). Specifically, ϕ and its inverse ϕ−1 are defined by

ϕ(A) def
= 3A,

ϕ−1(V) def
= {x ∈ X | 3x ⊆ V}

(7)

for any A ∈ Cl+(X) and V ∈ Loc+(M(X)).

The embedding OM : OLCM → FTop preserves metric complements and open
complements of located subtopologies in the following sense.

Proposition 4.8 Let X = (X, d) be a locally compact metric space, and let
ϕ : Cl+(X)→ Loc+(M(X)) be the bijection given by (7). Then, for any A ∈ Cl+(X)
we have

(8) H(X − A) = ¬ϕ(A).

Dually, for any V ∈ Loc+(M(X)) we have

(9) (¬V)∗ = X − ϕ−1(V).

The assignments U 7→ H(U) and W 7→ W∗ restrict to a bijective correspondence
between the metric complements of inhabited closed located subsets of X and the open
complements of inhabited located subtopologies of M(X).

Proof (8) Let A ∈ Cl+(X). Let b(x, ε) ∈ H(X − A) and suppose that b(x, ε) ∈ 3A.
Then B(x, ε) ⊆ X − A and B(x, ε) G A, a contradiction. Hence b(x, ε) ∈ ¬ϕ(A).

Conversely, let b(x, ε) ∈ ¬ϕ(A) and x′ ∈ B(x, ε). Choose θ ∈ Q>0 such that
d(x, x′) + θ < ε, and suppose that d(x′,A) < θ . Then there exists y ∈ A such
that d(x′, y) < θ , and so d(x, y) < ε. Thus b(x, ε) ∈ ϕ(A), a contradiction. Hence
d(x′,A) ≥ θ , and therefore b(x, ε) ∈ H(X − A).

(9) Let V ∈ Loc+(M(X)). Let b(y, δ) ∈ ¬V and x ∈ b(y, δ)∗ . Choose θ ∈ Q>0 such
that d(x, y) + θ < δ . Suppose that d(x, ϕ−1(V)) < θ . Then there exists x′ ∈ ϕ−1(V)
such that d(x, x′) < θ , so that b(x, θ) ∈ 3x′ ⊆ V . Since b(x, θ) <X b(y, δ), we have
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b(y, δ) ∈ V , a contradiction. Thus d(x, ϕ−1(V)) ≥ θ , and hence x ∈ X − ϕ−1(V).
Therefore (¬V)∗ ⊆ X − ϕ−1(V).

Conversely, let x ∈ X − ϕ−1(V) and choose θ ∈ Q>0 such that d(x, ϕ−1(V)) > θ .
Suppose that b(x, θ) ∈ V . Then there exists α ∈ Pt(M(X)) such that b(x, θ) ∈ α ⊆ V by
Lemma 4.5. Since X is complete, there exists x′ ∈ X such that 3x′ = jX(x′) = α . Thus
d(x, x′) < θ and x′ ∈ ϕ−1(V), contradicting d(x, ϕ−1(V)) > θ . Hence b(x, θ) ∈ ¬V ,
and so x ∈ (¬V)∗ .

Lastly, for any A ∈ Cl+(X) we have

X − A = X − ϕ−1(ϕ(A)) = (¬ϕ(A))∗ = (H(X − A))∗.

Conversely, for any V ∈ Loc+(M(X)) we have

¬V = ¬
(
ϕ(ϕ−1(V))

)
= H(X − ϕ−1(V)) = H ((¬V)∗) .

Let X be a compact metric space, and let A be a compact subset of X . We extend the
definition of X − A as follows:

X − A def
=

{
X if A = ∅,
{x ∈ X | d(x,A) > 0} if A is inhabited.

Note that since any compact metric space is totally bounded, we can decide whether a
given compact metric space is empty or inhabited.

If X is a compact metric space, the bijection defined by (7) extends to a bijection
between the compact subsets of X and the located subsets of M(X). This follows from
the fact that a subset A of a compact metric space is compact if and only if either A is
empty or A is closed and located.

Corollary 4.9 Let X be a compact metric space. For any located subset V of M(X),
there exists a unique compact subset A ⊆ X such that OM ((X,X − A)) =M(X)¬V .

Proof Let V be a located subset of M(X). By Corollary 4.4, the located subtopology
M(X)M(X)−¬V is compact overt with the positivity V . Thus, V is either empty or
inhabited. In the former case, we put A = ∅. Then OM ((X,X − A)) =MH(X) =

M¬∅ . In the latter case, the desired conclusion follows from Proposition 4.8.

Lemma 4.10 Let X be a compact metric space, and let V be a located subset ofM(X).
Then the open complement M(X)¬V is inhabited if and only if (¬V)∗ is inhabited.

Proof Straightforward.
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Corollary 4.11 Let X be a compact metric space, and let V be a located subset of
M(X) such that M(X)¬V is inhabited. Then there exists a unique compact subset
A ⊆ X such that X − A is inhabited and that OM ((X,X − A)) =M(X)¬V .

The following lemma is essentially due to Palmgren [18, Lemma 2.2].3

Lemma 4.12 Let X be a locally compact metric space. Then for any x ∈ X and
ε, δ ∈ Q>0 such that ε < δ , there exists a compact subset K ⊆ X such that

B(x, ε) ⊆ K ⊆ B(x, δ).

Proof First, note that since X is locally compact, we have

a <X b =⇒ a� b

for all a, b ∈ MX . Let x ∈ X and ε, δ ∈ Q>0 , and suppose that ε < δ . Choose N ∈ N
such that ε+ 2−N < δ . For each n ∈ N, define

an
def
= b(x, ε+ 2−(N+n)).

Then for each n ∈ N, since an+1 <X an , there exists Vn ∈ Fin(an ↓ C2−n) such that
an+1 �X Vn. By Countable Choice, we obtain a sequence (Vn)n∈N : N→ Fin(MX) such
that

(1) an+1 �X Vn �X an ,

(2)
(
∀ b(z, γ) ∈ Vn

)
γ ≤ 2−n

for all n ∈ N. Let

A def
=
{

y ∈ X |
(
∃n ∈ N

)(
∃γ ∈ Q>0) b(y, γ) ∈ Vn

}
.

Then A is clearly totally bounded, so that the closure K of A is compact. Moreover we
have B(x, ε) ⊆ K ⊆ B(x, δ). Thus K is a desired compact subset of X .

Proposition 4.13 Let X = (X, d) be a compact metric space, and let A be a compact
subset of X . Then there exists a locally compact metric space Y such that (Y,Y) is
isomorphic to (X,X − A) in OLCM.

Moreover if X − A is inhabited, then there exists a Bishop locally compact metric space
Y such that (Y,Y) is isomorphic to (X,X − A) in OLCM.

3The proof of Palmgren [18, Lemma 2.2] seems to be incomplete. Nevertheless, the argument
used in the proof of Palmgren [17, Proposition 4.8] provides a correct proof of Lemma 4.12,
which we recall here.
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Proof If A = ∅, we define Y def
= X . Suppose that A is inhabited. Let Y def

= X − A,
and define a new metric d∗ on Y by

d∗(x, y) def
= d(x, y) +

∣∣∣∣ 1
d(x,A)

− 1
d(y,A)

∣∣∣∣
for all x, y ∈ Y . It is straightforward to show that d∗ is a metric on Y . We show that the
metric space Y = (Y, d∗) has the required properties. Since d(x, y) ≤ d∗(x, y) for all
x, y ∈ Y , the inclusion iY : Y ↪→ (X−A) is uniformly continuous. Let K be an inhabited
d∗–compact subset Y , where K is d∗–compact if K is compact with respect to d∗ . Then
K is contained in some open ball B∗(y, ε) def

= {y′ ∈ Y | d∗(y′, y) < ε} of Y . By the
proof of local compactness of Y which is to be given below, there exists a d–compact
subset L of X such that B∗(y, ε) ⊆ L b X − A. Hence iY is a morphism from (Y, Y) to
(X,X − A) in OLCM. Moreover iY is injective. To see this, suppose that d∗(x, y) > 0,
and choose r ∈ Q>0 such that d∗(x, y) > r . Let c = min {d(x,A), d(y,A)}. Since
d∗(x, y) ≤

(
1 + 1/c2

)
d(x, y), we have d(x, y) ≥ r/(1 + 1/c2). Hence iY is injective.

Next, we show that the inverse j : (X − A)→ Y of iY is uniformly continuous on each
inhabited d–compact subset K of X such that K b X − A. Let K b X − A be an
inhabited d–compact subset of X . Then there exists r ∈ Q>0 such that Kr ⊆ X − A,
and so d(x,A) ≥ r for all x ∈ K . Hence d∗(x, y) ≤

(
1 + 1/r2

)
d(x, y) for all x, y ∈ K .

Uniform continuity of j : K → Y now follows.

It remains to be shown that Y is a locally compact metric space. Let y ∈ Y and ε ∈ Q>0 .
We must find a d∗–compact subset K ⊆ Y such that B∗(y, ε) ⊆ K . To this end, it suffices
to find a d–compact subset K b X − A such that B∗(y, ε) ⊆ K ; for if such K exists,
then iY : Y → (X − A) and j : (X − A)→ Y restrict to uniform isomorphisms on K .

To find such a d–compact subset of X , notice that for any x ∈ B∗(y, ε), we have
d(x,A) > 1/

(
ε+ 1/d(y,A)

)
. Thus B∗(y, ε) ⊆ UA,r , where

r def
= 1/

(
ε+ 1/d(y,A)

)
,

UA,r
def
= {x ∈ X | d(x,A) ≥ r} .

Choose θ ∈ Q>0 such that 7θ < r , and let Xθ = {x0, . . . , xn−1} be a θ–net to X . For
each i < n, we have either 5θ < d(xi,A) or d(xi,A) < 6θ . Split Xθ into two finitely
enumerable subsets X+

θ and X−θ such that Xθ = X+
θ ∪ X−θ and that

(1) x ∈ X+
θ =⇒ 5θ < d(x,A),

(2) x ∈ X−θ =⇒ d(x,A) < 6θ .
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Write X+
θ = {z0, . . . , zm−1}. Let x ∈ UA,r . Then there exists i < n such that

d(x, xi) < θ . If xi ∈ X−θ , we have d(x,A) ≤ 7θ < r , contradicting x ∈ UA,r .
Thus xi ∈ X+

θ , and hence UA,r ⊆
⋃

j<m B(zj, θ). For each j < m, there exists a
compact subset Kj ⊆ X such that B(zj, θ) ⊆ Kj ⊆ B(zj, 2θ) by Lemma 4.12. Let
K =

⋃
j<m Kj . Then K is inhabited and totally bounded, and so it is located. Let

x ∈ Kθ = {x′ ∈ X | d(x′,K) ≤ θ}, and suppose that d(x,A) < θ . Then there exist
y ∈ A and w ∈ K such that d(x, y) < θ and d(x,w) < 2θ . Thus there exists j < m such
that d(w, zj) < 2θ , so that

d(y, zj) ≤ d(y, x) + d(x,w) + d(w, zj) ≤ θ + 2θ + 2θ ≤ 5θ,

contradicting zj ∈ X+
θ . Thus d(x,A) ≥ θ , and so Kθ ⊆ X − A. Hence K b X − A.

Then L b X − A, where L is the closure of K . Therefore L is a desired d–compact
subset of X .

The second statement is obvious.

Proposition 4.14 Let X be a compact metric space, and let V be a located subset of
M(X). Then there exists a locally compact metric space Y such thatM(Y) ∼=M(X)¬V .

Proof By Lemma 4.9, there exists a unique compact subset A of X such that

OM ((X,X − A)) =M(X)¬V .

Then there exists a locally compact metric space Y such that (Y,Y) ∼= (X,X − A) in
OLCM by Proposition 4.13. Since every functor preserves isomorphisms, we have

M(Y) = OM ((Y,Y)) ∼= OM ((X,X − A)) =M(X)¬V .

Corollary 4.15 Let X be a compact metric space, and let V be a located subset of
M(X) such that the open complementM(X)¬V is inhabited. Then there exists a Bishop
locally compact metric space Y such that M(Y) ∼=M(X)¬V .

5 Enumerably completely regular formal topologies

We characterise enumerably completely regular formal topologies by the subtopologies
of the countable product of the formal unit interval. Except for the definition of
enumerably completely regular formal topology, which is due to Curi [8, Section 2.2],
the results in this section appear to be new.
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Definition 5.1 Let I = {q ∈ Q | 0 ≤ q ≤ 1}. Given a formal topology S and subsets
U,V ⊆ S , a scale from U to V is a family

(
Uq
)

q∈I of subsets of S such that

(1) U �U0 and U1 �V ,

(2)
(
∀p, q ∈ I

)
p < q =⇒ Up ≪ Uq .

Definition 5.2 A formal topology S is enumerably completely regular if it is equipped
with a function wc : S→ Pow(S) such that

(1) a�wc(a) for each a ∈ S ,

(2) the relation wc = {(b, a) ∈ S× S | b ∈ wc(a)} is countable, i.e. there exists a
surjection f : N→ wc,

(3) there exists a function sc ∈
∏

(b,a)∈wc Sc≪
(
{b}, {a}

)
, called a choice of scale for

wc,

where Sc≪
(
{b}, {a}

)
is the class of scales from {b} to {a}.4

Let
∏

n∈N I[0, 1] = (SΠ,�Π,≤) be the product of countably many copies of the formal
unit interval I[0, 1]. According to Section 2.1.1, the preorder (SΠ,≤) is given by

SΠ
def
= Fin(N× SR),

A ≤ B def⇐⇒
(
∀ (n, b) ∈ B

)(
∃(m, a) ∈ A

)
m = n & a ≤R b

for all A,B ∈ SΠ . Here (SR,≤R) is the underlying preorder of the formal reals R as
defined in Example 2.9. The cover �Π is generated by the axioms (S1), (S2) and (S3)
for a product, where (S3) is derived from the axioms (R1) and (R2) of R and the axiom
(2) of I[0, 1].

Since I[0, 1] is regular with the function wcR defined by (5) in Example 2.35, the
proof of Proposition 2.26 (1) shows that

∏
n∈N I[0, 1] is regular with the function

wcΠ : SΠ → Pow(SΠ) given by

wcΠ(A) def
= {{(m0, b0), . . . , (mn−1, bn−1)} ∈ SΠ | (∀i < n) bi <R ai}(10)

for each A = {(m0, a0), . . . , (mn−1, an−1)} ∈ SΠ .

Lemma 5.3
∏

n∈N I[0, 1] is enumerably completely regular.
4In fact, Curi [8] did not require an existence of a choice of scale for an enumerably completely

regular formal topology, but only an existence of a scale from {b} to {a} for each element
(b, a) ∈ wc . With Countable Choice, however, a choice of scale can always be chosen.
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Proof Let wcΠ
def
= {(B,A) ∈ SΠ × SΠ | B ∈ wcΠ(A)}. We show that wcΠ is counta-

ble and define a choice of scale for wcΠ .

First, the set SΠ is countable since it is the set of finitely enumerable subsets of a
countable set, and for each A ∈ SΠ the set wcΠ(A) is countable since it is a finite
product of countable sets. Thus wcΠ is countable.

Next, we define a choice of scale for wcΠ . Let (B,A) ∈ wcΠ , so that A and B are of
the forms

A = {(m0, (p0, q0)), . . . , (mn−1, (pn−1, qn−1))} ,
B =

{
(m0, (p′0, q

′
0)), . . . , (mn−1, (p′n−1, q

′
n−1))

}
such that (p′i, q

′
i) <R (pi, qi) for each i < n. Then for each i < n, we can define

an order reversing bijection ϕi : I →
[
pi, p′i

]
∩ Q and an order preserving bijection

ψi : I→
[
q′i, qi

]
∩Q. For each q ∈ I, define

Bq
def
= {(m0, (ϕ0(q), ψ0(q))), . . . , (mn−1, (ϕn−1(q), ψn−1(q)))} .

Then the family ({Bq})q∈I is a scale from {B} to {A}. Thus, we can define a function
sc ∈

∏
(B,A)∈wcΠ Sc≪

(
{B}, {A}

)
which assigns to each (B,A) ∈ wcΠ the scale from

{B} to {A} as described above.

Let S be a formal topology and let U,V ⊆ S . Then any scale
(
Uq
)

q∈I from U to V
determines a formal topology map r : S → I[0, 1] such that

(1) r−(0,∞) ↓ U � ∅,

(2) r−(−∞, 1)�V ,

where for each q ∈ Q we define

(q,∞) def
= {(r, s) ∈ SR | r ≥ q} ,

(−∞, q) def
= {(r, s) ∈ SR | s ≤ q} .

The formal topology map r is defined by

a r (p, q) def⇐⇒
(
∃(p′, q′) ∈ SR

)
p < p′ < q′ < q & a�U∗p′ ↓ Uq′(11)

for all a ∈ S and (p, q) ∈ SR , where we define Uq = ∅ if q < 0 and Uq = S if q > 1.
See Johnstone [13, Chapter IV, Proposition 1.4] for details.

The following characterisation of enumerably completely regular formal topology is
a special case of Tychonoff’s embedding theorem for completely regular locales by
Johnstone [13, Chapter IV, Theorem 1.7], which characterises a completely regular
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locale as a sublocale of a product of copies of I[0, 1]. For the convenience of the reader,
we give a proof in the language of formal topology (in contrast to the localic language),
although our proof is quite similar to that of the localic Tychonoff’s embedding theorem.5

Proposition 5.4 A formal topology is isomorphic to an enumerably completely regular
formal topology if and only if it can be embedded into

∏
n∈N I[0, 1].

Proof (⇒) It suffices to show that any enumerably completely regular formal topology
can be embedded into

∏
n∈N I[0, 1]. Let S be an enumerably completely regular

formal topology equipped with a function wc : S → Pow(S) which satisfies the
three conditions in Definition 5.2. Let (bn, an)n∈N be an enumeration of the set
wc = {(b, a) ∈ S× S | b ∈ wc(a)}, and let sc be a choice of scale for wc. Then for
each n ∈ N, the scale sc

(
(bn, an)

)
from {bn} to {an} determines a formal topology

map rn : S → I[0, 1] such that

(1) r−n (0,∞) ↓ bn � ∅,

(2) r−n (−∞, 1)� an .

Let r : S →
∏

n∈N I[0, 1] be the canonical formal topology map determined by the se-
quence (rn : S → I[0, 1])n∈N . We show that r is an embedding, that is a� r−r−∗A{a}
for each a ∈ S . Let a ∈ S and b ∈ wc(a), and let n ∈ N be the index of the pair
(b, a) ∈ wc. Then

b�
(
r−n (−∞, 1) ∪ r−n (0,∞)

)
↓ b

�
(
r−n (−∞, 1) ↓ b

)
∪
(
r−n (0,∞) ↓ b

)
� ∅ ∪ r−n (−∞, 1)

=S r− {{(n, (p, q))} | (p, q) ∈ (−∞, 1)}� a.

Thus b� r−r−∗A{a}, and hence a�wc(a)� r−r−∗A{a}.

(⇐) Immediate from Lemma 5.3 and Proposition 2.25 (1).

6 Point-free one-point compactification

We prove a point-free analogue of the fact that every Bishop locally compact metric
space has a one-point compactification. Our proof is analogous to the proof given by
Bishop and Bridges [4, Chapter 4, Theorem 6.8] for the corresponding fact for Bishop
locally compact metric spaces.

5As far as we know, the proof of Tychonoff’s embedding theorem in terms of formal topology
has not appeared explicitly before.
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Definition 6.1 Let S be a formal topology, and let U,V ⊆ S . A wb-scale from U to
V is a family

(
Uq
)

q∈I of subsets of S such that

(1) U �U0 and U1 �V ,

(2)
(
∀p, q ∈ I

)
p < q =⇒ Up � Uq .

Definition 6.2 A formal topology S is enumerably locally compact if it is equipped
with a function wb : S→ Pow(S) such that

(1) a�wb(a) for each a ∈ S ,

(2) the relation wb = {(b, a) ∈ S× S | b ∈ wb(a)} is countable, i.e. there exists a
surjection f : N→ wb,

(3) there exists a function sc ∈
∏

(b,a)∈wb Sc�
(
{b}, {a}

)
, called a choice of wb-scale

for wb,

where Sc�
(
{b}, {a}

)
is the class of wb-scales from {b} to {a}.

In a regular formal topology, any wb-scale is a scale by Lemma 2.33. Hence, we have
the following.

Lemma 6.3 Any enumerably locally compact regular formal topology is enumerably
completely regular.

Definition 6.4 Let S be an overt enumerably locally compact regular formal topology.
A one-point compactification of S is a triple (T , ω, r) consisting of a compact overt
enumerably completely regular formal topology T , a formal point ω ∈ Pt(T ), and an
embedding r : S → T such that the image of S under r is isomorphic to the open
complement T¬ω of the located subtopology determined by ω .

Note that if S is a locally compact regular formal topology, any formal point of S is a
located subset of S and thus determines a located subtopology of S . This follows from
Lemma 2.33.

Theorem 6.5 Any overt enumerably locally compact regular formal topology has a
one-point compactification.

The rest of this section is devoted to the proof of the theorem. In what follows,
we fix an overt enumerably locally compact regular formal topology S . Let Pos
be the positivity of S . Let wb : S → Pow(S) be a function which satisfies the
three conditions in Definition 6.2. Let (bn, an)n∈N be an enumeration of the set
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wb = {(b, a) ∈ S× S | b ∈ wb(a)}, and let sc be a choice of wb-scale for wb. For
each n ∈ N, let rn : S → I[0, 1] be the formal topology map determined by the
wb-scale sc

(
(bn, an)

)
from {bn} to {an}. Note that rn is defined by the condition (11)

and satisfies

(1) r−n (0,∞) ↓ bn � ∅,

(2) r−n (−∞, 1)� an .

Let r : S →
∏

n∈N I[0, 1] be the embedding that is determined by the sequence
(rn : S → I[0, 1])n∈N , where

∏
n∈N I[0, 1] = (SΠ,�Π,≤) is the countable product of

the formal unit interval I[0, 1] described in Section 5. For each n, k ∈ N define

Cn
k

def
=
{
{(n, (p, q))} ∈ SΠ | q− p = 2−k} ,

C≤n
k

def
=
{
{(0, (p0, q0)), . . . , (n, (pn, qn))} ∈ SΠ | (∀i < n) qi − pi = 2−k} .

By the axiom (R2’) of R given in Example 2.35, we have SΠ �Π Cn
k for all n, k ∈ N.

Thus for any n, k ∈ N, we have

SΠ �Π C0
k ↓ · · · ↓ Cn

k �Π C≤n
k ,

and hence S� r−C≤n
k .

Lemma 6.6 For any N ∈ N such that aN � S , there exists a compact overt subtopology
S ′ of S such that SbN v S ′ v SaN , where SbN and SaN are the open subtopologies of
S determined by {bN} and {aN} respectively.

Proof Let N ∈ N, and suppose that aN � S . For each n ∈ N, there exists
En ∈ Fin

(
C≤n

n+3

)
such that aN � r−En and En ⊆ r Pos. By Countable Choice, there

exists a sequence (En)n∈N such that

En ∈ Fin
(

C≤n
n+3

)
, En ⊆ r Pos, aN � r−En

for all n ∈ N. Write EN = {A0, . . . ,An−1} , and for each i < n write Ai =

{(0, (pi
0, q

i
0)), . . . , (N, (pi

N , q
i
N))} . Split EN into finitely enumerable subsets E+

N and E−N
such that EN = E+

N ∪ E
−
N and that

(1) Ai ∈ E+
N =⇒ (pi

N , q
i
N) ∈ (−∞, 1/2),

(2) Ai ∈ E−N =⇒ (pi
N , q

i
N) ∈ (1/4,∞).
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Let S∗Π be the set of finite lists of elements of SΠ . We let 〈A0, . . . ,An−1〉 denote an
element of S∗Π of length n ∈ N. The concatenation of lists l, l′ ∈ S∗Π is denoted byl ∗ l′ .
Define a subset T of S∗Π by

T0
def
=
{
〈A〉 ∈ S∗Π | A ∈ E+

N

}
,

Tn+1
def
=
{

l ∗ 〈A〉 ∈ S∗Π | l ∈ Tn & l = l′ ∗ 〈A′〉& A ∈ EN+n+1 & A′><A
}
,

T def
=
⋃
n∈N

Tn,

where for each A,B ∈ SΠ , we define

A><B def⇐⇒
(
∀(i, (p, q)) ∈ A

)(
∀(j, (s, t)) ∈ B

)
i = j =⇒ max {p, s} < min {q, t} .

Note that Tn is finitely enumerably for each n ∈ N. Define

UT
def
=
⋃{

r−Al | l ∈ T
}
,

K def
= {a ∈ S | Pos G (UT ↓ a)} ,

where Al denotes the last element of a list l ∈ T . We show that K is a located subset of
S .

Note that K is the positivity of the open subtopology SUT by Lemma 2.15 (2). Thus K
is a splitting subset of S . Hence it remains to be shown that for each L ∈ N, either
bL ∈ ¬K or aL ∈ K . Let L ∈ N and define

nL
def
=

{
0 if L ≤ N,

L− N if L > N.

Then the following two cases arise:

(1)
(
∃l ∈ TnL

)(
∀ (i, (p, q)) ∈ Al

)
i = L =⇒ (p, q) ∈ (−∞, 3/4),

(2)
(
∀l ∈ TnL

)(
∀ (i, (p, q)) ∈ Al

)
i = L =⇒ (p, q) ∈ (1/2,∞).

In the first case, there exist l ∈ TnL and (L, (p, q)) ∈ Al such that (p, q) ∈ (−∞, 3/4).
Thus

r−Al � r− {(L, (p, q))}� r−L (p, q)� r−L
(
−∞, 3/4

)
� aL.

Since Al ∈ r Pos, we have Pos G (r−Al ↓ aL). Hence aL ∈ K .

In the second case, suppose that bL ∈ K . Then there exist n ∈ N and l ∈ Tn such that
Pos G (r−Al ↓ bL). If n > nL , then by letting l = 〈A0, . . . ,An〉 where Al = An , we have
AnL ><AnL+1, . . . ,An−1 ><An . Since (p, q) ∈ (1/2,∞) for an element (L, (p, q)) ∈ AnL ,
we have (s, t) ∈ (0,∞) for an element (L, (s, t)) ∈ Al . Thus

r−Al ↓ bL � r− {(L, (s, t))} ↓ bL � r−L (0,∞) ↓ bL � ∅,
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and hence Pos G ∅, a contradiction. If n ≤ nL , then since r−Al � r−N (∞, 3/4)� aN , we
have

r−Al � r−(EN+n+1 ↓ · · · ↓ EN+nL ↓ Al).

Thus, there exist An+1 ∈ EN+n+1, . . . ,AnL ∈ EN+nL such that

Pos G
(
r−(Al ↓ An+1 ↓ · · · ↓ AnL) ↓ bL

)
.

Then l ∗ 〈An+1, . . . ,AnL〉 ∈ TnL , and so

r−AnL ↓ bL � r−L (1/2,∞) ↓ bL � ∅.

Thus Pos G ∅, a contradiction. Hence bL ∈ ¬K . Therefore K is located.

Next, we show that SbN v SS−¬K v SaN . Since SS−¬K is the closure of SUT by
Lemma 2.20, it suffices to show that bN �UT ≪ aN . Since bN � r−EN , we have
bN �

(
r−EN ↓ bN

)
∩ Pos. Let c ∈ r−EN ↓ bN such that Pos(c). Then there exists

A ∈ EN such that c ∈ r−A ↓ bN . If A ∈ E−N , then

c� r−A ↓ bN � r−N (1/4,∞) ↓ bN � ∅,

and thus Pos G ∅, a contradiction. Hence A ∈ E+
N , and so c� r−E+

N . Therefore

bN � r−E+
N �UT .

Let n ∈ N and l ∈ Tn , and write l = 〈A0, . . . ,An〉. Since Ai ><Ai+1 for all i < n and
(p, q) ∈ (−∞, 1/2) for an element (N, (p, q)) ∈ A0 , we have

r−Al � r−N (−∞, 3/4) ≪ aN .

Hence UT � r−N (−∞, 3/4) ≪ aN .

Lastly, since {aN} is bounded, SS−¬K is compact by Proposition 2.30, and SS−¬K is
overt by Lemma 4.3.

The following is a point-free version of Lemma 4.12.

Proposition 6.7 For any U,V ⊆ S such that U � V , there exists a compact overt
subtopology S ′ v S such that SU v S ′ v SV .

Proof Let U,V ⊆ S , and suppose that U � V . Since

V �
⋃
{wb(u) | (∃v ∈ V) u ∈ wb(v)} ,
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there exists {(u0, v0), . . . , (un−1, vn−1)} ∈ Fin(wb) such that U � {u0, . . . , un−1} and
{v0, . . . , vn−1} � V . By Lemma 6.6, for each i < n there exists a located subset Ki of
S such that

Sui v SS−¬Ki v Svi .

Let K def
=
⋃

i<n Ki . Since a finite union of located subsets is located, K is located.
Moreover we have

SU v SU0 v SS−¬K v SV0 v SV ,

where U0 = {u0, . . . , un−1} and V0 = {v0, . . . , vn−1}. Since V0 is bounded, SS−¬K

compact overt by Proposition 2.30.

Let Sr be the image of S under the embedding r : S →
∏

n∈N I[0, 1]. Then Sr is
overt with the positivity r Pos by Lemma 2.13. Define

ω
def
=
{

A ∈ SΠ |
(
∀ (n, (p, q)) ∈ A

)
p < 1 < q

}
.

It is straightforward to show that ω is a formal point of
∏

n∈N I[0, 1]. Moreover, ω is
a decidable subset of SΠ . Let

Pos def
= r Pos∪ω.

Since
∏

n∈N I[0, 1] is compact regular by Proposition 2.26, it is locally compact by
Proposition 2.34.

Lemma 6.8 Pos is a located subset of
∏

n∈N I[0, 1].

Proof Since Pos is a union of splitting subsets r Pos and ω , it is a splitting of∏
n∈N I[0, 1]. Let wcΠ be the function defined by (10) in Section 5. Let A,A′ ∈ SΠ ,

and suppose that A′ ∈ wcΠ(A). Then A and A′ are of the forms

A = {(m0, (p0, q0)), . . . , (mn−1, (pn−1, qn−1))} ,
A′ =

{
(m0, (p′0, q

′
0)), . . . , (mn−1, (p′n−1, q

′
n−1))

}
such that pi < p′i < q′i < qi for all i < n. By Proposition 2.34, it suffices to show that
either A′ ∈ ¬Pos or A ∈ Pos.

Since ω is decidable, we have either A ∈ ω or A ∈ ¬ω . In the former case, we have
A ∈ Pos. In the latter case, there exists i∗ < n such that either 1 ≤ pi∗ or qi∗ ≤ 1.
Suppose that 1 ≤ pi∗ , and suppose further that A′ ∈ r Pos. Then there exists a ∈ Pos
such that a r A′ . Thus

a� r−mi∗
{(pi∗ , qi∗)}� r−mi∗

{(pi∗ , qi∗) | pi∗ < 1 & 0 < qi∗}� ∅
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by the axiom (2) of I[0, 1]. Since Pos(a), we have Pos G ∅, a contradiction. Since
A ∈ ¬ω implies A′ ∈ ¬ω , it follows that A′ ∈ ¬Pos.

Now, suppose that qi∗ ≤ 1. Then

r−mi∗
{(p′i∗ , q

′
i∗)} � ami∗ ,

where ami∗ is the second component of the pair (bmi∗ , ami∗ ) ∈ wb indexed by mi∗ ∈ N.
Let

U∗
def
= r−mi∗

{(p′i∗ , q
′
i∗)}.

By Proposition 6.7 and Lemma 4.3, there exists a located subset K of S such that
SU∗ v SS−¬K and SS−¬K is compact. Choose k ∈ N and θ ∈ Q>0 such that 2−k < θ

and that pi < p′i − 2θ < q′i + 2θ < qi for each i < n. Since SΠ �Π Cn
k for all n, k ∈ N,

we have

S� r−
(
Cm0

k ↓ · · · ↓ C
mn−1
k

)
� r−

{{(
m0, (s0, t0)

)
, . . . ,

(
mn−1, (sn−1, tn−1)

)}
∈ SΠ | (∀i < n) ti − si = 2−k} .

Let CA
def
=
{{(

m0, (s0, t0)
)
, . . . ,

(
mn−1, (sn−1, tn−1)

)}
∈ SΠ |

(
∀i < n

)
ti − si = 2−k

}
.

Since SS−¬K is compact overt with the positivity K , there exist B0, . . . ,BN−1 ∈ CA

such that Bj ∈ rK for each j < N and that S�S−¬K r− {B0, . . . ,BN−1}. For each
j < N , write

Bj =
{(

m0, (sj,0, tj,0)
)
, . . . ,

(
mn−1, (sj,n−1, tj,n−1)

)}
.

Then either (sj,i, tj,i) ≤R (p′i−2θ, q′i+2θ) for all i < n or (sj,i, tj,i) ∈ (−∞, p′i)∪ (q′i,∞)
for some i < n. Thus the following two cases arise:

(1)
(
∃j < N

)(
∀i < n

)
(sj,i, tj,i) ≤R (p′i − 2θ, q′i + 2θ),

(2)
(
∀j < N

)(
∃i < n

)
(sj,i, tj,i) ∈ (−∞, p′i) ∪ (q′i,∞).

In the first case, there exists j < N such that Bj ≤ A, and hence r−Bj � r−A. Since
Bj ∈ rK and K is a splitting subset of S , we have A ∈ rK ⊆ r Pos ⊆ Pos.

In the second case, suppose that A′ ∈ r Pos. Then there exists a ∈ Pos such that a r A′ .
Let Pos¬K be the positivity of S¬K . Since Pos = Pos¬K ∪K , we have either a ∈ Pos¬K

or a ∈ K . If a ∈ Pos¬K then Pos G (¬K ↓ a). Since SU∗ v SS−¬K , we have

¬K ↓ a�¬K ↓ r−A′�¬K ↓ U∗� ∅,

and thus Pos G ∅, a contradiction. If a ∈ K , then since

a�S−¬K (r− {B0, . . . ,BN−1}
)
↓ a,
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there exists j < N such that K G
(
r−Bj ↓ a

)
. Thus there exists i < n such that

(sj,i, tj,i) ∈ (−∞, p′i) ∪ (q′i,∞). If (sj,i, tj,i) ∈ (−∞, p′i), then

r−Bj ↓ a� r−mi
(−∞, p′i) ↓ r−mi

(p′i, q
′
i)

� r−mi

(
(−∞, p′i) ↓ (p′i, q

′
i)
)
� ∅,

and thus K G ∅, a contradiction. If (sj,i, tj,i) ∈ (q′i,∞), we similarly obtain a
contradiction. Hence A′ ∈ ¬ (r Pos), and so A′ ∈ ¬Pos. Therefore Pos is located.

Thus, Pos determines a located subtopology of
∏

n∈N I[0, 1], which is compact overt
regular by Lemma 4.3 and Proposition 2.25 (2). Write T = (SΠ,�

T ,≤) for this
subtopology. Since ω is a formal point of T , it is a located subset of T . Let T¬ω be
the open complement of the located subtopology determined by ω in T . The cover
�T¬ω of T¬ω is given by

A�T¬ω U
def⇐⇒ A ↓ ¬ω�Π ¬Pos ∪ U

for all A ∈ SΠ and U ⊆ SΠ .

Lemma 6.9 The embedding r : S →
∏

n∈N I[0, 1] satisfies S� r−¬ω .

Proof Let a ∈ S and b ∈ wb(a), and let n ∈ N be the index of the pair (b, a) ∈ wb.
Then

b� r−n
(
(−∞, 1) ∪ (0,∞)

)
↓ b

�
(
r−n (−∞, 1) ↓ b

)
∪
(
r−n (0,∞) ↓ b

)
� r−n (−∞, 1)� r−¬ω.

Hence a�wb(a)� r−¬ω , and therefore S� r−¬ω .

Lemma 6.10 For any A ∈ SΠ and U ⊆ SΠ ,

r−A� r−U ⇐⇒ A ↓ ¬ω�Π ¬Pos ∪ U .
That is Sr = T¬ω .

Proof Let A ∈ SΠ and U ⊆ SΠ . First, suppose that A ↓ ¬ω�Π ¬Pos ↓ U . By
Lemma 6.9 we have

r−A� r−A ↓ r−¬ω
� r− (A ↓ ¬ω)

� r−
(
¬Pos ∪ U

)
�
(
r− (¬r Pos ↓ ¬ω) ∪ r−U

)
∩ Pos

�
((

r−¬r Pos
)
∩ Pos

)
∪
(
r−U ∩ Pos

)
� r−U ∩ Pos� r−U .
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Conversely, suppose that r−A� r−U , and let B ∈ A ↓ ¬ω . We must show that
B�Π ¬Pos ∪ U . Write B = {(m0, (p0, q0)), . . . , (mnB−1, (pnB−1, qnB−1))}. Since
B ∈ ¬ω , there exists i∗ < nB such that either 1 ≤ pi∗ or qi∗ ≤ 1. If 1 ≤ pi∗ we have

B�Π {(mi∗ , (pi∗ , qi∗))}�Π ¬Pos�Π ¬Pos ∪ U .

Now, suppose that qi∗ ≤ 1. Let B′ ∈ wcΠ(B), so that B′ is of the form

B′ =
{

(m0, (p′0, q
′
0)), . . . , (mnB−1, (p′nB−1, q

′
nB−1))

}
such that pi < p′i < q′i < qi for each i < nB . Since q′i∗ < 1, we have

r−B′� r−mi∗
(p′i∗ , q

′
i∗)� ami∗ ,

and since B′ ≪ A in
∏

n∈N I[0, 1], we have r−B′ ≪ r−A in S . Hence r−B′ � r−A
by Lemma 2.31. Moreover, since U �Π U< where

U<
def
=
{

C′ ∈ SΠ | (∃C ∈ U) C′ ∈ wcΠ(C)
}
,

we have r−A� r−U< . Thus there exist C0, . . . ,CnU−1 ∈ U and C′0, . . . ,C
′
nU−1 ∈ SΠ

such that r−B′� r−
{

C′0, . . . ,C
′
nU−1

}
and that for each j < nU , the sets Cj and C′j are

of the forms

Cj =
{(

lj,0, (sj,0, tj,0)
)
, . . . ,

(
lj,nj−1, (sj,nj−1, tj,nj−1)

)}
,

C′j =
{(

lj,0, (s′j,0, t
′
j,0)
)
, . . . ,

(
lj,nj−1, (s′j,nj−1, t

′
j,nj−1)

)}
such that sj,i < s′j,i < t′j,i < tj,i for each i < nj . Let

M def
= max {lj,i | j < nU & i < nj} ,

and choose k ∈ N and θ ∈ Q>0 such that 2−k < θ and(
∀j < nU

)(
∀i < nj

)
sj,i < s′j,i − θ & t′j,i + θ < tj,i.

Then B′�T
(

B′ ↓ C≤M
k

)
∩ Pos. Let B′′ ∈

(
B′ ↓ C≤M

k

)
∩ Pos. Then either B′′ ∈ r Pos

or B′′ ∈ ω . Since B′ ∈ ¬ω we have B′′ ∈ ¬ω , so the latter case yields a contradiction.
If B′′ ∈ r Pos, then since

r−B′′� r−
{

C′0, . . . ,C
′
nU−1

}
↓ r−B′′� r−

(
{C′0, . . . ,C′nU−1} ↓ B′′

)
,

there exists j < nU such that r Pos G
(
C′j ↓ B′′

)
. Hence C′j ><B′′ , so that B′′ ≤ Cj �

T U
by the choice of θ . Thus B′�Π ¬Pos∪U , and so B�Π wcΠ(B)�Π ¬Pos∪U . Therefore
A ↓ ¬ω�Π ¬Pos ∪ U .

Finally, since
∏

n∈N I[0, 1] is enumerably completely regular and T is its subtopology,
T is a compact overt enumerably completely regular formal topology.
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7 Point-free characterisation

We show that the notion of inhabited enumerably locally compact regular formal
topology characterises that of Bishop locally compact metric space up to isomorphism.

First, we recall the main result of our previous work [14, Theorem 4.3.2].

Lemma 7.1 Let S be a formal topology. Then the following are equivalent.

(1) S is isomorphic to a compact overt enumerably completely regular formal topology.

(2) S is isomorphic to a compact overt subtopology of
∏

n∈N I[0, 1].

(3) S is isomorphic to the localic completion of some compact metric space.

By Proposition 4.14 and Theorem 6.5, we have the following proposition.

Proposition 7.2 For any overt enumerably locally compact regular formal topology
S , there exists a locally compact metric space X such that M(X) ∼= S .

Note that the image of any inhabited formal topology under a formal topology map is
inhabited. Hence Corollary 4.15 yields the following.

Corollary 7.3 For any inhabited enumerably locally compact regular formal topology
S , there exists a Bishop locally compact metric space X such that M(X) ∼= S .

Lemma 7.4 The localic completion of a Bishop locally compact metric space is
isomorphic to an inhabited enumerably locally compact regular formal topology.

Proof Let X be a Bishop locally compact metric space. Since X is separable, we may
assume that X is countable by Theorem 3.2. Since the base MX ofM(X) is a countable
union of countable sets, MX is countable. Since a <X b implies a� b and we have

b(x, ε)�X
{
b(x, δ) ∈ MX | δ ∈ Q>0 & δ < ε

}
for each b(x, ε) ∈ MX , the function wb : MX → Pow(MX) define by

wb(b(x, ε)) def
=
{
b(x, δ) ∈ MX | δ ∈ Q>0 & δ < ε

}
makes M(X) locally compact. For each b(x, ε) ∈ MX , the subset wb(b(x, ε)) is
countable by the standard enumeration of the rational interval (0, ε). Thus the set
wb = {(b, a) ∈ MX ×MX | b ∈ wb(a)} is countable.
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Moreover, for each b(x, δ) ∈ wb(b(x, ε)) we can define an order preserving bijection
ϕ : I→ [δ, ε] ∩Q. Then the family

(
{b(x, ϕ(q))}

)
q∈I is a wb-scale from {b(x, δ)} to

{b(x, ε)}. Thus we can define a function sc ∈
∏

(b,a)∈wb Sc�
(
{b}, {a}

)
which assigns

to each (b, a) ∈ wb the wb-scale from {b} to {a} as described above.

Since X is inhabited, M(X) is an inhabited formal topology. Therefore M(X) is an
inhabited enumerably locally compact regular formal topology with the function wb

and the choice sc of wb-scale for wb.

By Corollary 7.3 and Lemma 7.4, we obtain the following.

Theorem 7.5 Let S be a formal topology. Then S is isomorphic to an inhabited
enumerably locally compact regular formal topology if and only if S is isomorphic to
the localic completion of some Bishop locally compact metric space.

Let BLCM be the full subcategory of LCM consisting of Bishop locally compact
metric spaces, and let IELKReg be the full subcategory of FTop consisting of formal
topologies which are isomorphic to some inhabited enumerably locally compact regular
formal topology.

Then, the localic completion functor M : LCM → FTop restricts to a functor
M : BLCM → IELKReg by Lemma 7.4, and the restricted functor M is essen-
tially surjective by Theorem 7.5. Since the restriction is still full and faithful, we have
the following.

Theorem 7.6 The categories BLCM and IELKReg are equivalent.6
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6 Constructively, this is the equivalence in a weaker sense that there exists a full, faithful
and essentially surjective functor from one category to the other. Under the Axiom of Choice,
this notion is equivalent to the stronger notion of equivalence, i.e. the existence of adjoint
functors F a G such that FG and GF are naturally isomorphic to the identity functors (see
Mac Lane [15]).
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