A point-free characterisation of Bishop locally compact metric spaces

TATSUJI KAWAI

Abstract: We give a characterisation of Bishop locally compact metric spaces in terms of formal topology. To this end, we introduce the notion of inhabited enumerably locally compact regular formal topology, and show that the category of Bishop locally compact metric spaces is equivalent to the full subcategory of formal topologies consisting of those objects which are isomorphic to some inhabited enumerably locally compact regular formal topology.

In the course of obtaining the above equivalence, we show a couple of point-free results which are of independent interest. First, we show that any overt enumerably locally compact regular formal topology admits a one-point compactification, i.e. it can be embedded into a compact overt enumerably completely regular formal topology as the open complement of a formal point. Second, we characterise the class of enumerably completely regular formal topologies as the subtopologies of the product of countably many copies of the formal unit interval.

We work in Aczel’s constructive set theory CZF with Regular Extension Axiom and Dependent Choice.

2010 Mathematics Subject Classification 03F60 (primary); 06D22, 54E45 (secondary)

Keywords: formal topologies, locally compact metric spaces, Bishop constructive mathematics

1 Introduction

In locale theory (Johnstone [13]), the standard adjunction between the category of topological spaces and that of locales restricts to an equivalence between the category of sober spaces and that of spatial locales. The equivalence allows us to transfer results between general topology and locale theory.

Aczel [1] showed that the adjunction is constructively valid by replacing the notion of locale with Sambin’s notion of formal topology [19]. As was stressed by Palmgren [18],
however, the adjunction is of little practical use constructively since some of the important examples of formal topologies cannot be shown to be spatial. In particular, as shown by Fourman and Grayson [11, Theorem 4.10] the spatiality of the formal reals is equivalent to the compactness of the unit interval, and a proof of the latter requires the Fan theorem. Since the Fan theorem is not acceptable in Bishop constructive mathematics [3], the current situation prevents us from applying the results in formal topology to Bishop’s theory of metric spaces [3, Chapter 4].

To overcome this difficulty, Palmgren [17] constructed another embedding, a full and faithful functor $M : \text{LCM} \to \text{FTop}$, from the category of locally compact metric spaces LCM into that of formal topologies FTop, using the localic completion of generalized metric spaces due to Vickers [21]. Unlike the standard adjunction, the embedding M has important properties that a metric space X is compact if and only if $M(X)$ is compact and that $M(X)$ is locally compact whenever X is locally compact.

In our previous work [14, Chapter 4], we characterised the image of the category of compact metric spaces under the embedding M using the notion of compact overt enumerably completely regular formal topology. This means that the category of compact metric spaces is equivalent to the full subcategory of FTop consisting of those formal topologies which are isomorphic to some compact overt enumerably completely regular formal topology.

In the present paper, we extend the characterisation to the class of Bishop locally compact metric spaces. We introduce the notion of inhabited enumerably locally compact regular formal topology and show that the class of inhabited enumerably locally compact regular formal topologies characterises the image of Bishop locally compact metric spaces under the embedding M up to isomorphism. Specifically, we show that the category of Bishop locally compact metric spaces is equivalent to the full subcategory of formal topologies consisting of those objects which are isomorphic to some inhabited enumerably locally compact regular formal topology (Theorem 7.6).

In the course of obtaining the above equivalence, we show a couple of new results which are of independent interest. First, we show that any overt enumerably locally compact regular formal topology admits a one-point compactification (Theorem 6.5). Second, we characterise the class of enumerably completely regular formal topologies as the subtopologies of the product of countably many copies of the formal unit interval (Proposition 5.4).

The paper is organised as follows. Section 2 and Section 3 contain background on formal topologies and the embedding of locally compact metric spaces into formal topologies by Palmgren [17], respectively. The rest of the paper consists of our original contributions.
In Section 4 we give a sufficient condition under which a formal topology is isomorphic to the localic completion of a Bishop locally compact metric space (Corollary 4.15). To this end, we introduce the notion of the open complement of a located subtopology. In Section 5 we characterise enumerably completely regular formal topologies by the subtopologies of the countable product of the formal unit interval (Proposition 5.4). In Section 6 we construct a one-point compactification of an overt enumerably locally compact regular formal topology (Theorem 6.5). In Section 7 we show that the notion of inhabited enumerably locally compact regular formal topology characterises that of Bishop locally compact metric space up to isomorphism (Theorem 7.6).

We work informally in Aczel’s constructive set theory CZF (Aczel and Rathjen [2]) extended with the Regular Extension Axiom (REA) and Dependent Choice (DC). Our previous work [14, Chapter 4] on which this paper depends was carried out in the same system. The axiom REA is needed to define the notion of inductively generated formal topology (see Section 2.1).

Notation 1 We define some terms and notations which we frequently use in this paper.

First, when we say that \(A \) is a set, it means that \(A \) forms a set in CZF, and when we say that \(A \) is a class, it means that \(A \) is a definable class of CZF, i.e. its member can be specified using a formula of CZF.

Let \(S \) be a set. Then \(\text{Pow}(S) \) denotes the class of subsets of \(S \). Note that since CZF is predicative, \(\text{Pow}(S) \) cannot be shown to be a set unless \(S = \emptyset \). \(\text{Fin}(S) \) denotes the set of finitely enumerable subsets of \(S \), where a set \(A \) is finitely enumerable if there exists a surjection \(f: \{0, \ldots, n-1\} \to A \) for some \(n \in \mathbb{N} \). For subsets \(U, V \subseteq S \), we define

\[
U \upharpoonright V \overset{\text{def}}{=} \{ a \in S \mid a \in U \cap V \}.
\]

The complement of a subset \(U \subseteq S \) is denoted by \(\neg U \):

\[
\neg U \overset{\text{def}}{=} \{ a \in S \mid a \notin U \}.
\]

If \(r \subseteq X \times S \) is a relation between sets \(X \) and \(S \), we define

\[
\begin{align*}
\mathcal{D} & \overset{\text{def}}{=} \{ a \in S \mid (\exists x \in D) x r a \}, \\
\mathcal{I}^{-1} & \overset{\text{def}}{=} \{ x \in X \mid (\exists a \in U) x r a \}, \\
\mathcal{I}^{-\ast} & \overset{\text{def}}{=} \{ a \in S \mid \mathcal{I}^{-\ast} \{ a \} \subseteq D \}
\end{align*}
\]

for any subsets \(D \subseteq X \) and \(U \subseteq S \). We often write \(I^{-}a \) for \(I^{-} \{ a \} \).

"Journal of Logic & Analysis 9:c2 (2017)"
2 Formal topologies

We recall the relevant facts about formal topology. See Sambin [20] and Fox [12] for further details.

Definition 2.1 A formal topology S is a triple (S, \lhd, \leq) where (S, \leq) is a preordered set and \lhd is a relation between S and $\text{Pow}(S)$ such that

\[A \mathbin{U \mathrel{\overset{\text{def}}{=}}} \{ a \in S \mid a \lhd U \} \]

is a set for each $U \subseteq S$ and that

1. $U \lhd U$,
2. $a \lhd U \land U \lhd V \implies a \lhd V$,
3. $a \lhd U \land a \lhd V \implies a \lhd U \downarrow V$,
4. $a \leq b \implies a \lhd b$

for all $a, b \in S$ and $U, V \subseteq S$, where

\[U \lhd V \overset{\text{def}}{=} (\forall a \in U) a \lhd V, \]
\[U \downarrow V \overset{\text{def}}{=} \{ c \in S \mid (\exists a \in U)(\exists b \in V) c \leq a \land c \leq b \}. \]

We write $a \downarrow U$ for $\{a\} \downarrow U$ and $U \lhd a$ for $U \lhd \{a\}$. The set S is called the base of S, and the relation \lhd is called a cover on (S, \leq), or the cover of S. For any $U, V \subseteq S$ we define

\[U = S V \overset{\text{def}}{=} A U = A V. \]

Notation 2 In this paper, the letters S, S', T, \ldots denote formal topologies. If S is a formal topology, the symbols S, \lhd and \leq denote the base, the cover and the preorder of S respectively. Subscripts or superscripts are sometimes added to those symbols for clarity. For example, the base, the cover and the preorder of a formal topology S' will be denoted by S', \lhd' and \leq' respectively.

Definition 2.2 Let S and S' be formal topologies. A relation $r \subseteq S \times S'$ is called a formal topology map from S to S' if

1. $S \lhd r^{-} S'$,
2. $r^{-} a \downarrow r^{-} b \lhd r^{-}(a \downarrow' b)$,
3. $a \downarrow' U \implies r^{-} a \lhd r^{-} U$
for all $a, b \in S'$ and $U \subseteq S'$.

Let S and S' be formal topologies. Two formal topology maps $r, s: S \to S'$ are defined to be equal, denoted by $r = s$, if

$$r^{-1}a = s^{-1}a$$

for all $a \in S'$.

The formal topologies and formal topology maps between them form a category FTop. The composition of two formal topology maps is the composition of the underlying relations of these maps. The identity morphism on a formal topology is the identity relation on its base.

The formal topology $1 \defeq (\{\ast\}, \in, =)$ is a terminal object in FTop. A formal topology map $r : 1 \to S$ is equivalent to the following notion.

Definition 2.3 Let S be a formal topology. A subset $\alpha \subseteq S$ is called a formal point of S if

1. $S \not\in \alpha$,
2. $a, b \in \alpha \implies \alpha \not\in (a \downarrow b)$,
3. $a \in \alpha \& a \downarrow U \implies \alpha \not\in U$

for all $a, b \in S$ and $U \subseteq S$. The class of formal points of S is denoted by $\text{Pt}(S)$.

A formal topology often comes equipped with a positivity predicate.

Definition 2.4 Let S be a formal topology. A subset $V \subseteq S$ is said to be splitting if $a \in V \& a \downarrow U \implies V \not\in U$

for all $a \in S$ and $U \subseteq S$.

Definition 2.5 A positivity predicate (or just a positivity) on a formal topology S is a splitting subset $\text{Pos} \subseteq S$ which satisfies

$$a \downarrow \{x \in S \mid x = a \& \text{Pos}(a)\}$$

for all $a \in S$, where we write $\text{Pos}(a)$ if $a \in \text{Pos}$.

A formal topology is overt if it is equipped with a positivity predicate. A formal topology is inhabited if it is overt and its positivity is inhabited.

Let S be a formal topology. By the condition (Pos), a positivity predicate on S, if it exists, is the largest splitting subset of S. Thus S admits at most one positivity predicate. Note also that every formal point of S is a splitting subset of S. Hence, if S is overt with a positivity predicate Pos, then $\alpha \subseteq \text{Pos}$ for any formal point $\alpha \in \text{Pt}(S)$.

2.1 Inductively generated formal topologies

The notion of inductively generated formal topology by Coquand et al. [7] gives us a convenient method to define formal topologies.

Definition 2.6 Let S be a set. An *axiom-set* on S is a pair (I, C) where $(I(a))_{a \in S}$ is a family of sets indexed by S, and C is a family $(C(a, i))_{a \in S, i \in I(a)}$ of subsets of S indexed by $\sum_{a \in S} I(a)$. For each $a \in S$ and $i \in I(a)$, the pair $(a, C(a, i))$ is called an *axiom* of (I, C).

We recall the main result of the work by Coquand et al. [7, Theorem 3.3].

Theorem 2.7 Let (S, \leq) be a preordered set, and let (I, C) be an axiom-set on S. Let $\ll_{I,C}$ be the relation between S and $\text{Pow}(S)$ generated by the following rules:

\[
\begin{align*}
& a \in U \\
& a \ll_{I,C} U \\
& a \leq b \\
& i \in I(b) \\
& a \downarrow C(b, i) \ll_{I,C} U \\
& a \ll_{I,C} U
\end{align*}
\]

Then $\ll_{I,C}$ is the least cover on (S, \leq) such that $a \ll_{I,C} C(a, i)$ for all $a \in S$ and $i \in I(a)$.

A formal topology $S = (S, \ll, \leq)$ is *inductively generated* if it is equipped with an axiom-set (I, C) on S such that $\ll = \ll_{I,C}$.

Remark 2.8 In Definition 2.2 of a formal topology map, if the formal topology S' is inductively generated by an axiom-set (I, C) on S', then the condition (FTM3) is equivalent to the following conditions under the condition (FTM2).

(FTM3a) $a \leq' b \implies r^a \ll r^b$,

(FTM3b) $r^a \ll r^C(a, i)$

for all $a, b \in S'$ and $i \in I(a)$.

Similarly, in Definition 2.3 of a formal point, if the formal topology S is inductively generated by an axiom-set (I, C) on S, then the condition (P3) is equivalent to the following conditions:

(P3a) $a \leq b \& a \in \alpha \implies b \in \alpha$,

(P3b) $a \in \alpha \implies \alpha \downarrow C(a, i)$

for all $a, b \in S$ and $i \in I(a)$. See Fox [12, Section 4.1.2] for details.
Example 2.9 Let \mathbb{Q} be the set of rationals, and let

$$S_\mathcal{R} \overset{\text{def}}{=} \{(p, q) \in \mathbb{Q} \times \mathbb{Q} \mid p < q\}.$$

Define a preorder $\leq_\mathcal{R}$ and a transitive relation $<_\mathcal{R}$ on $S_\mathcal{R}$ by

$$ (p, q) \leq_\mathcal{R} (r, s) \iff r \leq p \& q \leq s,$$

$$ (p, q) <_\mathcal{R} (r, s) \iff r < p \& q < s$$

for all $(p, q), (r, s) \in S_\mathcal{R}$. The formal reals \mathcal{R} is a formal topology $(S_\mathcal{R}, <_\mathcal{R}, \leq_\mathcal{R})$ inductively generated by an axiom-set on $S_\mathcal{R}$ consisting of the following axioms for each $(p, q) \in S_\mathcal{R}$:

(R1) $(p, q) <_\mathcal{R} \{a \in S_\mathcal{R} \mid a <_\mathcal{R} (p, q)\}$,

(R2) $(p, q) <_\mathcal{R} \{(p, s), (r, q)\}$ for each $(r, s) \in S_\mathcal{R}$ such that $(r, s) <_\mathcal{R} (p, q)$.

It is well known that the class of formal points of \mathcal{R} is isomorphic to the Dedekind cuts. See Fourman and Grayson [11], Negri and Soravia [16] and Coquand et al. [7] for further details.

2.1.1 Products

We recall the construction of a product of a family of inductively generated formal topologies by Vickers [22]$.^1$ Let $(S_i)_{i \in I}$ be a set-indexed family of inductively generated formal topologies each of which is of the form $S_i = (S_i, <_{i}, \leq_{i})$ and generated by an axiom-set (K_i, C_i) on S_i. Define a preorder (S_Π, \leq_Π) by

$$S_\Pi \overset{\text{def}}{=} \text{Fin}\left(\sum_{i \in I} S_i\right),$$

$$A \leq_\Pi B \iff \left(\forall (i, b) \in B\left(\exists (j, a) \in A\right) i = j \& a \leq_i b\right)$$

for all $A, B \in S_\Pi$. Define an axiom-set on S_Π as follows:

(S1) $A <_\Pi \{\{(i, a)\} \in S_\Pi \mid a \in S_i\}$ for each $A \in S_\Pi$ and $i \in I$,

(S2) $\{(i, a), (i, b)\} <_\Pi \{\{(i, c)\} \in S_\Pi \mid c \leq_i a \& c \leq_i b\}$ for each $i \in I$ and $a, b \in S_i$.

1 In order to construct a product of a family of formal topologies predicatively, we need to know that each member the family is inductively generated. Whether this requirement is really necessary is not known. Of course, for the empty and singleton families, the construction of their product is trivial. Impredicatively, the construction of products of locales is well known (see Johnstone [13, Chapter II, Proposition 2.12]).
\[(i, a) \prec \Pi \{ (i, b) \} \mid b \in C_i(a, k) \} \text{ for each } i \in I, \ a \in S_i \text{ and } k \in K_i(a).\]

Let \(\prod_{i \in I} S_i = (S_\Pi, <_\Pi, \leq_\Pi) \) be the formal topology inductively generated by (S1), (S2) and (S3).

For each \(i \in I \), the projection \(p_i: \prod_{i \in I} S_i \to S_i \) is defined by
\[
A p_i a \overset{\text{def}}{\iff} A = \{(i, a)\}
\]
for all \(A \in S_\Pi \) and \(a \in S_i \). By the definition of \(\prod_{i \in I} S_i \), the relation \(p_i \) is a formal topology map. Then the family \(\{p_i: \prod_{i \in I} S_i \to S_i\}_{i \in I} \) is a product of \((S_i)_{i \in I} \). In particular, given any family \((r_i: S \to S_i)_{i \in I} \) of formal topology maps, there exists a unique formal topology map \(r: S \to \prod_{i \in I} S_i \) such that \(r_i = p_i \circ r \) for all \(i \in I \). The formal topology map \(r \) is defined by
\[
a r A \overset{\text{def}}{\iff} \left(\forall (i, b) \in A \right) a \prec r_i b
\]
for all \(a \in S \) and \(A \in S_\Pi \).

For later use, we note the following facts.

Lemma 2.10 Let \(i \in I \). Then
\[
a \prec_i U \implies \{ (i, a) \} \prec \Pi \{ (i, b) \} \mid b \in U \}
\]
for all \(a \in S_i \) and \(U \subseteq S_i \).

Proof This follows from the definition of the projection \(p_i: \prod_{i \in I} S_i \to S_i \) and the condition (FTM3) for a formal topology map. \(\square \)

Corollary 2.11 Let \(\{i_0, \ldots, i_{n-1}\} \in \text{Fin}(I) \), and for each \(k < n \) let \(a_k \in S_{i_k} \) and \(U_k \subseteq S_{i_k} \) such that \(a_k \prec_{i_k} U_k \). Then
\[
\{(i_0, a_0), \ldots, (i_{n-1}, a_{n-1})\} \prec \Pi \{ (i_0, b_0), \ldots, (i_{n-1}, b_{n-1}) \} \in S_\Pi \mid (\forall k < n) \ b_k \in U_k \}.
\]

2.2 Open subtopologies and closed subtopologies

Definition 2.12 A subtopology of a formal topology \(S = (S, \prec, \leq) \) is a formal topology \(T = (S, \prec^T, \leq^T) \) such that
\[
a \prec U \implies a \prec^T U
\]
for all \(a \in S \) and \(U \subseteq S \). If \(T \) is a subtopology of \(S \), we write \(T \subseteq S \).

"Journal of Logic & Analysis 9:e2 (2017)"
Given a formal topology map $r: S \to S'$, the relation $<_r$ between S' and $\text{Pow}(S')$ defined by

$$a <_r U \iff r^{-1} a <_{r^{-1}} U$$

is a cover on (S', \leq'). The formal topology $S_r = (S', <_r, \leq')$ is called the image of S under r.

A formal topology map $r: S \to S'$ is an embedding if r restricts to an isomorphism between S and its image S_r.

By the condition (FTM3) for a formal topology map, we have $S_r \subseteq S'$ for any formal topology map $r: S \to S'$. If T is a subtopology of $S = (S, <, \leq)$, then the identity relation id_S on S is an embedding $id_S: T \to S$. Hence the notion of embedding is essentially equivalent to that of subtopology.

It can be shown that $r: S \to S'$ is an embedding if and only if

$$a <_{r^{-1}} A \{a\}$$

for all $a \in S$. See Fox [12, Proposition 3.5.2].

The following is well known.

Lemma 2.13 Let S be an overt formal topology with a positivity Pos, and let $r: S \to S'$ be a formal topology map. Then the image S_r of S under r is overt with the positivity

$$r \text{Pos} \overset{\text{def}}{=} \{a \in S' \mid (\exists b \in \text{Pos}) b \ r \ a\}.$$

Proof It is straightforward to show that $r \text{Pos}$ is a splitting subset of S_r. To see that $r \text{Pos}$ satisfies the condition (Pos), let $<_r$ be the cover of S_r, and let $a \in S'$. We must show that $a <_r \{a\} \cap r \text{Pos}$. Let $b \in r^{-1} a$, and suppose that $b \in \text{Pos}$. Then $a \in r \text{Pos}$, so that $b \in r^{-1} \{a\} \cap r \text{Pos}$. Hence $r^{-1} a <_{r^{-1}} (\{a\} \cap r \text{Pos})$, and thus $a <_{r^{-1}} (\{a\} \cap r \text{Pos})$.

Definition 2.14 Let S be a formal topology and let $V \subseteq S$. The open subtopology of S determined by V is a subtopology S_V of S with the cover $<_V$ given by

$$a <_V U \overset{\text{def}}{=} a \downarrow V < U$$

for all $a \in S$ and $U \subseteq S$.

Lemma 2.15 Let S be a formal topology, and let S_V be the open subtopology of S determined by $V \subseteq S$.

Journal of Logic & Analysis 9:2 (2017)
(1) \(S_V\) is the largest subtopology \(S'\) of \(S\) such that \(S \ll V\).

(2) If \(S\) is overt with a positivity \(\text{Pos}\), then \(S_V\) is overt with the positivity \(\text{Pos}_V\) given by
\[
\text{Pos}_V \overset{\text{def}}{=} \{a \in S \mid \text{Pos} \upharpoonright (a \downarrow V)\}.
\]

Proof (1) Since \(S \downarrow V \ll V\) we have \(S \ll V\). Let \(S'\) be a subtopology of \(S\) such that \(S \ll V\). Suppose that \(a \ll V U\). Then \(a \downarrow V \ll U\), and thus \(a \downarrow V \ll' U\). Hence \(a \ll' a \downarrow S \ll' a \downarrow V \ll' U\). Therefore \(S' \subseteq S_V\).

(2) Suppose that \(S\) is overt with a positivity \(\text{Pos}\), and let \(\text{Pos}_V\) be the subset of \(S\) as defined above. Suppose that \(a \ll V U\) and \(a \in \text{Pos}_V\), that is \(a \downarrow V \ll U\) and \(\text{Pos} \upharpoonright (a \downarrow V)\). Then \(a \downarrow V \ll U \downarrow V\) and thus \(\text{Pos} \upharpoonright (U \downarrow V)\), that is \(\text{Pos}_V \upharpoonright U\). Hence \(\text{Pos}_V\) is a splitting subset of \(S_V\). Moreover, for any \(a \in S\) we have \(a \downarrow V \ll (a \downarrow V) \cap \text{Pos}\) by the property (Pos) of Pos. Thus \(a \ll V (a \downarrow V) \cap \text{Pos} \ll V\{a\} \cap \text{Pos}_V\). Therefore \(\text{Pos}_V\) satisfies (Pos). \(\square\)

Definition 2.16 Let \(S\) be a formal topology and let \(V \subseteq S\). The closed subtopology of \(S\) determined by \(V\) is a subtopology \(S^{S-V}\) of \(S\) with the cover \(\ll^{S-V}\) given by
\[
a \ll^{S-V} U \iff a \ll V U
\]
for all \(a \in S\) and \(U \subseteq S\).

Lemma 2.17 Let \(S\) be a formal topology and let \(V \subseteq S\). Then the closed subtopology \(S^{S-V}\) is the largest subtopology \(S'\) of \(S\) such that \(V \ll' \emptyset\).

Proof The proof is analogous to that of Lemma 2.15 (1). \(\square\)

Definition 2.18 Let \(S\) be a formal topology and let \(S'\) be a subtopology of \(S\). Then the closure of \(S'\) in \(S\) is the closed subtopology \(S^{S-Z}\) of \(S\) determined by the subset
\[
Z \overset{\text{def}}{=} \{a \in S \mid a \ll' \emptyset\}.
\]

The closure of a formal topology has an expected property.

Proposition 2.19 Let \(S'\) be a subtopology of \(S\). Then the closure of \(S'\) in \(S\) is the smallest closed subtopology of \(S\) that is larger than \(S'\).

Proof Let \(S^{S-Z}\) be the closure of \(S'\), where \(Z \subseteq S\) is defined as in (1). By Lemma 2.17 we have \(S' \subseteq S^{S-Z}\). Let \(V \subseteq S\) and suppose that \(S' \subseteq S^{S-V}\). Then \(V \ll' \emptyset\), so that \(V \subseteq Z\). Hence \(S^{S-Z} \subseteq S^{S-V}\). \(\square\)
Lemma 2.20 Let S' be an overt subtopology of S with a positivity Pos. Then the closure of S' in S is the closed subtopology $S^\text{S} \setminus \text{Pos}$.

Proof Let $Z = \{a \in S \mid a \downarrow' \emptyset\}$. It suffices to show that $\lnot \text{Pos} = Z$. Since Pos is the positivity of S', we have $\lnot \text{Pos} \downarrow' \emptyset$, and thus $\lnot \text{Pos} \subseteq Z$. Conversely, if $a \downarrow' \emptyset$ and $a \in \text{Pos}$ then $\text{Pos} \uparrow' \emptyset$, a contradiction. Hence $Z \subseteq \lnot \text{Pos}$. \hfill \Box

Example 2.21 (See also Example 2.9) Let \mathcal{R} be the formal reals. The formal unit interval $I[0, 1]$ is the closed subtopology of \mathcal{R} determined by the subset

$$\{(p, q) \in S_\mathcal{R} \mid p \geq 1 \lor q \leq 0\}.$$

Equivalently, $I[0, 1]$ can be defined as a formal topology $(S_\mathcal{R}, \lhd_{I[0, 1]}, \leq_\mathcal{R})$ inductively generated by the axioms of \mathcal{R} together with the following axiom for each $(p, q) \in S_\mathcal{R}$:

$$\text{(2)} (p, q) \lhd_{I[0, 1]} \{(p, q) \mid p < 1 \& 0 < q\}.$$

2.3 Regularity, compactness and local compactness

Let S be a formal topology. For each $a \in S$ define

$$a^* \overset{\text{def}}{=} \{b \in S \mid b \downarrow a \downarrow' \emptyset\},$$

and for each $a, b \in S$ define

$$a \ll b \overset{\text{def}}{=} S \lhd a^* \cup \{b\}.$$

We extend the relation \ll to the subsets of S by defining

$$U \ll V \overset{\text{def}}{=} S \lhd U^* \cup V$$

for all $U, V \subseteq S$, where $U^* \overset{\text{def}}{=} \bigcap_{a \in U} a^*$. We write $a \ll U$ for $\{a\} \ll U$ and $U \ll a$ for $U \ll \{a\}$. By Lemma 2.15, we have that $U \ll V$ if and only if the closure of S_U is a subtopology of S_V.

It is easy to see that $U \ll V$ implies $U \lhd V$ and that $U' \lhd U \ll V \lhd V'$ implies $U'' \ll V'$. Moreover, if $r : S \to S'$ is a formal topology map, then $U \ll' V$ implies $r^{-1}U \ll r^{-1}V$ for any $U, V \subseteq S'$.

Definition 2.22 A formal topology S is regular if it is equipped with a function $\text{wc} : S \to \text{Pow}(S)$ such that

$$\text{(1)} (\forall b \in \text{wc}(a)) b \ll a,$$
Remark 2.23 A formal topology S is regular if and only if
\[a \triangleleft \{ b \in S \mid b \ll a \} \]
for all $a \in S$. Indeed, if S is regular with a function $wc : S \to \text{Pow}(S)$, then
\[a \triangleleft wc(a) \subseteq \{ b \in S \mid b \ll a \} . \]
Conversely, if S satisfies (3), we define
\[wc(a) \overset{\text{def}}{=} \{ b \in S \mid b \ll a \} . \]
Thus, if S is regular, we always have a canonical choice of the function $wc : S \to \text{Pow}(S)$
that is given by (4).

Definition 2.24 A formal topology S is compact if
\[S \triangleleft U \implies (\exists U_0 \in \text{Fin}(U)) S \triangleleft U_0 \]
for all $U \subseteq S$.

The following are well known in locale theory (see Johnstone [13, Chapter III, Section 1]).

Proposition 2.25
(1) A subtopology of a regular formal topology is regular.
(2) A closed subtopology of a compact formal topology is compact.
(3) A compact subtopology of a regular formal topology is closed.

Proof (1) If S is regular and S' is a subtopology of S, then $a \ll b$ in S implies $a \ll b$ in S', from which the conclusion follows.

(2) Let S be a compact formal topology, and let S^{S-V} be the closed subtopology of S determined by a subset $V \subseteq S$. Let $U \subseteq S$ and suppose that $S \triangleleft^{S-V} U$. Then $S \triangleleft V \cup U$. Since S is compact, there exists $U_0 \in \text{Fin}(U)$ such that $S \triangleleft V \cup U_0$, that is $S \triangleleft^{S-V} U_0$.

(3) See Curi [9, Proposition 2.3].
A product of inductively generated regular formal topologies is regular.

A product of inductively generated compact formal topologies is compact.

Proof (1) Let \((S_i)_{i \in I}\) be a family of inductively generated regular formal topologies, and let \((\omega_i)_{i \in I}\) be a family such that for each \(i \in I\), \(\omega_i : S_i \to \text{Pow}(S_i)\) is a function which makes \(S_i\) regular. Let \(\prod_{i \in I} S_i = (S_{\Pi}, \ll_{\Pi}, \leq_{\Pi})\) be the product of \((S_i)_{i \in I}\). Define a function \(\omega_{\Pi} : S_{\Pi} \to \text{Pow}(S_{\Pi})\) by

\[
\omega_{\Pi}(A) \overset{\text{def}}{=} \{\{(i_0, b_0), \ldots, (i_{n-1}, b_{n-1})\} \in S_{\Pi} \mid (\forall k < n) b_k \in \omega_i(a_k)\}
\]

for each \(A = \{(i_0, a_0), \ldots, (i_{n-1}, a_{n-1})\} \in S_{\Pi}\). Then \(A \ll_{\Pi} \omega_{\Pi}(A)\) for all \(A \in S_{\Pi}\) by Corollary 2.11. Let \(A, B \in S_{\Pi}\) such that \(B \in \omega_{\Pi}(A)\). Then \(A\) and \(B\) are of the forms

\[
A = \{(i_0, a_0), \ldots, (i_{n-1}, a_{n-1})\},
\]

\[
B = \{(i_0, b_0), \ldots, (i_{n-1}, b_{n-1})\}
\]

such that \(b_k \in \omega_i(a_k)\) for all \(k < n\). Then for each \(k < n\), since \(S_i \ll_i b_k^* \cup \{a_k\}\), we have \(S_{\Pi} \ll_{\Pi} \{\{(i_k, c)\} : c \in b_k^* \cup \{a_k\}\}\). Thus

\[
S_{\Pi} \ll_{\Pi} \{\{(i_0, c_0), \ldots, (i_{n-1}, c_{n-1})\} \in S_{\Pi} \mid (\forall k < n) c_k \in b_k^* \cup \{a_k\}\}\.
\]

Let \(C = \{(i_0, c_0), \ldots, (i_{n-1}, c_{n-1})\}\) be an element of \(S_{\Pi}\) such that \(c_k \in b_k^* \cup \{a_k\}\) for all \(k < n\). Then, either \(c_k = a_k\) for all \(k < n\) or \(c_k \in b_k^*\) for some \(k < n\). In the former case we have \(C = A\). In the latter case, there exists \(k < n\) such that \(c_k \in b_k^*\). Then

\[
C \downarrow B \ll_{\Pi} C \cup B
\]

\[
\ll_{\Pi} \{\{(i_k, c_k)\} : c_k \in b_k^* \cup \{a_k\}\}
\]

\[
\ll_{\Pi} \{\{(i_k, d)\} : d \in c_k \downarrow b_k\}
\]

\[
\ll_{\Pi} \{\{(i_k, d)\} : d \in \emptyset\}
\]

and so \(C \in B^*\). Thus \(S_{\Pi} \ll_{\Pi} B^* \cup \{A\}\), that is \(B \ll A\). Therefore, the function \(\omega_{\Pi}\) makes \(\prod_{i \in I} S_i\) regular.

(2) See Vickers [22, Theorem 14.6].

Let \(S\) be a formal topology. For each \(a, b \in S\) define

\[
a \ll b \overset{\text{def}}{=} \left(\forall U \in \text{Pow}(S) \right) \left[b \ll U \implies \left(\exists U_0 \in \text{Fin}(U) \right) a \ll U_0 \right].
\]

Note that \(\ll\) is a proper class in general. The class relation \(\ll\) is extended to the subsets of \(S\) in an obvious way. For any \(a \in S\) and \(U \subseteq S\), we define \(a \ll U \overset{\text{def}}{=} \{a\} \ll U\) and \(U \ll a \overset{\text{def}}{=} U \ll \{a\}\).

A point-free characterisation of Bishop locally compact metric spaces
Definition 2.27 A formal topology S is \textit{locally compact} if it is equipped with a function $wb: S \to \operatorname{Pow}(S)$ such that

\begin{enumerate}
\item[(1)] $(\forall b \in wb(a)) \ b \ll a,$
\item[(2)] $a \triangleleft wb(a)$
\end{enumerate}

for all $a \in S$.

Remark 2.28 Since the relation \ll is a proper class in general, the existence of a function $wb: S \to \operatorname{Pow}(S)$ is indispensable for the predicative definition of locally compact formal topologies.

Note, however, that once we know that S is locally compact with an associated function $wb: S \to \operatorname{Pow}(S)$, we have that $a \ll b \iff (\exists U \in \operatorname{Fin}(wb(b))) \ a \triangleleft U$ for all $a, b \in S$. Indeed, the direction \Rightarrow is immediate from the condition (2) on wb. For the opposite direction, suppose that we have a finitely enumerable subset $\{c_0, \cdots, c_{n-1}\} \subseteq wb(b)$ such that $a \triangleleft \{c_0, \cdots, c_{n-1}\}$. Let $U \subseteq S$, and suppose that $b \triangleleft U$. Then, for each $i < n$, there exists $U_i \in \operatorname{Fin}(U)$ such that $c_i \triangleleft U_i$. Hence, $a \triangleleft U_0 \cup \cdots \cup U_{n-1}$. Since a finite union of finitely enumerable subsets is again finitely enumerable, we have $a \ll b$.

In summary, a formal topology S is locally compact if and only if the relation \ll is a set and

$$a \ll \{b \in S \mid b \ll a\}$$

for all $a \in S$.

We import the notion of boundedness to formal topology from locale theory (see Escardó [10, Definition 4.1]).

Definition 2.29 Let S be a formal topology. A subset $U \subseteq S$ is \textit{bounded} if $U \ll S$. A subtopology S' of S is \textit{bounded} if there exists a bounded subset $U \subseteq S$ such that $S' \subseteq S_U$.

The following seems to be new.

Proposition 2.30 Let S be a locally compact regular formal topology. Then a subtopology $S' \subseteq S$ is compact if and only if S' is closed and bounded.
Proof Suppose that \(S' \) is compact. Since \(S \) is regular, \(S' \) is closed by Proposition 2.25 (3), and since \(S \triangleleft \{ a \in S \mid (\exists b \in S) a \ll b \} \), there exists \(U \in \text{Fin}(S) \) such that \(S \triangleleft U \) and \(U \ll S \). Then \(S' \subseteq S_U \), and so \(S' \) is bounded.

Conversely, suppose that \(S' \) is closed and bounded. Then there exist a subset \(V \subseteq S \) and a bounded subset \(U \subseteq S \) such that \(S' = S^{S - V} \subseteq S_U \). Let \(W \subseteq S \) and suppose that \(S \triangleleft W \). Then \(S \triangleleft V \cup W \). Since \(U \ll S \), there exists \(W_0 \in \text{Fin}(W) \) such that \(U \triangleleft W_0 \), and since \(S' \subseteq S_U \), we have \(S \triangleleft W_0 \). Therefore \(S' \) is compact.

We note some connections between the relations \(\ll \) and \(\ll_\circ \). The following is due to Escardó [10, Lemma 4.2].

Lemma 2.31 Let \(S \) be a formal topology. For any \(U, V \subseteq S \) we have

\[
U \ll S \& U \ll V \implies U \ll V.
\]

Proof Let \(U, V \subseteq S \) and suppose that \(U \ll S \) and \(U \ll V \). Let \(W \) be a subset of \(S \) such that \(V \triangleleft W \). Then \(S \triangleleft U^* \cup V \triangleleft U^* \cup W \). Thus there exists \(W_0 \in \text{Fin}(W) \) such that \(U \triangleleft U^* \cup W_0 \). Hence \(U \triangleleft (U^* \cup W_0) \downarrow U \triangleleft (U^* \downarrow U) \cup (W_0 \downarrow U) \triangleleft W_0 \). Therefore \(U \ll V \).

Note that a formal topology \(S \) is compact if and only if \(S \ll S \). Thus we have the following, which is well known in locale theory (see Johnstone [13, Chapter VII, Lemma 3.5 (i)]).

Corollary 2.32 Let \(S \) be a compact formal topology. For any \(U, V \subseteq S \) we have

\[
U \ll V \implies U \ll V.
\]

The converse of Corollary 2.32 holds for regular formal topologies (see Johnstone [13, Chapter VII, Lemma 3.5 (ii)]).

Lemma 2.33 Let \(S \) be a regular formal topology. For any \(U, V \subseteq S \) we have

\[
U \ll V \implies U \ll V.
\]

Proof Let \(U, V \subseteq S \) and suppose that \(U \ll V \). Since \(S \) is regular we have

\[
V \triangleleft \{ a \in S \mid (\exists b \in V) a \ll b \}.
\]

Then there exists \(W = \{ a_0, \ldots, a_{n-1} \} \in \text{Fin}(S) \) such that \(U \triangleleft W \) and \(a_i \ll V \) for each \(i < n \). Thus \(W \ll V \), and so \(U \ll V \).
As a corollary we obtain a well known fact (see Johnstone [13, Chapter VII, Corollary 3.5]).

Proposition 2.34 Let S be a compact regular formal topology. Then S is locally compact, and the relations \ll and \lll coincide.

Example 2.35 (See also Example 2.9) The formal reals \mathcal{R} is regular and locally compact. To see that \mathcal{R} is regular, we first show that axiom (R2) of \mathcal{R} is equivalent to the following axiom:

$$(R2') \quad (p, q) \ll \mathcal{R} \{ (r, s) \in S_{\mathcal{R}} \mid s - r = 2^{-k} \} \text{ for each } k \in \mathbb{N}.$$

Let $\ll_{\mathcal{R}'}$ be the cover generated by $(R2')$. Let $(p, q), (r, s) \in S_{\mathcal{R}}$ and suppose that $(r, s) \ll (p, q)$. By choosing $k \in \mathbb{N}$ such that $2^{-k} < s - r$, we have

$$(p, q) \ll_{\mathcal{R}'} \{ (p', q') \in S_{\mathcal{R}} \mid q' - p' = 2^{-k} \} \downarrow (p, q) \ll_{\mathcal{R}'} \{ (p, s), (r, q) \}.$$

Hence $\ll_{\mathcal{R}'}$ satisfies (R2). Conversely, we have

$$(p, q) \ll \mathcal{R} \{ (r, s) \in S_{\mathcal{R}} \mid s - r = (2/3)^{-n}(q - p) \& (r, s) \leq (p, q) \}$$

for each $(p, q) \in S_{\mathcal{R}}$ and $n \in \mathbb{N}$. Thus $\ll_{\mathcal{R}}$ clearly satisfies $(R2')$.

Now, it readily follows from $(R2')$ that

$$a \ll \mathcal{R} b \implies a \lll b$$

for all $a, b \in S_{\mathcal{R}}$. Hence by the axiom (R1), \mathcal{R} is regular with the function $w_{\mathcal{R}} : S_{\mathcal{R}} \to \text{Pow}(S_{\mathcal{R}})$ given by

$$(5) \quad w_{\mathcal{R}}(a) \overset{\text{def}}{=} \{ b \in S_{\mathcal{R}} \mid b \ll a \}.$$

To see that \mathcal{R} is locally compact, we first observe that

$$a \ll \mathcal{R} U \implies (\forall b \ll a) (\exists U_0 \in \text{Fin}(U)) \ b \ll \mathcal{R} U_0$$

for all $a \in S_{\mathcal{R}}$ and $U \subseteq S_{\mathcal{R}}$. This can be proved by straightforward induction on $\ll_{\mathcal{R}}$. Hence

$$a \ll \mathcal{R} b \implies a \ll b$$

for all $a, b \in S_{\mathcal{R}}$. Thus \mathcal{R} is locally compact with the function $w_{\mathcal{R}} : S_{\mathcal{R}} \to \text{Pow}(S_{\mathcal{R}})$ defined by (5).
Example 2.36 (See also Example 2.21) The formal unit interval $I[0, 1]$ is compact. A direct proof was given by Cederquist and Negri [5]. The following argument is due to Fourman and Grayson [11, Lemma 4.8].

Since $I[0, 1]$ is a closed subtopology of R, it suffices to show that $I[0, 1]$ is bounded. But for any $(p, q) \in S$ such that $p < 0$ and $1 < q$, the subset $\{(p, q)\}$ is clearly bounded. Moreover, since $(0, 1) \ll (p, q)$ we have $I[0, 1] \subseteq R_{(p,q)}$. Hence $I[0, 1]$ is compact by Proposition 2.30.

$I[0, 1]$ is also regular by Proposition 2.25 (1) and the function wc_R defined by (5) in Example 2.35 makes $I[0, 1]$ regular.

3 Localic completion of metric spaces

In this section, we recall the embedding of the category of locally compact metric spaces into that of formal topologies by Palmgren [17]. The reader is referred to Palmgren [17] for further details.

The embedding is based on the representation of complete metric spaces by formal topologies, called localic completion, due to Vickers [21].

Definition 3.1 Let $X = (X, d)$ be a metric space with a metric d on X, and let $\mathbb{Q}^>0$ be the set of positive rationals. Define

$$M_X \overset{\text{def}}{=} X \times \mathbb{Q}^>0.$$

An element (x, ε) of M_X will be denoted by $b(x, \varepsilon)$. Define an order \leq_X and a transitive relation $<_X$ on M_X by

$$b(x, \varepsilon) \leq_X b(y, \delta) \overset{\text{def}}{\iff} d(x, y) + \varepsilon \leq \delta,$$

$$b(x, \varepsilon) <_X b(y, \delta) \overset{\text{def}}{\iff} d(x, y) + \varepsilon < \delta.$$

The localic completion of X is a formal topology $\mathcal{M}(X) = (M_X, \ll_X, \leq_X)$ inductively generated by the axiom-set on M_X consisting of the following axioms:

(M1) $a \ll_X \{b \in M_X \mid b <_X a\},$

(M2) $a \ll_X C_\varepsilon$ for each $\varepsilon \in \mathbb{Q}^>0$

for each $a \in M_X$, where $C_\varepsilon \overset{\text{def}}{=} \{b(x, \varepsilon) \in M_X \mid x \in X\}$.

For any metric space X, its localic completion $\mathcal{M}(X)$ is always overt and its positivity is the whole of M_X. Moreover, we have
\[a <_X b \implies a \ll b \]
for any $a, b \in M_X$, and so $\mathcal{M}(X)$ is regular by the axiom $(\mathbf{M1})$. The class $\mathrm{Pt}(\mathcal{M}(X))$ admits a metric $\rho : \mathrm{Pt}(\mathcal{M}(X)) \times \mathrm{Pt}(\mathcal{M}(X)) \to \mathbb{R}^\geq$ which can be defined using upper Dedekind cuts:
\[\rho(\alpha, \beta) \overset{\text{def}}{=} \{ q \in \mathbb{Q}^>0 \mid (\exists b(x, \varepsilon) \in \alpha)(\exists b(y, \delta) \in \beta) \ d(x, y) + \varepsilon + \delta < q \} \]
for each $\alpha, \beta \in \mathrm{Pt}(\mathcal{M}(X))$.\footnote{In fact, Palmgren defined a metric on $\mathrm{Pt}(\mathcal{M}(X))$ using Cauchy reals \cite[Section 2]{Palmgren17}, but it is not difficult to show that the metric ρ is equivalent to the one defined by Palmgren using the correspondence between Dedekind cuts and Cauchy reals.}

Furthermore, the function $j_X : X \to \mathrm{Pt}(\mathcal{M}(X))$ defined by
\[j_X(x) \overset{\text{def}}{=} \{ b(y, \varepsilon) \in M_X \mid d(x, y) < \varepsilon \} \]
is a metric completion of X. Thus j_X is a metric isomorphism if and only if X is complete. Note that since j_X is a metric completion, the class $\mathrm{Pt}(\mathcal{M}(X))$ is actually a set which is isomorphic to the usual construction of completion of X, i.e. the set of Cauchy sequences on X with a suitable equivalence relation.

For each $b(x, \varepsilon) \in M_X$, we write $b(x, \varepsilon)_*$ for the open ball associated with $b(x, \varepsilon)$:
\[b(x, \varepsilon)_* \overset{\text{def}}{=} B(x, \varepsilon) = \{ y \in X \mid d(x, y) < \varepsilon \} . \]

We extend the notation $(\cdot)_*$ to the subsets of M_X by defining $U_* \overset{\text{def}}{=} \bigcup_{a \in U} a_*$ for each $U \subseteq M_X$. Dually, each point $x \in X$ is associated with the set $\Diamond x$ of open neighbourhoods of x given by
\[\Diamond x \overset{\text{def}}{=} \{ a \in M_X \mid x \in a_* \} . \]

Note that $j_X(x) = \Diamond x$ for all $x \in X$. We extend the notation $\Diamond(\cdot)$ to the subsets of X by defining $\Diamond Y \overset{\text{def}}{=} \bigcup_{y \in Y} \Diamond y$ for each $Y \subseteq X$.

The following is crucial to the main result of the present paper.

Theorem 3.2 (Palmgren \cite[Theorem 2.7]{Palmgren17}) Let X be a metric space, and let Y be a dense subset of X. Then $\mathcal{M}(Y) \cong \mathcal{M}(X)$.

Next, we recall the definition of the category of locally compact metric spaces.
A point-free characterisation of Bishop locally compact metric spaces

Definition 3.3 A metric space \(X \) is totally bounded if for any \(\varepsilon \in \mathbb{Q}^{>0} \), there exists \(Y = \{x_0, \ldots, x_{n-1}\} \in \text{Fin}(X) \) such that \(X \subseteq \bigcup_{i<n} B(x_i, \varepsilon) \). The set \(Y \) is called an \(\varepsilon \)-net to \(X \). A metric space is compact if it is complete and totally bounded.

A metric space \(X \) is locally compact if each open ball \(B(x, \varepsilon) \) is contained in a compact subset of \(X \). A locally compact metric space is Bishop locally compact if it is inhabited. If \(X \) and \(Y \) are locally compact metric spaces, a function \(f: X \to Y \) is said to be continuous if \(f \) is uniformly continuous on each compact subset of \(X \).

The locally compact metric spaces and continuous functions between them form a category \(\text{LCM} \).

Note that any compact metric space is locally compact. Moreover, a locally compact metric space is complete, and a Bishop locally compact metric space is separable.

If \(X \) is a locally compact metric space, we have

\[a <_X b \implies a \ll b \]

for all \(a, b \in M_X \). Hence, \(M(X) \) is a locally compact formal topology with a function \(\text{wb}: S \to \text{Pow}(S) \) given by \(\text{wb}(a) \overset{\text{def}}{=} \{ b \in M_X \mid b <_X a \} \). If \(X \) is a compact metric space, then it can be shown that \(M(X) \) is a compact formal topology.

Palmgren [17, Section 5] extended the construction \(M \) to a full and faithful functor \(\mathcal{M}: \text{LCM} \to \text{FTop} \). By an abuse of terminology, we call this functor \(\mathcal{M} \) the localic completion. One of the aims of this paper is to characterise the image of Bishop locally compact metric spaces under the localic completion up to isomorphism.

4 Open complements of located subtopologies

We give a sufficient condition under which a formal topology is isomorphic to the localic completion of a Bishop locally compact metric space. We exploit the category \(\text{OLCM} \) of open complements of locally compact metric spaces by Palmgren [18].

Definition 4.1 The category \(\text{OLCM} \) consists of the following data. An object of \(\text{OLCM} \) is a pair \((X, U)\) where \(X \) is a locally compact metric space and \(U \) is an open subset of \(X \). A morphism \(f: (X, U) \to (Y, V) \) of \(\text{OLCM} \) is a function \(f: U \to V \) such that for any inhabited compact subset \(K \subseteq X \) with \(K \subseteq U \), we have

\[
(1) \ f \text{ is uniformly continuous on } K, \\
(2) \ f[K] \subseteq V,
\]

where the relation \subseteq is given by

$$K \subseteq U \overset{\text{def}}{\iff} \exists r \in \mathbb{Q}^{>0} \ K_r \subseteq U,$$

$$K_r \overset{\text{def}}{=} \{ x \in X \mid d(x, K) \leq r \}$$

for any located subset K. Here, a subset A of a metric space (X, d) is *located* if the distance

$$d(x, A) \overset{\text{def}}{=} \inf \{ d(x, a) \mid a \in A \}$$

exists for every $x \in X$.

Note that an inhabited totally bounded subset of a metric space is located and that the image of a totally bounded subset under a uniformly continuous function is totally bounded. Hence, the second condition for a morphism is well-defined.

Palmgren [18] showed that OLCM can be embedded into FTop via a full and faithful functor $\mathcal{O}\mathcal{M} : \text{OLCM} \to \text{FTop}$. The functor $\mathcal{O}\mathcal{M}$ assigns to each object (X, U) of OLCM the open subtopology $\mathcal{M}(X)_{H(U)}$ of $\mathcal{M}(X)$ determined by the subset

$$H(U) \overset{\text{def}}{=} \{ b(x, \varepsilon) \in M_X \mid B(x, \varepsilon) \subseteq U \}.$$

The category LCM is embedded into OLCM via the inclusion $X \mapsto (X, X)$. Note that $\mathcal{O}\mathcal{M} ((X, X)) = \mathcal{M}(X)$ for any locally compact metric space X.

We recall the notion of located subtopology and a characterisation thereof from our previous work [14, Chapter 4, Section 1].

Definition 4.2 Let S be a locally compact formal topology. A subset $V \subseteq S$ is *located* if it is a splitting subset of S, and moreover satisfies

$$a \ll b \implies a \in \neg V \lor b \in V$$

for all $a, b \in S$.

A subtopology S' of S is *located* if S' is the closed subtopology $S^{S - \neg V}$ determined by the complement $\neg V$ of a located subset V of S.

If $\text{wb} : S \to \text{Pow}(S)$ is a function which makes S locally compact, then it can be shown that a splitting subset V of S is located if and only if

$$a \in \text{wb}(b) \implies a \in \neg V \lor b \in V$$

for all $a, b \in S$.

Journal of Logic & Analysis 9:2 (2017)
Lemma 4.3 Let S be a locally compact formal topology. Then the assignment
\[V \mapsto S^{S-\neg V} \]
is a bijection between the located subsets of S and the overt closed subtopologies of S.

Proof Let V be a located subset of S. Then for any $a \in S$, we have
\[a \preceq \{ a \in S \mid b \ll a \} \preceq S^{S-\neg V} \{ a \} \cap V. \]
Hence V satisfies the condition (Pos), so that V is the positivity of $S^{S-\neg V}$.

Conversely, suppose that $S^{S-\neg V}$ is the overt closed subtopology of S determined by a subset $V \subseteq S$, and let Pos be the positivity of $S^{S-\neg V}$. Let $a, b \in S$, and suppose that $a \ll b$. Since $b \preceq S^{S-\neg V} \{ b \} \cap Pos$, there exists $U \in \text{Fin}(\{ b \} \cap Pos)$ such that $a \preceq S^{S-\neg V} U$. If U is inhabited, then $b \in Pos$. If U is empty, then $a \in Pos$ implies Pos \not\vDash \emptyset$, a contradiction. Hence Pos is a located subset of S.

The fact that the assignment (6) is a bijection follows from Lemma 2.20 and uniqueness of positivity predicates.

By Proposition 2.25 and Proposition 2.34, we obtain the following.

Corollary 4.4 Let S be a compact regular formal topology. Then a subtopology $S' \subseteq S$ is located if and only if S' is compact overt.

For later use, we note a special case of the result by Coquand, Palmgren and Spitters [6, Lemma 3.2].

Lemma 4.5 Let X be a locally compact metric space, and let V be a located subset of $\mathcal{M}(X)$. Then for any $a \in V$ there exists a formal point $\alpha \in \text{Pt}(\mathcal{M}(X))$ such that $a \in \alpha \subseteq V$.

Proof See Coquand, Palmgren and Spitters [6, Lemma 3.2]. The proof requires Dependent Choice.

Definition 4.6 Let A be a located subset of a metric space X. The metric complement of A is the open subset $X - A$ of X given by
\[X - A \overset{\text{def}}{=} \{ x \in X \mid d(x, A) > 0 \}. \]
A corresponding point-free notion is the following.
Definition 4.7 Let S be a locally compact formal topology, and let V be a located subset of S. The open complement of the located subtopology S^{S-V} is the open subtopology S_{-V} determined by $-V$.

Let X be a locally compact metric space. In our previous work [14, Theorem 4.1.9], we showed that there exists a bijection $\varphi: \text{Cl}^+(X) \rightarrow \text{Loc}^+(\mathcal{M}(X))$ between the class $\text{Cl}^+(X)$ of inhabited closed located subsets of X and the class $\text{Loc}^+(\mathcal{M}(X))$ of inhabited located subsets of $\mathcal{M}(X)$. Specifically, φ and its inverse φ^{-1} are defined by

\[
\varphi(A) \overset{\text{def}}{=} \Diamond A,
\]

\[
\varphi^{-1}(V) \overset{\text{def}}{=} \{x \in X \mid \Diamond x \subseteq V\}
\]

for any $A \in \text{Cl}^+(X)$ and $V \in \text{Loc}^+(\mathcal{M}(X))$.

The embedding $\mathcal{O}\mathcal{M}: \text{OLCM} \rightarrow \text{FTop}$ preserves metric complements and open complements of located subtopologies in the following sense.

Proposition 4.8 Let $X = (X, d)$ be a locally compact metric space, and let $\varphi: \text{Cl}^+(X) \rightarrow \text{Loc}^+(\mathcal{M}(X))$ be the bijection given by (7). Then, for any $A \in \text{Cl}^+(X)$ we have

\[
H(X - A) = -\varphi(A).
\]

Dually, for any $V \in \text{Loc}^+(\mathcal{M}(X))$ we have

\[
(-V)_s = X - \varphi^{-1}(V).
\]

The assignments $U \mapsto H(U)$ and $W \mapsto W_s$ restrict to a bijective correspondence between the metric complements of inhabited closed located subsets of X and the open complements of inhabited located subtopologies of $\mathcal{M}(X)$.

Proof (8) Let $A \in \text{Cl}^+(X)$. Let $b(x, \varepsilon) \in H(X - A)$ and suppose that $b(x, \varepsilon) \in \Diamond A$. Then $B(x, \varepsilon) \subseteq X - A$ and $B(x, \varepsilon) \nsubseteq A$, a contradiction. Hence $b(x, \varepsilon) \in -\varphi(A)$.

Conversely, let $b(x, \varepsilon) \in -\varphi(A)$ and $x' \in B(x, \varepsilon)$. Choose $\theta \in \mathbb{Q}^{>0}$ such that $d(x, x') + \theta < \varepsilon$, and suppose that $d(x', A) < \theta$. Then there exists $y \in A$ such that $d(x', y) < \theta$, and so $d(x, y) < \varepsilon$. Thus $b(x, \varepsilon) \in \varphi(A)$, a contradiction. Hence $d(x', A) \geq \theta$, and therefore $b(x, \varepsilon) \in H(X - A)$.

(9) Let $V \in \text{Loc}^+(\mathcal{M}(X))$. Let $b(y, \delta) \in -V$ and $x \in b(y, \delta)_s$. Choose $\theta \in \mathbb{Q}^{>0}$ such that $d(x, y) + \theta < \delta$. Suppose that $d(x, \varphi^{-1}(V)) < \theta$. Then there exists $x' \in \varphi^{-1}(V)$ such that $d(x, x') < \theta$, so that $b(x, \theta) \in \Diamond x' \subseteq V$. Since $b(x, \theta) <_X b(y, \delta)$, we have
b(y, δ) ∈ V, a contradiction. Thus \(d(x, \varphi^{-1}(V)) \geq \theta \), and hence \(x \in X - \varphi^{-1}(V) \).

Therefore \((\neg V)_* \subseteq X - \varphi^{-1}(V)\).

Conversely, let \(x \in X - \varphi^{-1}(V) \) and choose \(\theta \in \mathbb{Q}^+ \) such that \(d(x, \varphi^{-1}(V)) > \theta \).

Suppose that \(b(x, \theta) \in V \). Then there exists \(\alpha \in \text{Pt}(\mathcal{M}(X)) \) such that \(b(x, \theta) \in \alpha \subseteq V \) by Lemma 4.5. Since \(X \) is complete, there exists \(x' \in X \) such that \(\diamond x' = j_X(x') = \alpha \). Thus \(d(x, x') < \theta \) and \(x' \in \varphi^{-1}(V) \), contradicting \(d(x, \varphi^{-1}(V)) > \theta \). Hence \(b(x, \theta) \in \neg V \), and so \(x \in (\neg V)_* \).

Lastly, for any \(A \in \text{Cl}^+(X) \) we have

\[
X - A = X - \varphi^{-1}(\varphi(A)) = (\neg \varphi(A))_* = (H(X - A))_*.
\]

Conversely, for any \(V \in \text{Loc}^+(\mathcal{M}(X)) \) we have

\[
\neg V = (\neg (\varphi(\varphi^{-1}(V)))) = H(X - \varphi^{-1}(V)) = H((\neg V)_*).
\]

Let \(X \) be a compact metric space, and let \(A \) be a compact subset of \(X \). We extend the definition of \(X - A \) as follows:

\[
X - A \overset{\text{def}}{=} \begin{cases}
X & \text{if } A = \emptyset, \\
\{x \in X \mid d(x, A) > 0\} & \text{if } A \text{ is inhabited.}
\end{cases}
\]

Note that since any compact metric space is totally bounded, we can decide whether a given compact metric space is empty or inhabited.

If \(X \) is a compact metric space, the bijection defined by (7) extends to a bijection between the compact subsets of \(X \) and the located subsets of \(\mathcal{M}(X) \). This follows from the fact that a subset \(A \) of a compact metric space is compact if and only if either \(A \) is empty or \(A \) is closed and located.

Corollary 4.9 Let \(X \) be a compact metric space. For any located subset \(V \) of \(\mathcal{M}(X) \), there exists a unique compact subset \(A \subseteq X \) such that \(\mathcal{O}_V((X, X - A)) = \mathcal{M}(X) - V \).

Proof Let \(V \) be a located subset of \(\mathcal{M}(X) \). By Corollary 4.4, the located subtopology \(\mathcal{M}(X) - V \) is compact overt with the positivity \(V \). Thus, \(V \) is either empty or inhabited. In the former case, we put \(A = \emptyset \). Then \(\mathcal{O}_V((X, X - A)) = \mathcal{M}_{H(X)} = \mathcal{M}_{-\emptyset} \). In the latter case, the desired conclusion follows from Proposition 4.8.

Lemma 4.10 Let \(X \) be a compact metric space, and let \(V \) be a located subset of \(\mathcal{M}(X) \). Then the open complement \(\mathcal{M}(X) - V \) is inhabited if and only if \((\neg V)_* \) is inhabited.

Proof Straightforward.
Corollary 4.11 Let X be a compact metric space, and let V be a located subset of $\mathcal{M}(X)$ such that $\mathcal{M}(X)_V$ is inhabited. Then there exists a unique compact subset $A \subseteq X$ such that $X - A$ is inhabited and that $\mathcal{O}(\mathcal{M}((X, X - A))) = \mathcal{M}(X)_V$.

The following lemma is essentially due to Palmgren [18, Lemma 2.2].

Lemma 4.12 Let X be a locally compact metric space. Then for any $x \in X$ and $\varepsilon, \delta \in \mathbb{Q}^0$ such that $\varepsilon < \delta$, there exists a compact subset $K \subseteq X$ such that

$$B(x, \varepsilon) \subseteq K \subseteq B(x, \delta).$$

Proof First, note that since X is locally compact, we have

$$a <_X b \implies a \ll b$$

for all $a, b \in M_X$. Let $x \in X$ and $\varepsilon, \delta \in \mathbb{Q}^0$, and suppose that $\varepsilon < \delta$. Choose $N \in \mathbb{N}$ such that $\varepsilon + 2^{-N} < \delta$. For each $n \in \mathbb{N}$, define

$$a_n \overset{\text{def}}{=} b(x, \varepsilon + 2^{-N(n+1)}).$$

Then for each $n \in \mathbb{N}$, since $a_{n+1} <_X a_n$, there exists $V_n \in \text{Fin}(a_n \downarrow C_{2^N})$ such that $a_{n+1} <_X V_n$. By Countable Choice, we obtain a sequence $(V_n)_{n \in \mathbb{N}} : \mathbb{N} \to \text{Fin}(M_X)$ such that

1. $a_{n+1} <_X V_n$,
2. $(\forall b(z, \gamma) \in V_n) \gamma \leq 2^{-n}$

for all $n \in \mathbb{N}$. Let

$$A \overset{\text{def}}{=} \left\{ y \in X \mid (\exists n \in \mathbb{N}) (\exists \gamma \in \mathbb{Q}^0) b(y, \gamma) \in V_n \right\}.$$

Then A is clearly totally bounded, so that the closure K of A is compact. Moreover we have $B(x, \varepsilon) \subseteq K \subseteq B(x, \delta)$. Thus K is a desired compact subset of X. \hfill \Box

Proposition 4.13 Let $X = (X, d)$ be a compact metric space, and let A be a compact subset of X. Then there exists a locally compact metric space Y such that (Y, Y) is isomorphic to $(X, X - A)$ in OLCM.

Moreover if $X - A$ is inhabited, then there exists a Bishop locally compact metric space Y such that (Y, Y) is isomorphic to $(X, X - A)$ in OLCM.

\footnote{The proof of Palmgren [18, Lemma 2.2] seems to be incomplete. Nevertheless, the argument used in the proof of Palmgren [17, Proposition 4.8] provides a correct proof of Lemma 4.12, which we recall here.}

We must find a \(x \subseteq X \) such that \(x \) is contained in some open ball \(K \). To find such a \(x \), we define \(Y \) as \(X - A \), and define a new metric \(d^* \) on \(Y \) by

\[
d^*(x, y) = d(x, y) + \left| \frac{1}{d(x, A)} - \frac{1}{d(y, A)} \right|
\]

for all \(x, y \in Y \). It is straightforward to show that \(d^* \) is a metric on \(Y \). We show that the metric space \(Y = (Y, d^*) \) has the required properties. Since \(d(x, y) \leq d^*(x, y) \) for all \(x, y \in Y \), the inclusion \(i_Y: Y \rightarrow (X - A) \) is uniformly continuous. Let \(K \) be an inhabited \(d^* \)-compact subset of \(Y \), where \(K \) is \(d^* \)-compact if \(K \) is compact with respect to \(d^* \). Then \(K \) is contained in some open ball \(B^*(y, \varepsilon) = \{ y' \in Y \mid d^*(y', y) < \varepsilon \} \) of \(Y \). By the proof of local compactness of \(Y \) which is to be given below, there exists a \(d \)-compact subset \(L \) of \(X \) such that \(B^*(y, \varepsilon) \subseteq L \cap X - A \). Hence \(i_Y \) is a morphism from \((Y, Y) \) to \((X, X - A) \) in \textbf{OLCM}. Moreover \(i_Y \) is injective. To see this, suppose that \(d^*(x, y) > 0 \), and choose \(r \in \mathbb{Q}^{>0} \) such that \(d^*(x, y) > r \). Let \(c = \min \{d(x, A), d(y, A)\} \). Since \(d^*(x, y) \leq (1 + 1/c^2) d(x, y) \), we have \(d(x, y) \geq r/(1 + 1/c^2) \). Hence \(i_Y \) is injective.

Next, we show that the inverse \(j: (X - A) \rightarrow Y \) of \(i_Y \) is uniformly continuous on each inhabited \(d \)-compact subset \(K \) of \(X \) such that \(K \subseteq X - A \). Let \(K \subseteq X - A \) be an inhabited \(d \)-compact subset of \(X \). Then there exists \(r \in \mathbb{Q}^{>0} \) such that \(K_r \subseteq X - A \), and so \(d(x, A) \geq r \) for all \(x \in K \). Hence \(d^*(x, y) \leq (1 + 1/r^2) d(x, y) \) for all \(x, y \in K \). Uniform continuity of \(j: K \rightarrow Y \) now follows.

It remains to be shown that \(Y \) is a locally compact metric space. Let \(y \in Y \) and \(\varepsilon \in \mathbb{Q}^{>0} \). We must find a \(d^* \)-compact subset \(K \subseteq Y \) such that \(B^*(y, \varepsilon) \subseteq K \). To this end, it suffices to find a \(d \)-compact subset \(K \subseteq X - A \) such that \(B^*(y, \varepsilon) \subseteq K \); for if such \(K \) exists, then \(i_Y: Y \rightarrow (X - A) \) and \(j: (X - A) \rightarrow Y \) restrict to uniform isomorphisms on \(K \).

To find such a \(d \)-compact subset of \(X \), notice that for any \(x \in B^*(y, \varepsilon) \), we have \(d(x, A) > 1/ (\varepsilon + 1/d(y, A)) \). Thus \(B^*(y, \varepsilon) \subseteq U_{A, r} \), where

\[
r \equiv 1/ \left(\varepsilon + 1/d(y, A) \right), \\
U_{A, r} \equiv \{ x \in X \mid d(x, A) \geq r \}.
\]

Choose \(\theta \in \mathbb{Q}^{>0} \) such that \(7\theta < r \), and let \(X_\theta = \{ x_0, \ldots, x_{n-1} \} \) be a \(\theta \)-net to \(X \). For each \(i < n \), we have either \(5\theta < d(x_i, A) \) or \(d(x_i, A) < 6\theta \). Split \(X_\theta \) into two finitely enumerable subsets \(X_\theta^+ \) and \(X_\theta^- \) such that \(X_\theta = X_\theta^+ \cup X_\theta^- \) and that

1. \(x \in X_\theta^+ \implies 5\theta < d(x, A) \),
2. \(x \in X_\theta^- \implies d(x, A) < 6\theta \).

Write $X_\theta^+ = \{z_0, \ldots, z_{m-1}\}$. Let $x \in U_{A,r}$. Then there exists $i < n$ such that $d(x, x_i) < \theta$. If $x_i \in X_\theta^-$, we have $d(x, A) \leq 7\theta < r$, contradicting $x \in U_{A,r}$. Thus $x_i \in X_\theta^+$, and hence $U_{A,r} \subseteq \bigcup_{j < m} B(z_j, \theta)$. For each $j < m$, there exists a compact subset $K_j \subseteq X$ such that $B(z_j, \theta) \subseteq K_j \subseteq B(z_j, 2\theta)$ by Lemma 4.12. Let $K = \bigcup_{j < m} K_j$. Then K is inhabited and totally bounded, and so it is located. Let $x \in K_\theta = \{x' \in X \mid d(x', K) \leq \theta\}$, and suppose that $d(x, A) < \theta$. Then there exist $y \in A$ and $w \in K$ such that $d(x, y) < \theta$ and $d(x, w) < 2\theta$. Thus there exists $j < m$ such that $d(w, z_j) < 2\theta$, so that

$$
 d(y, z_j) \leq d(y, x) + d(x, w) + d(w, z_j) \leq \theta + 2\theta + 2\theta \leq 5\theta,
$$

contradicting $z_j \in X_\theta^+$. Thus $d(x, A) \geq \theta$, and so $K_\theta \subseteq X - A$. Hence $K \subseteq X - A$. Then $L \subseteq X - A$, where L is the closure of K. Therefore L is a desired d–compact subset of X.

The second statement is obvious. \hfill \Box

Proposition 4.14 Let X be a compact metric space, and let V be a located subset of $\mathcal{M}(X)$. Then there exists a locally compact metric space Y such that $\mathcal{M}(Y) \cong \mathcal{M}(X)_-\sim V$.

Proof By Lemma 4.9, there exists a unique compact subset A of X such that

$$
 \mathcal{O}_\mathcal{M} ((X, X - A)) = \mathcal{M}(X)_-\sim V.
$$

Then there exists a locally compact metric space Y such that $(Y, Y) \cong (X, X - A)$ in \mathcal{OLCM} by Proposition 4.13. Since every functor preserves isomorphisms, we have

$$
 \mathcal{M}(Y) = \mathcal{O}_\mathcal{M} ((Y, Y)) \cong \mathcal{O}_\mathcal{M} ((X, X - A)) = \mathcal{M}(X)_-\sim V. \hfill \Box
$$

Corollary 4.15 Let X be a compact metric space, and let V be a located subset of $\mathcal{M}(X)$ such that the open complement $\mathcal{M}(X)_-\sim V$ is inhabited. Then there exists a Bishop locally compact metric space Y such that $\mathcal{M}(Y) \cong \mathcal{M}(X)_-\sim V$.

5 Enumerably completely regular formal topologies

We characterise enumerably completely regular formal topologies by the subtopologies of the countable product of the formal unit interval. Except for the definition of enumerably completely regular formal topology, which is due to Curi [8, Section 2.2], the results in this section appear to be new.
Definition 5.1 Let \(I = \{ q \in \mathbb{Q} \mid 0 \leq q \leq 1 \} \). Given a formal topology \(S \) and subsets \(U, V \subseteq S \), a scale from \(U \) to \(V \) is a family \(\{ U_q \}_{q \in I} \) of subsets of \(S \) such that

1. \(U < U_0 \) and \(U_1 < V \),
2. \(\forall p, q \in I \) \(p < q \implies U_p \ll U_q \).

Definition 5.2 A formal topology \(S \) is enumerably completely regular if it is equipped with a function \(wc : S \to \text{Pow}(S) \) such that

1. \(a < wc(a) \) for each \(a \in S \),
2. the relation \(\overline{wc} = \{(b, a) \in S \times S \mid b \in wc(a)\} \) is countable, i.e. there exists a surjection \(f : \mathbb{N} \to \overline{wc} \),
3. there exists a function \(sc \in \prod_{(b, a) \in \overline{wc}} \text{Sc}_{\ll}(\{b\}, \{a\}) \), called a choice of scale for \(wc \),

where \(\text{Sc}_{\ll}(\{b\}, \{a\}) \) is the class of scales from \(\{b\} \) to \(\{a\} \).

Let \(\prod_{n \in \mathbb{N}} \mathcal{I}[0, 1] = (S_\Pi, \ll_\Pi, \leq) \) be the product of countably many copies of the formal unit interval \(\mathcal{I}[0, 1] \). According to Section 2.1.1, the preorder \((S_\Pi, \leq) \) is given by

\[
S_\Pi \overset{\text{def}}{=} \text{Fin}(\mathbb{N} \times S_\mathcal{R}),

A \leq B \overset{\text{def}}{=} (\forall (n, b) \in B) (\exists (m, a) \in A) m = n \& a \leq_\mathcal{R} b
\]

for all \(A, B \in S_\Pi \). Here \((S_\mathcal{R}, \leq_\mathcal{R})\) is the underlying preorder of the formal reals \(\mathcal{R} \) as defined in Example 2.9. The cover \(\ll_\Pi \) is generated by the axioms \((S1), (S2)\) and \((S3)\) for a product, where \((S3)\) is derived from the axioms \((R1)\) and \((R2)\) of \(\mathcal{R} \) and the axiom \((2)\) of \(\mathcal{I}[0, 1] \).

Since \(\mathcal{I}[0, 1] \) is regular with the function \(wc_\mathcal{R} \) defined by \((5)\) in Example 2.35, the proof of Proposition 2.26 \((1)\) shows that \(\prod_{n \in \mathbb{N}} \mathcal{I}[0, 1] \) is regular with the function \(wc_\Pi : S_\Pi \to \text{Pow}(S_\Pi) \) given by

\[
wc_\Pi(A) \overset{\text{def}}{=} \{(m_0, b_0), \ldots, (m_{n-1}, b_{n-1})\} \in S_\Pi \mid (\forall i < n) b_i <_\mathcal{R} a_i
\]

for each \(A = \{(m_0, a_0), \ldots, (m_{n-1}, a_{n-1})\} \in S_\Pi \).

Lemma 5.3 \(\prod_{n \in \mathbb{N}} \mathcal{I}[0, 1] \) is enumerably completely regular.

4In fact, Curi \cite{8} did not require an existence of a choice of scale for an enumerably completely regular formal topology, but only an existence of a scale from \(\{b\} \) to \(\{a\} \) for each element \((b, a) \in \overline{wc} \). With Countable Choice, however, a choice of scale can always be chosen.
Proof Let \(\overline{wc}_{\Pi} \overset{\text{def}}{=} \{(B,A) \in S_{\Pi} \times S_{\Pi} \mid B \in wc_{\Pi}(A)\} \). We show that \(\overline{wc}_{\Pi} \) is countable and define a choice of scale for \(\overline{wc}_{\Pi} \).

First, the set \(S_{\Pi} \) is countable since it is the set of finitely enumerable subsets of a countable set, and for each \(A \in S_{\Pi} \) the set \(wc_{\Pi}(A) \) is countable since it is a finite product of countable sets. Thus \(\overline{wc}_{\Pi} \) is countable.

Next, we define a choice of scale for \(\overline{wc}_{\Pi} \). Let \((B,A) \in \overline{wc}_{\Pi}\), so that \(A \) and \(B \) are of the forms

\[
A = \{(m_0, (p_0, q_0)), \ldots, (m_{n-1}, (p_{n-1}, q_{n-1}))\},
\]

\[
B = \{(m_0, (p'_0, q'_0)), \ldots, (m_{n-1}, (p'_{n-1}, q'_{n-1}))\}
\]

such that \((p'_i, q'_i) <_\mathcal{R} (p_i, q_i)\) for each \(i < n \). Then for each \(i < n \), we can define an order reversing bijection \(\varphi_i : \mathbb{I} \to [p_i, p'_i] \cap \mathbb{Q} \) and an order preserving bijection \(\psi_i : \mathbb{I} \to [q'_i, q_i] \cap \mathbb{Q} \). For each \(q \in \mathbb{I} \), define

\[
B_q \overset{\text{def}}{=} \{(m_0, (\varphi_0(q), \psi_0(q))), \ldots, (m_{n-1}, (\varphi_{n-1}(q), \psi_{n-1}(q)))\}.
\]

Then the family \(\{B_q\}_{q \in \mathbb{I}} \) is a scale from \(\{B\} \) to \(\{A\} \). Thus, we can define a function \(\sigma \in \Pi_{(B,A) \in \overline{wc}_{\Pi}} Sc_{\approx c}(\{B\}, \{A\}) \) which assigns to each \((B,A) \in \overline{wc}_{\Pi}\) the scale from \(\{B\} \) to \(\{A\} \) as described above. \(\Box \)

Let \(S \) be a formal topology and let \(U, V \subseteq S \). Then any scale \(\{U_q\}_{q \in \mathbb{I}} \) from \(U \) to \(V \) determines a formal topology map \(r : S \to \mathbb{T}[0, 1] \) such that

1. \(r^- (0, \infty) \downarrow U < \emptyset \),
2. \(r^- (-\infty, 1) < V \),

where for each \(q \in \mathbb{Q} \) we define

\[
(q, \infty) \overset{\text{def}}{=} \{(r, s) \in S_{\mathcal{R}} \mid r \geq q\},
\]

\[
(-\infty, q) \overset{\text{def}}{=} \{(r, s) \in S_{\mathcal{R}} \mid s \leq q\}.
\]

The formal topology map \(r \) is defined by

\[
(11) \quad a \ r(p, q) \overset{\text{def}}{=} \exists (p', q') \in S_{\mathcal{R}} p < p' < q' < q \land a < U_{p'} \downarrow U_{q'}
\]

for all \(a \in S \) and \((p, q) \in S_{\mathcal{R}}\), where we define \(U_q = \emptyset \) if \(q < 0 \) and \(U_q = S \) if \(q > 1 \).

See Johnstone [13, Chapter IV, Proposition 1.4] for details.

The following characterisation of enumerably completely regular formal topology is a special case of Tychonoff’s embedding theorem for completely regular locales by Johnstone [13, Chapter IV, Theorem 1.7], which characterises a completely regular
locale as a sublocale of a product of copies of $\mathcal{I}[0,1]$. For the convenience of the reader, we give a proof in the language of formal topology (in contrast to the localic language), although our proof is quite similar to that of the localic Tychonoff’s embedding theorem.

Proposition 5.4 A formal topology is isomorphic to an enumerably completely regular formal topology if and only if it can be embedded into $\prod_{n \in \mathbb{N}} \mathcal{I}[0,1]$.

Proof (\Rightarrow) It suffices to show that any enumerably completely regular formal topology can be embedded into $\prod_{n \in \mathbb{N}} \mathcal{I}[0,1]$. Let S be an enumerably completely regular formal topology equipped with a function $\text{wc}: S \to \text{Pow}(S)$ which satisfies the three conditions in Definition 5.2. Let $(b_n, a_n)_{n \in \mathbb{N}}$ be an enumeration of the set $\overline{\text{wc}} = \{(b, a) \in S \times S \mid b \in \text{wc}(a)\}$, and let sc be a choice of scale for wc. Then for each $n \in \mathbb{N}$, the scale $\text{sc}(b_n, a_n)$ from $\{b_n\}$ to $\{a_n\}$ determines a formal topology map $r_n: S \to \mathcal{I}[0,1]$ such that

1. $r_n^-(0,\infty) \downarrow b_n \triangleleft \emptyset$.
2. $r_n^-(\infty, 1) \triangleleft a_n$.

Let $r: S \to \prod_{n \in \mathbb{N}} \mathcal{I}[0,1]$ be the canonical formal topology map determined by the sequence $(r_n: S \to \mathcal{I}[0,1])_{n \in \mathbb{N}}$. We show that r is an embedding, that is $a \triangleleft r^-- A \{a\}$ for each $a \in S$. Let $a \in S$ and $b \in \text{wc}(a)$, and let $n \in \mathbb{N}$ be the index of the pair $(b_n, a_n) \in \overline{\text{wc}}$. Then

$$b \triangleleft (r_n^-(\infty, 1) \cup r_n^-(0, \infty)) \downarrow b$$
$$\triangleleft (r_n^-(\infty, 1) \downarrow b) \cup (r_n^-(0, \infty) \downarrow b)$$
$$\triangleleft \emptyset \cup r_n^-(\infty, 1)$$
$$= S r^- \{\{(n, (p, q))\} \mid (p, q) \in (\infty, 1)\} \triangleleft a.$$

Thus $b \triangleleft r^-- A \{a\}$, and hence $a \triangleleft \text{wc}(a) \triangleleft r^-- A \{a\}$.

(\Leftarrow) Immediate from Lemma 5.3 and Proposition 2.25 (1).

6 Point-free one-point compactification

We prove a point-free analogue of the fact that every Bishop locally compact metric space has a one-point compactification. Our proof is analogous to the proof given by Bishop and Bridges [4, Chapter 4, Theorem 6.8] for the corresponding fact for Bishop locally compact metric spaces.

5As far as we know, the proof of Tychonoff’s embedding theorem in terms of formal topology has not appeared explicitly before.
Definition 6.1 Let S be a formal topology, and let $U, V \subseteq S$. A wb-scale from U to V is a family $(U_q)_{q \in I}$ of subsets of S such that

1. $U \triangleleft U_0$ and $U_1 \triangleleft V$,
2. $(\forall p, q \in I) \ p < q \implies U_p \ll U_q$.

Definition 6.2 A formal topology S is enumerably locally compact if it is equipped with a function $wb: S \to \text{Pow}(S)$ such that

1. $a \triangleleft wb(a)$ for each $a \in S$,
2. the relation $\overline{wb} = \{(b, a) \in S \times S \mid b \in wb(a)\}$ is countable, i.e. there exists a surjection $f: \mathbb{N} \to \overline{wb}$,
3. there exists a function $sc \in \prod_{(b, a) \in \overline{wb}} \text{Sc}_{\ll}(\{b\}, \{a\})$, called a choice of wb-scale for wb,

where $\text{Sc}_{\ll}(\{b\}, \{a\})$ is the class of wb-scales from $\{b\}$ to $\{a\}$.

In a regular formal topology, any wb-scale is a scale by Lemma 2.33. Hence, we have the following.

Lemma 6.3 Any enumerably locally compact regular formal topology is enumerably completely regular.

Definition 6.4 Let S be an overt enumerably locally compact regular formal topology. A one-point compactification of S is a triple (T, ω, r) consisting of a compact overt enumerably completely regular formal topology T, a formal point $\omega \in \text{Pt}(T)$, and an embedding $r: S \to T$ such that the image of S under r is isomorphic to the open complement $T_\neg\omega$ of the located subtopology determined by ω.

Note that if S is a locally compact regular formal topology, any formal point of S is a located subset of S and thus determines a located subtopology of S. This follows from Lemma 2.33.

Theorem 6.5 Any overt enumerably locally compact regular formal topology has a one-point compactification.

The rest of this section is devoted to the proof of the theorem. In what follows, we fix an overt enumerably locally compact regular formal topology S. Let Pos be the positivity of S. Let $wb: S \to \text{Pow}(S)$ be a function which satisfies the three conditions in Definition 6.2. Let $(b_n, a_n)_{n \in \mathbb{N}}$ be an enumeration of the set...

\(\overline{\text{wb}} = \{(b, a) \in S \times S \mid b \in \text{wb}(a)\} \), and let \(\text{sc} \) be a choice of \(\text{wb}\)-scale for \(\text{wb} \). For each \(n \in \mathbb{N} \), let \(r_n : S \to I[0, 1] \) be the formal topology map determined by the \(\text{wb}\)-scale \(\text{sc}(b_n, a_n) \) from \(\{b_n\} \) to \(\{a_n\} \). Note that \(r_n \) is defined by the condition (11) and satisfies

1. \(r_n(0, \infty) \downarrow b_n \not\lesssim \emptyset \),
2. \(r_n(-\infty, 1) \not\lesssim a_n \).

Let \(r : S \to \prod_{n \in \mathbb{N}} I[0, 1] \) be the embedding that is determined by the sequence \((r_n : S \to I[0, 1])_{n \in \mathbb{N}} \), where \(\prod_{n \in \mathbb{N}} I[0, 1] = (\Sigma_{\Pi}, \lesssim_{\Pi}, \leq) \) is the countable product of the formal unit interval \(I[0, 1] \) described in Section 5. For each \(n, k \in \mathbb{N} \) define

\[
\mathcal{C}_k^n \overset{\text{def}}{=} \left\{ (n, (p, q)) \in \Sigma_{\Pi} \mid q - p = 2^{-k} \right\}, \\
\mathcal{C}_k^{\leq n} \overset{\text{def}}{=} \left\{ (0, (p_0, q_0)), \ldots, (n, (p_n, q_n)) \in \Sigma_{\Pi} \mid (\forall i < n) q_i - p_i = 2^{-k} \right\}.
\]

By the axiom (R2') of \(\mathcal{R} \) given in Example 2.35, we have \(\Sigma_{\Pi} \lesssim_{\Pi} \mathcal{C}_k^n \) for all \(n, k \in \mathbb{N} \). Thus for any \(n, k \in \mathbb{N} \), we have

\[
\Sigma_{\Pi} \lesssim_{\Pi} \mathcal{C}_k^0 \downarrow \cdots \downarrow \mathcal{C}_k^n \lesssim_{\Pi} \mathcal{C}_k^{\leq n},
\]

and hence \(S \lesssim r^{-\mathcal{C}_k^{\leq n}} \).

Lemma 6.6 For any \(N \in \mathbb{N} \) such that \(a_N \not\lesssim S \), there exists a compact overt subtopology \(S' \) of \(S \) such that \(S_{b_N} \subseteq S' \subseteq S_{a_N} \), where \(S_{b_N} \) and \(S_{a_N} \) are the open subtopologies of \(S \) determined by \(\{b_N\} \) and \(\{a_N\} \) respectively.

Proof Let \(N \in \mathbb{N} \), and suppose that \(a_N \not\lesssim S \). For each \(n \in \mathbb{N} \), there exists \(E_n \in \text{Fin}\left(\mathcal{C}^{\leq n}_{n+3} \right) \) such that \(a_N \not\lesssim r^{-E_n} \) and \(E_n \subseteq r^{\text{Pos}} \). By Countable Choice, there exists a sequence \((E_n)_{n \in \mathbb{N}} \) such that

\[
E_n \in \text{Fin}\left(\mathcal{C}^{\leq n}_{n+3} \right), \quad E_n \subseteq r^{\text{Pos}}, \quad a_N \not\lesssim r^{-E_n}
\]

for all \(n \in \mathbb{N} \). Write \(E_N = \{A_0, \ldots, A_{n-1}\} \), and for each \(i < n \) write \(A_i = \{(0, (p^i_0, q^i_0)), \ldots, (N, (p^i_N, q^i_N))\} \). Split \(E_N \) into finitely enumerable subsets \(E^+_N \) and \(E^-_N \) such that \(E_N = E^+_N \cup E^-_N \) and that

1. \(A_i \in E^+_N \implies (p^i_N, q^i_N) \in (-\infty, 1/2) \),
2. \(A_i \in E^-_N \implies (p^i_N, q^i_N) \in (1/4, \infty) \).

\(\text{Journal of Logic \\ & Analysis} 9:2 (2017) \)
Let S^*_{Π} be the set of finite lists of elements of S_{Π}. We let $\langle A_0, \ldots, A_{n-1} \rangle$ denote an element of S^*_{Π} of length $n \in \mathbb{N}$. The concatenation of lists $l, l' \in S^*_{\Pi}$ is denoted by $l * l'$.

Define a subset T of S^*_{Π} by

$$T_0 \overset{\text{def}}{=} \{ \langle A \rangle \in S^*_{\Pi} \mid A \in E_N^+ \},$$

$$T_{n+1} \overset{\text{def}}{=} \{ l * \langle A \rangle \in S^*_{\Pi} \mid l \in T_n \text{ and } l = l' * \langle A' \rangle \text{ and } A \in E_{N+n+1} \text{ and } A' \not\equiv A \},$$

$$T \overset{\text{def}}{=} \bigcup_{n \in \mathbb{N}} T_n,$$

where for each $A, B \in S_{\Pi}$, we define

$A \not\equiv B \iff (\forall (i, (p, q)) \in A)(\forall (j, (s, t)) \in B) i = j \implies \max \{ p, s \} < \min \{ q, t \}.$

Note that T_n is finitely enumerable for each $n \in \mathbb{N}$. Define

$$U_T \overset{\text{def}}{=} \bigcup \{ r^-A_l \mid l \in T \},$$

$$K \overset{\text{def}}{=} \{ a \in S \mid \text{Pos} \not\subseteq (U_T \downarrow a) \},$$

where A_l denotes the last element of a list $l \in T$. We show that K is a located subset of S.

Note that K is the positivity of the open subtopology S_{U_T} by Lemma 2.15 (2). Thus K is a splitting subset of S. Hence it remains to be shown that for each $L \in \mathbb{N}$, either $b_L \in -K$ or $a_L \in K$. Let $L \in \mathbb{N}$ and define

$$n_L \overset{\text{def}}{=} \begin{cases} 0 & \text{if } L \leq N, \\ L - N & \text{if } L > N. \end{cases}$$

Then the following two cases arise:

1. $(\exists l \in T_{n_L})(\forall (i, (p, q)) \in A_l) i = L \implies (p, q) \in (-\infty, 3/4),$
2. $(\forall l \in T_{n_L})(\forall (i, (p, q)) \in A_l) i = L \implies (p, q) \in (1/2, \infty).$

In the first case, there exist $l \in T_{n_L}$ and $\langle L, (p, q) \rangle \in A_l$ such that $(p, q) \in (-\infty, 3/4)$. Thus

$$r^-A_l \not\in r^- \{ (L, (p, q)) \} \not\in r^-_L (p, q) \not\in r^-_L (-\infty, 3/4) \not\in a_L.$$ Since $A_l \in \text{Pos}$, we have Pos $\not\subseteq (r^-A_l \downarrow a_L)$. Hence $a_L \in K$.

In the second case, suppose that $b_L \in K$. Then there exist $n \in \mathbb{N}$ and $l \in T_n$ such that Pos $\not\subseteq (r^-A_l \downarrow b_L)$. If $n > n_L$, then by letting $l = \langle A_0, \ldots, A_n \rangle$ where $A_l = A_n$, we have $A_{n_L} \not\equiv A_{n_L+1}, \ldots, A_{n-1} \not\equiv A_n$. Since $(p, q) \in (1/2, \infty)$ for an element $\langle L, (p, q) \rangle \in A_{n_L}$, we have $(s, t) \in (0, \infty)$ for an element $\langle L, (s, t) \rangle \in A_l$. Thus

$$r^-A_l \downarrow b_L \not\in r^- \{ (L, (s, t)) \} \downarrow b_L \not\in r^-_L (0, \infty) \downarrow b_L \not\in \emptyset.$$
and hence Pos \emptyset, a contradiction. If $n \leq n_L$, then since $r^{-}A_l \ll r_{N}^{-}(\infty, 3/4) \ll a_N$, we have
\[r^{-}A_l \ll r^{-}(\mathcal{E}_{N+n+1} \downarrow \cdots \downarrow \mathcal{E}_{N+n_L} \downarrow A_l). \]
Thus, there exist $A_{n+1} \in \mathcal{E}_{N+n+1}, \ldots, A_{n_L} \in \mathcal{E}_{N+n_L}$ such that
\[\text{Pos} \nsubseteq (r^{-}(A_l \downarrow A_{n+1} \downarrow \cdots \downarrow A_{n_L}) \downarrow b_L). \]
Then $l* \langle A_{n+1}, \ldots, A_{n_L} \rangle \in T_{n_L}$, and so
\[r^{-}A_{n_L} \downarrow b_L \ll r_{L}^{-}(1/2, \infty) \downarrow b_L \ll \emptyset. \]
Thus Pos \emptyset, a contradiction. Hence $b_L \in \neg K$. Therefore K is located.

Next, we show that $S_{b_N} \subseteq S^{S^{-} \neg K} \subseteq S_{a_N}$. Since $S^{S^{-} \neg K}$ is the closure of S_{U_T} by Lemma 2.20, it suffices to show that $b_N \ll U_T \ll \ll a_N$. Since $b_N \ll r^{-}E_N$, we have $b_N \ll (r^{-}E_N \downarrow b_N) \cap \text{Pos}$. Let $c \in r^{-}E_N \downarrow b_N$ such that $\text{Pos}(c)$. Then there exists $A \in E_N$ such that $c \in r^{-}A \downarrow b_N$. If $A \in E_{N}^{-}$, then
\[c \ll r^{-}A \downarrow b_N \ll r_{N}^{-}(1/4, \infty) \downarrow b_N \ll \emptyset, \]
and thus Pos \emptyset, a contradiction. Hence $A \in E_{N}^{+}$, and so $c \ll r^{-}E_{N}^{+}$. Therefore
\[b_N \ll r^{-}E_{N}^{+} \ll U_T. \]

Let $n \in \mathbb{N}$ and $l \in T_n$, and write $l = \langle A_0, \ldots, A_n \rangle$. Since $A_i \approx A_{i+1}$ for all $i < n$ and $(p, q) \in (\infty, 1/2)$ for an element $(N, (p, q)) \in A_0$, we have
\[r^{-}A_l \ll r_{N}^{-}(\infty, 3/4) \ll \ll a_N. \]
Hence $U_T \ll r_{N}^{-}(\infty, 3/4) \ll \ll a_N$.

Lastly, since $\{a_N\}$ is bounded, $S^{S^{-} \neg K}$ is compact by Proposition 2.30, and $S^{S^{-} \neg K}$ is overt by Lemma 4.3.

The following is a point-free version of Lemma 4.12.

Proposition 6.7 For any $U, V \subseteq S$ such that $U \ll V$, there exists a compact overt subtopology $S' \subseteq S'$ such that $S_{U} \subseteq S' \subseteq S_{V}$.

Proof Let $U, V \subseteq S$, and suppose that $U \ll V$. Since
\[V \ll \bigcup \{\text{wb}(u) \mid \exists v \in V u \in \text{wb}(v)\}, \]

Journal of Logic & Analysis 9:c2 (2017)
there exists \(\{(u_0, v_0), \ldots, (u_{n-1}, v_{n-1})\} \in \text{Fin}(\overline{\mathcal{D}}) \) such that \(U \ll \{u_0, \ldots, u_{n-1}\} \) and \(\{v_0, \ldots, v_{n-1}\} \ll V \). By Lemma 6.6, for each \(i < n \) there exists a located subset \(K_i \) of \(\mathcal{S} \) such that

\[
\mathcal{S}_{u_i} \subseteq \mathcal{S}^\sim \subseteq \mathcal{S}_{v_i}.
\]

Let \(K = \bigcup_{i<n} K_i \). Since a finite union of located subsets is located, \(K \) is located. Moreover we have

\[
\mathcal{S}_{U} \subseteq \mathcal{S}_{U_0} \subseteq \mathcal{S}^\sim \subseteq \mathcal{S}_{V_0} \subseteq \mathcal{S}_{V},
\]

where \(U_0 = \{u_0, \ldots, u_{n-1}\} \) and \(V_0 = \{v_0, \ldots, v_{n-1}\} \). Since \(V_0 \) is bounded, \(\mathcal{S}^\sim \) compact overt by Proposition 2.30.

Let \(\mathcal{S}' \) be the image of \(\mathcal{S} \) under the embedding \(r: \mathcal{S} \to \prod_{n \in \mathbb{N}} \mathcal{I}[0,1] \). Then \(\mathcal{S}' \) is overt with the positivity \(r \text{Pos} \) by Lemma 2.13. Define

\[
\omega = \{ A \in \text{S}_\Pi \mid (\forall (n, (p, q)) \in A) \ p < 1 < q \}.
\]

It is straightforward to show that \(\omega \) is a formal point of \(\prod_{n \in \mathbb{N}} \mathcal{I}[0,1] \). Moreover, \(\omega \) is a decidable subset of \(\text{S}_\Pi \). Let

\[
\overline{\text{Pos}} \defeq r \text{Pos} \cup \omega.
\]

Since \(\prod_{n \in \mathbb{N}} \mathcal{I}[0,1] \) is compact regular by Proposition 2.26, it is locally compact by Proposition 2.34.

Lemma 6.8 \(\overline{\text{Pos}} \) is a located subset of \(\prod_{n \in \mathbb{N}} \mathcal{I}[0,1] \).

Proof Since \(\overline{\text{Pos}} \) is a union of splitting subsets \(r \text{Pos} \) and \(\omega \), it is a splitting of \(\prod_{n \in \mathbb{N}} \mathcal{I}[0,1] \). Let \(\text{wc}_\Pi \) be the function defined by (10) in Section 5. Let \(A, A' \in \text{S}_\Pi \), and suppose that \(A' \in \text{wc}_\Pi (A) \). Then \(A \) and \(A' \) are of the forms

\[
A = \{(m_0, (p_0, q_0)), \ldots, (m_{n-1}, (p_{n-1}, q_{n-1}))\},
\]

\[
A' = \{(m_0, (p_0', q_0')), \ldots, (m_{n-1}, (p_{n-1}', q_{n-1}'))\}
\]

such that \(p_i < p'_i < q'_i < q_i \) for all \(i < n \). By Proposition 2.34, it suffices to show that either \(A' \in \neg \text{Pos} \) or \(A \in \text{Pos} \).

Since \(\omega \) is decidable, we have either \(A \in \omega \) or \(A \in \neg \omega \). In the former case, we have \(A \in \overline{\text{Pos}} \). In the latter case, there exists \(i_s < n \) such that either \(1 \leq p_{i_s} \) or \(q_{i_s} \leq 1 \). Suppose that \(1 \leq p_{i_s} \), and suppose further that \(A' \in r \text{Pos} \). Then there exists \(a \in \text{Pos} \) such that \(a \not\sim A' \). Thus

\[
a \not\sim r_{m_s} \{(p_{i_s}, q_{i_s})\} \not\sim r_{m_s} \{(p_{i_s}, q_{i_s}) \mid p_{i_s} < 1 \& 0 < q_{i_s} \} \not\sim \emptyset.
\]
by the axiom (2) of $\mathcal{I}[0,1]$. Since $\text{Pos}(a)$, we have $\text{Pos} \nvdash \emptyset$, a contradiction. Since $A \in \neg \omega$ implies $A' \in \neg \omega$, it follows that $A' \in \neg \text{Pos}$.

Now, suppose that $q_{i_*} \leq 1$. Then

$$r_{m_*}^{-1} \{(p_{i_*}', q_{i_*}')\} \ll a_{m_*},$$

where a_{m_*} is the second component of the pair $(b_{m_*}, a_{m_*}) \in \overline{w}b$ indexed by $m_* \in \mathbb{N}$.

Let

$$U_* \overset{\text{def}}{=} r_{m_*}^{-1} \{(p_{i_*}', q_{i_*}')\}.$$

By Proposition 6.7 and Lemma 4.3, there exists a located subset K of S such that $S_{U_*} \subseteq S^{S_\neg K}$ and $S^{S_\neg K}$ is compact. Choose $k \in \mathbb{N}$ and $\theta \in \mathbb{Q}^+\theta$ such that $2^{-k} < \theta$ and that $p_i < p_i' - 2\theta < q_i' + 2\theta < q_i$ for each $i < n$. Since $S_{U_*} \subseteq S_{C_k^n}$ for all $n,k \in \mathbb{N}$, we have

$$S \ll r^{-} \left(C_k^{m_0} \downarrow \cdots \downarrow C_k^{m_{n-1}} \right)$$

$$\ll r^{-} \left\{ \left\{ (m_0, (s_0, t_0)) , \ldots , (m_{n-1}, (s_{n-1}, t_{n-1})) \right\} \subseteq S_{U_*} \mid (\forall i < n) \; t_i - s_i = 2^{-k} \right\}.$$

Let $C_A \overset{\text{def}}{=} \left\{ \left\{ (m_0, (s_0, t_0)) , \ldots , (m_{n-1}, (s_{n-1}, t_{n-1})) \right\} \subseteq S_{U_*} \mid (\forall i < n) \; t_i - s_i = 2^{-k} \right\}.$

Since $S^{S_\neg K}$ is compact over the positivity K, there exist $B_0, \ldots , B_{N-1} \in C_A$ such that $B_j \in rK$ for each $j < N$ and that $S \ll S^{S_\neg K} \ll - \{B_0, \ldots , B_{N-1}\}$. For each $j < N$, write

$$B_j = \left\{ (m_0, (s_{j,0}, t_{j,0})) , \ldots , (m_{n-1}, (s_{j,n-1}, t_{j,n-1})) \right\}.$$

Then either $(s_{j,i}, t_{j,i}) \leq_{\mathcal{R}} (p_i' - 2\theta, q_i' + 2\theta)$ for all $i < n$ or $(s_{j,i}, t_{j,i}) \in (-\infty, p_i') \cup (q_i', \infty)$ for some $i < n$. Thus the following two cases arise:

1. $(\exists j < N) \left((\forall i < n) \; (s_{j,i}, t_{j,i}) \leq_{\mathcal{R}} (p_i' - 2\theta, q_i' + 2\theta) \right)$
2. $(\forall j < N) \left((\exists i < n) \; (s_{j,i}, t_{j,i}) \in (-\infty, p_i') \cup (q_i', \infty) \right)$.

In the first case, there exists $j < N$ such that $B_j \subseteq A$, and hence $r^{-}B_j \ll r^{-}A$. Since $B_j \in rK$ and K is a splitting subset of S, we have $A \in rK \subseteq r\text{Pos} \subseteq \overline{\text{Pos}}$.

In the second case, suppose that $A' \in r\text{Pos}$. Then there exists $a \in \text{Pos}$ such that $a \cap A'$. Let $\text{Pos}_{\neg K}$ be the positivity of $S_{\neg K}$. Since $\text{Pos} = \text{Pos}_{\neg K} \cup K$, we have either $a \in \text{Pos}_{\neg K}$ or $a \in K$. If $a \in \text{Pos}_{\neg K}$ then $\text{Pos} \nvdash (\neg K \downarrow a)$. Since $S_{U_*} \subseteq S^{S_{\neg K}}$, we have

$$\neg K \downarrow a \ll \neg K \downarrow r^{-}A' \ll \neg K \downarrow U_* \ll \emptyset,$$

and thus $\text{Pos} \nvdash \emptyset$, a contradiction. If $a \in K$, then since

$$a \ll S_{\neg K} \left(r^{-} \{B_0, \ldots , B_{N-1}\} \right) \downarrow a,$$

there exists \(j < N \) such that \(K \nsubseteq (r^−B_j \downarrow a) \). Thus there exists \(i < n \) such that \((s_{ji}, t_{ji}) \in (−\infty, p_i^j) \cup (q_i^j, \infty)\). If \((s_{ji}, t_{ji}) \in (−\infty, p_i^j)\), then
\[
\begin{align*}
 r^−B_j \downarrow a &< r^−_m(−\infty, p_i^j) \downarrow r^−_m(p_i^j, q_i^j) \\
 &< r^−_m(−\infty, p_i^j) \downarrow (p_i^j, q_i^j) < \emptyset,
\end{align*}
\]
and thus \(K \nsubseteq \emptyset \), a contradiction. If \((s_{ji}, t_{ji}) \in (q_i^j, \infty)\), we similarly obtain a contradiction. Hence \(A' \in −(r \text{ Pos}) \), and so \(A' \in −\text{Pos} \). Therefore \(\text{Pos} \) is located. □

Thus, \(\text{Pos} \) determines a located subtopology of \(\prod_{n \in \mathbb{N}} \mathcal{I}[0, 1] \), which is compact overt regular by Lemma 4.3 and Proposition 2.25 (2). Write \(\mathcal{T} = (S_{\Pi}, <^\mathcal{T}, \leq) \) for this subtopology. Since \(\omega \) is a formal point of \(\mathcal{T} \), it is a located subset of \(\mathcal{T} \). Let \(\mathcal{T}_{\omega} \) be the open complement of the located subtopology determined by \(\omega \) in \(\mathcal{T} \). The cover \(<^\mathcal{T}_{\omega} \) of \(\mathcal{T}_{\omega} \) is given by
\[
A <^\mathcal{T}_{\omega} \mathcal{U} \overset{\text{def}}{\iff} A \downarrow r^−<^{\text{Pos}} \cup \mathcal{U}
\]
for all \(A \in S_{\Pi} \) and \(\mathcal{U} \subseteq S_{\Pi} \).

Lemma 6.9 The embedding \(r: S \rightarrow \prod_{n \in \mathbb{N}} \mathcal{I}[0, 1] \) satisfies \(S < r^−\omega \).

Proof Let \(a \in S \) and \(b \in \text{wb}(a) \), and let \(n \in \mathbb{N} \) be the index of the pair \((b, a) \in \text{wb}\). Then
\[
\begin{align*}
 b &< r^−(−\infty, 1) \cup (0, \infty) \downarrow b \\
 &< (r^−(−\infty, 1) \downarrow b) \cup (r^−(0, \infty) \downarrow b) \\
 &< r^−(−\infty, 1) < r^−\omega.
\end{align*}
\]
Hence \(a < \text{wb}(a) < r^−\omega \), and therefore \(S < r^−\omega \). □

Lemma 6.10 For any \(A \in S_{\Pi} \) and \(\mathcal{U} \subseteq S_{\Pi} \),
\[
r^−A < r^−\mathcal{U} \iff A \downarrow r^−<^{\text{Pos}} \cup \mathcal{U}.
\]
That is \(S_r = \mathcal{T}_{\omega} \).

Proof Let \(A \in S_{\Pi} \) and \(\mathcal{U} \subseteq S_{\Pi} \). First, suppose that \(A \downarrow r^−<^{\text{Pos}} \cup \mathcal{U} \). By Lemma 6.9 we have
\[
\begin{align*}
 r^−A &< r^−A \downarrow r^−\omega \\
 &< r^−(A \downarrow r^−\omega) \\
 &< r^−(−\text{Pos} \cup \mathcal{U}) \\
 &< (r^−(−r \text{ Pos} \downarrow r^−\mathcal{U}) \cap \text{Pos}) \\
 &< ((r^−r \text{ Pos} \cap \text{Pos}) \cup (r^−\mathcal{U} \cap \text{Pos}) \\
 &< r^−\mathcal{U} \cap \text{Pos} < r^−\mathcal{U}.
\end{align*}
\]
Conversely, suppose that $r^{-} A \rhd r^{-} \mathcal{U}$, and let $B \in A \downarrow \neg \omega$. We must show that $B \lhd_{\Pi} \neg \text{Pos} \cup \mathcal{U}$. Write $B = \{(m_{0}, (p_{0}, q_{0})), \ldots, (m_{n_{B}-1}, (p_{n_{B}-1}, q_{n_{B}-1}))\}$. Since $B \in \neg \omega$, there exists $i_{*} < n_{B}$ such that either $1 \leq p_{i_{*}}$ or $q_{i_{*}} < 1$. If $1 \leq p_{i_{*}}$ we have

$$B \lhd_{\Pi} \{ (m_{i_{*}}, (p_{i_{*}}, q_{i_{*}})) \} \lhd_{\Pi} \neg \text{Pos} \lhd_{\Pi} \neg \text{Pos} \cup \mathcal{U}.$$

Now, suppose that $q_{i_{*}} < 1$. Let $B' \in \text{we}_{\Pi}(B)$, so that B' is of the form

$$B' = \{(m_{0}, (p'_{0}, q'_{0})), \ldots, (m_{n_{B}-1}, (p'_{n_{B}-1}, q'_{n_{B}-1}))\}$$

such that $p_{i} < p'_{i} < q'_{i} < q_{i}$ for each $i < n_{B}$. Since $q_{i_{*}} < 1$, we have

$$r^{-} B' \lhd r^{-} m_{i_{*}} (p'_{i_{*}}, q'_{i_{*}}) \lhd m_{i_{*}},$$

and since $B' \ll B$ in $\prod_{n \in \mathbb{N}} \mathcal{I}[0, 1]$, we have $r^{-} B' \ll r^{-} A$ in S. Hence $r^{-} B' \ll r^{-} A$ by Lemma 2.31. Moreover, since $\mathcal{U} \lhd_{\Pi} \mathcal{U}_{<}$ where

$$\mathcal{U}_{<} \overset{\text{def}}{=} \left\{ C' \in S_{\Pi} \mid (\exists C \in \mathcal{U}) C' \in \text{we}_{\Pi}(C) \right\},$$

we have $r^{-} A \lhd r^{-} \mathcal{U}_{<}$. Thus there exist $C_{0}, \ldots, C_{n_{U}-1} \in \mathcal{U}$ and $C'_{0}, \ldots, C'_{n_{U}-1} \in S_{\Pi}$ such that $r^{-} B' \lhd r^{-} \{ C_{0}', \ldots, C'_{n_{U}-1} \}$ and that for each $j < n_{U}$, the sets C_{j} and C'_{j} are of the forms

$$C_{j} = \{ (l_{j}, 0, (s_{j,0}, t_{j,0})) \}, \ldots, (l_{j, n_{j}-1}, (s_{j, n_{j}-1}, t_{j, n_{j}-1}))\},$$

$$C'_{j} = \{ (l_{j}, 0, (s'_{j,0}, t'_{j,0})) \}, \ldots, (l_{j, n_{j}-1}, (s'_{j, n_{j}-1}, t'_{j, n_{j}-1}))\}$$

such that $s_{j,i} < s'_{j,i} < t'_{j,i} < t_{j,i}$ for each $i < n_{j}$. Let

$$M \overset{\text{def}}{=} \max \{ l_{j,i} \mid j < n_{U} \& i < n_{j} \},$$

and choose $k \in \mathbb{N}$ and $\theta \in \mathbb{Q}^{>0}$ such that $2^{-k} < \theta$ and

$$(\forall j < n_{U}) (\forall i < n_{j}) s_{j,i} < s'_{j,i} - \theta \& t'_{j,i} + \theta < t_{j,i}.$$

Then $B' \ll (B' \downarrow C'_{k}) \cap \neg \text{Pos}$. Let $B'' \in (B' \downarrow C'_{k}) \cap \neg \text{Pos}$. Then either $B'' \in r \text{Pos}$ or $B'' \in \omega$. Since $B' \in \neg \omega$ we have $B'' \in \neg \omega$, so the latter case yields a contradiction. If $B'' \in r \text{Pos}$, then since

$$r^{-} B'' \lhd r^{-} \{ C_{0}', \ldots, C'_{n_{U}-1} \} \downarrow r^{-} B'' \lhd r^{-} \{ C_{0}', \ldots, C'_{n_{U}-1} \} \downarrow B''\},$$

there exists $j < n_{U}$ such that $r \text{ Pos} \upharpoonright (C'_{j} \downarrow B'')$. Hence $C'_{j} \not\ll B''$, so that $B'' \not\ll C'_{j} \ll r^{-} \mathcal{U}$ by the choice of θ. Thus $B' \ll_{\Pi} \neg \text{Pos} \cup \mathcal{U}$, and so $B \ll_{\Pi} \text{we}_{\Pi}(B) \ll_{\Pi} \neg \text{Pos} \cup \mathcal{U}$. Therefore $A \downarrow \neg \omega \ll_{\Pi} \neg \text{Pos} \cup \mathcal{U}$.

Finally, since $\prod_{n \in \mathbb{N}} \mathcal{T}[0, 1]$ is enumerably completely regular and \mathcal{T} is its subtopology, \mathcal{T} is a compact overt enumerably completely regular formal topology.
7 Point-free characterisation

We show that the notion of inhabited enumerably locally compact regular formal topology characterizes that of Bishop locally compact metric space up to isomorphism. First, we recall the main result of our previous work [14, Theorem 4.3.2].

Lemma 7.1 Let S be a formal topology. Then the following are equivalent.

1. S is isomorphic to a compact overt enumerably completely regular formal topology.
2. S is isomorphic to a compact overt subtopology of $\prod_{n \in \mathbb{N}} I[0, 1]$.
3. S is isomorphic to the localic completion of some compact metric space.

By Proposition 4.14 and Theorem 6.5, we have the following proposition.

Proposition 7.2 For any overt enumerably locally compact regular formal topology S, there exists a locally compact metric space X such that $\mathcal{M}(X) \cong S$.

Note that the image of any inhabited formal topology under a formal topology map is inhabited. Hence Corollary 4.15 yields the following.

Corollary 7.3 For any inhabited enumerably locally compact regular formal topology S, there exists a Bishop locally compact metric space X such that $\mathcal{M}(X) \cong S$.

Lemma 7.4 The localic completion of a Bishop locally compact metric space is isomorphic to an inhabited enumerably locally compact regular formal topology.

Proof Let X be a Bishop locally compact metric space. Since X is separable, we may assume that X is countable by Theorem 3.2. Since the base M_X of $\mathcal{M}(X)$ is a countable union of countable sets, M_X is countable. Since $a <_X b$ implies $a \ll b$ and we have

$$b(x, \varepsilon) <_X \{ b(x, \delta) \in M_X \mid \delta \in \mathbb{Q}^>0 \land \delta < \varepsilon \}$$

for each $b(x, \varepsilon) \in M_X$, the function $w_b : M_X \to \text{Pow}(M_X)$ define by

$$w_b(b(x, \varepsilon)) \overset{\text{def}}{=} \{ b(x, \delta) \in M_X \mid \delta \in \mathbb{Q}^>0 \land \delta < \varepsilon \}$$

makes $\mathcal{M}(X)$ locally compact. For each $b(x, \varepsilon) \in M_X$, the subset $w_b(b(x, \varepsilon))$ is countable by the standard enumeration of the rational interval $(0, \varepsilon)$. Thus the set $w_b = \{(b, a) \in M_X \times M_X \mid b \in w_b(a)\}$ is countable.
Moreover, for each \(b(x, \delta) \in wb(b(x, \varepsilon)) \) we can define an order preserving bijection \(\varphi: \mathbb{I} \to [\delta, \varepsilon] \cap \mathbb{Q} \). Then the family \(\{b(x, \varphi(q))\}_{q \in \mathbb{I}} \) is a wb-scale from \(\{b(x, \delta)\} \) to \(\{b(x, \varepsilon)\} \). Thus we can define a function \(sc \in \prod_{(b,a) \in wb} Sc_{\infty}(\{b\}, \{a\}) \) which assigns to each \((b, a) \in wb \) the wb-scale from \(\{b\} \) to \(\{a\} \) as described above.

Since \(X \) is inhabited, \(\mathcal{M}(X) \) is an inhabited formal topology. Therefore \(\mathcal{M}(X) \) is an inhabited enumerably locally compact regular formal topology with the function \(wb \) and the choice \(sc \) of wb-scale for \(wb \).

By Corollary 7.3 and Lemma 7.4, we obtain the following.

Theorem 7.5 Let \(S \) be a formal topology. Then \(S \) is isomorphic to an inhabited enumerably locally compact regular formal topology if and only if \(S \) is isomorphic to the localic completion of some Bishop locally compact metric space.

Let \(\text{BLCM} \) be the full subcategory of \(\text{LCM} \) consisting of Bishop locally compact metric spaces, and let \(\text{IELKReg} \) be the full subcategory of \(\text{FTop} \) consisting of formal topologies which are isomorphic to some inhabited enumerably locally compact regular formal topology.

Then, the localic completion functor \(\mathcal{M}: \text{LCM} \to \text{FTop} \) restricts to a functor \(\mathcal{M}: \text{BLCM} \to \text{IELKReg} \) by Lemma 7.4, and the restricted functor \(\mathcal{M} \) is essentially surjective by Theorem 7.5. Since the restriction is still full and faithful, we have the following.

Theorem 7.6 The categories \(\text{BLCM} \) and \(\text{IELKReg} \) are equivalent.\(^6\)

Acknowledgement

We thank Bas Spitters and anonymous referees for helpful suggestions. The present work was carried out when the author was a Research Fellow of the Japan Society for the Promotion of Science.

\(^6\) Constructively, this is the equivalence in a weaker sense that there exists a full, faithful and essentially surjective functor from one category to the other. Under the Axiom of Choice, this notion is equivalent to the stronger notion of equivalence, i.e. the existence of adjoint functors \(F \dashv G \) such that \(FG \) and \(GF \) are naturally isomorphic to the identity functors (see Mac Lane [15]).
References

A point-free characterisation of Bishop locally compact metric spaces

School of Information Science, Japan Advanced Institute of Science and Technology
1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
Author’s current address: Dipartimento di Matematica, Università di Padova
via Trieste 63, 35121 Padova, Italy
tatsuji.kawai@jaist.ac.jp

Received: 1 October 2015 Revised: 6 February 2017