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Abstract: This article proves a nonstandard Central Limit Theorem (CLT) in the
sense of Nelson’s Radically Elementary Probability Theory [11]. The CLT proved
here is obtained by establishing the near equivalence of standardized averages
obtained from L2 IID random variables to the standardized average resulting from a
binomial CLT. A nonstandard model for near equivalence on metric spaces replaces
conventional results of weak convergence. Statements and proofs remain radically
elementary without applying the full Internal Set Theory. A nonstandard notion of
normality is discussed.

2010 Mathematics Subject Classification 60F05 (primary); 60F25, 03H05 (sec-
ondary)

Keywords: radically elementary probability, weak convergence, Prohorov distance,
Levy distance

1 Introduction

Nelson’s [11] book “Radically Elementary Probability Theory” (REPT) provides a
nonstandard probability model based on an axiomatic subsystem of Internal Set Theory
(Nelson [10]) also known as minimal IST (Herzberg [8]). Recent advances in IST-based
probability theory include diffusions and interacting particle systems (Weisshaupt
[15, 16]), Markov chains (Andrade [2]), discrete functions on infinitesimal grids with
an application to probability (van den Berg [4]), stochastic calculus including Itô’s
stochastic integration and Lévy processes [8] and several applications covered in the
book edited by Diener and Diener [6]. This paper is restricted to REPT and hence more
closely related to recent work by Herzberg [8] and Weisshaupt [16]. The principles of
idealization, transfer, standardization and sequence (Nelson [10], Robert [12]) are not
invoked here and our results and definitions remain strictly within the scope of REPT.

REPT has a functional central limit theorem (fCLT) [11, Theorem 18.1] where the
objects of interest are martingales and the Wiener walk (nonstandard Brownian motion).
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This fCLT has been specialized by Andrade [3] to a classical CLT for independent
and identically distributed (IID) nonstandard L2 random variables (rvs). However
REPT lacks an explicit definition of nonstandard normality and an explicit classical
CLT. The main contribution of this paper is to prove a classical CLT (Theorem 3.2)
directly without reference to the fCLT. This is done in Section 3. We had to develop a
radically elementary model for studying weak convergence in metric spaces based on
the metrics of Prohorov and Lévy (Section 2). A different notion of weak convergence
(in topological, not simply metric, spaces) based on Robinson’s nonstandard analysis
[13] and Loeb measure spaces [9] is given by Anderson and Rachid [1]. Appendices A
and B contain auxiliary material used in the paper.

To those unfamiliar with REPT we must mention that in radically elementary analysis
no new objects, such as hyperreals, are added. Infinitesimals are not new objects in R
but are simply not used by the conventional theory. A property, limitedness, and four
axioms that govern the use of this property are defined. The axioms in minimal IST
apply directly only to the natural numbers N = {0, 1, 2, . . .}. An important goal of
REPT is to be within reach by anyone familiar with basic (discrete) probability and the
minimal notions about the rigorous use of infinitesimals (Nelson’s “tiny bit” analysis
[11, Preface]) without any heavy apparatus from nonstandard analysis, whether from
IST [10] or from Robinson’s nonstandard model [13].

2 Near Equivalence on Metric Spaces

In order to prove our nonstandard version of the classical CLT, Theorem 3.2, we will
need tools that do not yet exist in REPT. This section develops such tools.

All basic definitions of nonstandard analysis, such as that of an infinitesimal (a ' 0),
an unlimited number (ν ' ∞), an appreciable number (a � 0) and a near line are
taken from Nelson [11]. We also make use of the notation x . y meaning that x ≤ y or
x ' y.

Definition 2.1 Let (S, d) be a metric space with a set S and a metric for d for S . Points
x, y ∈ S are nearly equal, x ' y, when d(x, y) ' 0.

The usual definition of x ' y in R is a special case when d(x, y) = |x− y|.

Definition 2.2 Let (S, d) and (S′, d′) be metric spaces. A function h : S→ S′ is nearly
continuous at a point x ∈ S if

(1) y ∈ S and x ' y =⇒ h(x) ' h(y),
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and nearly continuous on a set T ⊂ S if (1) holds at all x ∈ T .

Definition 2.3 Random elements X and Y of a metric space (S, d) defined on possibly
different probability spaces are nearly equivalent, X

w' Y , if for every limited nearly
continuous function g : S→ R,

E{g(X)} ' E{g(Y)}.

Remark 2.4 Let d1 and d2 be two different metrics for S . We say that d1 and d2 are
equivalent if they agree as to the meaning of x ' y, that is, if

d1(x, y) ' 0⇐⇒ d2(x, y) ' 0.

In this case, a function h : S → S′ where (S′, d′) is another metric space is nearly
continuous when d1 is the metric for S if and only if it is continuous when d2 is the
metric. In this sense, near equivalence of random elements of metric spaces does not
depend on the metric, only on the external equivalence relation ' induced by it.

Notation A random element X of (S, d) induces a probability measure P, P = L(X)
(P is the law of X ), defined by

P(A) = Pr(X ∈ A), A ⊂ S

and probability mass function p, p = dP, defined by

p(x) = Pr(X = x), x ∈ S.

Remark 2.5 In REPT all probability measures have finite support and this is implicit
throughout the paper, though we may, sometimes, redundantly say “P with finite
support”.

Remark 2.6 Since near equivalence is determined by expectations, and expectations
are determined by measures, near equivalence really depends only on measures not on
rvs (except through their measures). Thus we make the definition: measures P and
Q on a metric space (having finite support) are nearly equivalent, written P

w' Q if
Ph ' Qh for every limited nearly continuous function h : S→ R, where

Ph =
∑
x∈S

h(x)dP(x)

is a shorthand for the expectation of the rv h(X) when P = L(X).
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Notation If d is a metric on S we define for any nonempty A ⊂ S ,

d(x,A) = inf
y∈A

d(x, y)

and for any ε > 0, we define the ε-dilation of A,

Aε = { x ∈ S : d(x,A) < ε },

with the ε-dilation of the empty set being empty.

The triangle inequality implies (Aε)η ⊂ Aε+η .

Definition 2.7 Let S be a finite set with metric d and let P(S, d) denote the set
of all probability measures on S . The Prohorov metric on P(S, d) is the function
π : P(S, d) × P(S, d) → R defined so that π(P,Q) is the infimum (attained since P
and Q have finite support) over all ε > 0 such that

(2) P(A) ≤ Q(Aε) + ε and Q(A) ≤ P(Aε) + ε, A ⊂ S.

Note that (2) holds for every ε > π(P,Q).

It can be shown that π is indeed a metric but this fact will not be needed here.

A useful fact about the Prohorov metric which will be required to prove Lemma 2.14 is
the following.

Lemma 2.8 The Prohorov distance between P and Q is the infimum over all ε such
that

(3) P(A) ≤ Q(Aε) + ε, A ⊂ S.

Proof The same as in Billingsley [5, p. 72, (ii)] because the argument uses no measure
theory and it translates directly into REPT.

Definition 2.9 Let (S, d) and (S′, d′) be metric spaces. A function h : S→ S′ is nearly
Lipschitz continuous if there exists L�∞ such that

d′
(
h(x), h(y)

)
≤ L · d(x, y), x, y ∈ S.

Note that near Lipschitz continuity implies near continuity.

Lemma 2.10 Let (S, d) be a metric space. For any nonempty A ⊂ S and any ε� 0,
define h : S→ R by

h(x) = max
(
0, 1− d(x,A)/ε

)
.

Then h is limited and nearly Lipschitz continuous.
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Proof (Sketch) By considering three cases: d(x,A) = 0 so h(x) = 1, d(x,A) ≥ ε so
h(x) = 0 and 0 < d(x,A) < ε so 0 < h(x) < 1 we can establish

(4) |h(x)− h(y)| ≤ |d(x,A)− d(y,A)|
ε

.

It is easy to show that d(x, y) ≥ |d(y,A)− d(x,A)| from which we see that (4) implies

|h(x)− h(y)| ≤ |d(x,A)− d(y,A)|
ε

≤ 1
ε
· d(x, y).

With 1/ε being limited, the result is established.

Theorem 2.11 Assume P and Q are measures on (S, d) and that Ph ' Qh holds for
every limited nearly Lipschitz continuous function h : S→ R. Then π(P,Q) ' 0.

Proof For any nonempty A ⊂ S and any ε� 0, by the assumptions on h,

P(A) ≤ Ph ≤ P(Aε)

and similarly with P replaced by Q. Hence P(A) ≤ Ph ' Qh ≤ Q(Aε) holds for all A.
Thus (3) holds for every ε� 0 and hence π(P,Q) is infinitesimal.

Since P
w' Q is a stronger requirement than Lipschitz continuity we have the obvious

result below.

Corollary 2.12 P
w' Q =⇒ π(P,Q) ' 0.

The reverse is true but the proof is long and the result will not be needed here.

Definition 2.13 Let A be any property that may or may not hold at points of S and let
P be a measure on (S, d) having finite support. We say A holds P-almost everywhere if
for every ε� 0 there exists a set N such that P(N) ≤ ε and A(x) holds except for x
in N . The next result is similar to Nelson [11, Theorem 17.3] concerning stochastic
processes.

Notation Let (S, d) be a metric space and define for A ⊂ S the ε-erosion of A,

Aε = S \ (S \ A)ε.

Lemma 2.14 Let P and Q be elements of P(S, d) such that P
w' Q, and let A be any

property (internal or external) such that x, y ∈ S and x ' y implies A(x) ⇐⇒ A(y).
Then A holds P-almost everywhere if and only if it holds Q-almost everywhere.
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Proof By Corollary 2.12 we have π(P,Q) ' 0. By Lemma 2.8 the infinitesimality of
π(P,Q) is equivalent to the existence of an ε ' 0 such that (3) holds, which implies
that for some ε ' 0 and for all A ⊂ S we have P(A) . Q(Aε). Let B = S \ A. By the
complement rule we immediately have Q(Aε) = 1− Q(Bε) and thus

P(A) . Q(Aε)⇐⇒ P(B) & Q(Bε)

hence if the left hand side holds for all A, then the right hand side holds for all B and
vice versa. Thus from P

w' Q we have concluded that for some ε ' 0 and for all A ⊂ S
we have P(A) & Q(Aε).

Suppose A holds P-almost everywhere. Fix ε � 0 and choose N ⊂ S such that
P(N) ≤ ε/2 and A(x) holds for all x ∈ S \ N . By the previous paragraph there is a
δ ' 0 such that P(N) & Q(Nδ). So Q(Nδ) ≤ ε. By definition S \Nδ = (S \N)δ . Hence
y ∈ S \ Nδ if and only if there exists an x in S \ N such that d(x, y) < δ . This implies
x ' y, and hence A(y) holds. Hence A holds on S \ Nδ . Since ε� 0 was arbitrary, A
holds Q-almost everywhere.

Remark 2.15 Let P be a measure on (S, d) having finite support. A function h : S→ S′

is nearly continuous P-almost everywhere if the property A(x) in the definition of
“almost everywhere” is “h is nearly continuous at x.” Note that by the lemma above,
when P

w' Q we have h nearly continuous P-almost everywhere if and only if h is
nearly continuous Q-almost everywhere.

Definition 2.16 The Lévy metric on the set of all cumulative distribution functions
(cdfs) (with finite support) on R is the function λ defined so that λ(F,G) is the infimum
of all ε > 0 such that

(5) F(x) ≤ G(x + ε) + ε and G(x) ≤ F(x + ε) + ε, x ∈ R.

It is easy to see that λ actually is a metric.

Definition 2.17 We say cdfs F and G are nearly equal, written F ' G, if λ(F,G) ' 0.

Remark 2.18 Near equality of cdfs does not necessarily imply the corresponding rvs
are nearly equivalent. See Theorem 2.21 and following remark.

Lemma 2.19 If λ is the Lévy metric and π the Prohorov metric, F and G are cdfs
and P and Q are the corresponding measures, then

π(P,Q) ≥ λ(F,G).
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Proof Fix ε > π(P,Q). Then

F(x) = P{(−∞, x]}
≤ Q{(−∞, x]ε}+ ε

= Q{(−∞, x + ε)}+ ε

= max
y<x

G(y + ε) + ε

holds for all x . In particular we have

(6) F(x) ≤ G(x + ε) + ε

whenever x + ε is not a jump of G. However, even if x + ε is a jump of G, there exists
a δ > 0 sufficiently small so that G has no jump in (x + ε, x + ε+ δ], and, applying (6)
with ε replaced by ε+ δ , we have

F(x) ≤ G(x + ε+ δ) + ε+ δ = G(x + ε) + ε+ δ,

which, since δ > 0 was arbitrary, implies (6) even when x + ε is a jump of G. The
same argument with F and G swapped finishes the proof.

Corollary 2.20 If X and Y are rvs having cdfs F and G, then X
w' Y implies F ' G.

Theorem 2.21 If X and Y are rvs having cdfs F and G, either X or Y is limited
almost surely, and F ' G, then X

w' Y .

Proof Fix arbitrary appreciable ε1 and ε2 . By Nelson [11, Theorem 7.3] if one of X
and Y is limited almost surely and X

w' Y , then the other is also limited almost surely.
Hence, by Theorem B.1, there exist limited a and b such that

F(a) ≤ ε1(7a)

F(b) ≥ 1− ε1(7b)

and similarly with F replaced by G. Let h be a nearly continuous function with limited
bound M . Then

(8a) |E{h(X)I(−∞,a](X)}| ≤ MF(a) ≤ Mε1

and

(8b) |E{h(X)I(b,∞)(X)}| ≤ M
[
1− F(b)

]
≤ Mε1

and similarly with X replaced by Y and F replaced by G.
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By near continuity of h there exists δ � 0 such that |h(x) − h(y)| ≤ ε2 whenever
|x− y| ≤ δ . There exists a limited natural number n such that (b− a)/n ≤ δ/2. Define
ck = a + (k/n)(b− a) for integer k , noting that c0 = a and cn = b. Then

(9) |h(x)− h(ck)| ≤ ε2, ck−2 ≤ x ≤ ck+2,

and this together with (8a) and (8b) implies

(10)

∣∣∣∣∣E{h(X)} −
n+1∑
k=1

h(ck)
[
F(ck)− F(ck−1)

]∣∣∣∣∣ ≤ ε2 + 2Mε1.

The assumption λ(F,G) ' 0 implies that there exist bk and dk such that bk ≤ ck ≤ dk

and bk ' ck ' dk and

G(bk) . F(ck) . G(dk), for all k .

The same reasoning that lead to (10) implies that (10) holds with X replaced by Y and
F replaced by G. But

(11)
n+1∑
k=1

g(ck)
[
F(ck)− F(ck−1)

]
−

n+1∑
k=1

g(ck)
[
G(bk)− G(bk−1)

]
=

n∑
k=1

[
g(ck)− g(ck+1)

]
·
[
F(ck)− G(bk)

]
+ g(cn+1)

[
F(cn+1)− G(bn+1)

]
− g(c1)

[
F(c0)− G(b0)

]
and 0 . F(ck) − G(bk) . G(dk) − G(bk), and the latter sum to less or equal to one.
Hence, a limited sum of infinitesimals being infinitesimal, the sum in (11) is less than
or nearly equal to ε2 and greater than or nearly equal to zero. The other terms are less
than or equal to 4Mε1 in absolute value. That is,∣∣∣∣∣

n+1∑
k=1

g(ck)
[
F(ck)− F(ck−1)

]
−

n+1∑
k=1

g(ck)
[
G(bk)− G(bk−1)

]∣∣∣∣∣ ≤ ε2 + 4Mε1.

Hence by the triangle inequality

|E{g(X)} − E{g(Y)}| ≤ 3ε3 + 8Mε1.

Since ε1 and ε2 were arbitrary appreciable numbers and M is limited, we actually have
E{g(X)} ' E{g(Y)}.

Remark 2.22 The limited almost surely condition cannot be suppressed. Let X
have the uniform distribution on the even integers between 1 and 2ν and Y have the
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uniform distribution on the odd integers between 1 and 2ν . Then if F and G are the
corresponding cdfs, then we have

0 ≤ G(x)− F(x) ≤ 1
ν

for all x . So λ(F,G) is infinitesimal whenever ν is unlimited. But, if h is defined by
h(x) = sin2(πx), then h is a limited continuous function, and h(X) = 0 and h(Y) = 1
(for all ω ).

3 The Central Limit Theorem

The following radically elementary De Moivre-Laplace CLT (Theorem 3.1) plays a
central role in the proof of the more general classical CLT (Theorem 3.2). It can be
proved by careful translation of the (lengthy) treatment in Feller [7, Sec.7.2] starting
with (a nonstandard version of) Stirling’s approximation and using some integration
concepts described in Appendix A.3. A similar proof using Robinson’s model is found
in Section 0.3 of Stroyan and Bayod [14]. The proof of the next result is thus only
sketched.

Theorem 3.1 (Radically Elementary De Moivre-Laplace) Suppose X has the Binomial(ν, p)
distribution with ν ' ∞, 0� p� 1 and

Z =
X − νp
√
νpq

.

Then there exists a near line T such that

Pr(Z ≤ z) ' 1√
2π

∑
t∈T
t≤z

e−t2/2 dt.

Furthermore,

F(z) ≡ 1
c

∑
t∈T
t≤z

e−t2/2 dt, c ≡
∑
t∈T

e−t2/2 dt,

satisfies, for all z ∈ R,

F(z) ' 1√
2π

∫ z

−∞
e−t2/2 dt.

Proof (Sketch) The essence of the proof is a careful adaptation of Feller [7, Sec.7.2]
combined with radically elementary integration (Appendix A.3) specially Corollary A.6.
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We will only indicate some landmarks in the proof to which we will refer later. It can
be quickly argued that a nonstandard version of Stirling’s approximation is

(12) ν! ∼ (2π)1/2νν+1/2e−ν ,

where the notation x ∼ y is explained in the beginning of Appendix A.3. Trivial but
lengthy calculations lead us to

f (k) ≡
(
ν

k

)
pkqν−k

∼ 1√
2π

e−z2/2 dz ≡ ϕ(z)dz

where z lies in the near line with regular spacing dz = (1/
√
νpq) ' 0,

T = { (k − νp)dz : k = 0, . . . , ν }.

Now for any limited numbers a and b with a < b we have by Lemmas A.3 and A.2,

(13) Pr(a < Z < b) '
∑
z∈T

a<z<b

ϕ(z) dz.

Since E(Z) = 0 and var(Z) = 1 it follows from Chebyshev’s inequality that

Pr(|Z| ≥ a) ≤ 1
a2 .

Hence, by Theorem A.4, Z is limited almost surely, and by Theorem B.1 for any ε� 0
there exists a�∞ such that Pr(|Z| ≥ a) ≤ ε. Hence∣∣∣∣∣∣∣Pr(Z < b)−

∑
z∈T
z<b

ϕ(z) dz

∣∣∣∣∣∣∣ . ε

and, since ε� 0 was arbitrary the claim about Pr(Z ≤ z) follows. The second part of
the theorem, F(z) '

∫ z
−∞ ϕ(t)dt , follows from Corollary A.6.

The classical CLT can be seen as a mild extension of the above binomial CLT.

Theorem 3.2 (Classical CLT and definition of normality) Suppose X1 , X2 , . . ., Xν ,
ν ' ∞, are independent and identically distributed L2 rvs with mean µ and variance
σ2 = E(Xi − µ)2 � 0. Let

X̄ν =
1
ν

ν∑
i=1

Xi.
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Then the rv

(14) Z =
X̄ν − µ
σ/
√
ν

is L2 and limited almost surely. Any rv nearly equivalent to Z is defined to be normal.
Furthermore, if X is an L2 normal rv and Y = α+ βX , where α and β are limited and
β ≥ 0, then Y is L2 , E(Y) ' α , and var(Y) ' β2 .

Finally, the distribution function of Z is nearly equal to

(15) Φ(x) =
1√
2π

∫ x

−∞
e−t2/2 dt.

Proof Following similar argument in the proof of Nelson [11, Theorem 18.1], the rv Z
is L2 if and only if for all ε� 0 there is a c�∞ such that E[fc(Z)] ≥ E(Z)− ε where

fc(u) =

{
u2, |u| ≤ c

c2, |u| > c

It is clear that E(Z2) ' 1 and therefore for all ε � 0 there is a c � ∞ such that
E[fc(Z)] & 1− ε, which establishes that Z is L2 .

Consider the special case where each Xi is Bernoulli(p), 0 � p � 1. Then the
associated normal rv Z according to (14) is limited almost surely (this is shown near
the end of the proof of Theorem 3.1). Hence by [11, Theorem 7.3] every normal rv is
limited almost surely.

Let X be an L2 normal rv and Y = α+ βX , with α�∞ and 0 ≤ β �∞. As just
shown every normal rv that arises in the CLT is L2 . Moreover, such an rv, equation
(14), has mean zero and standard deviation one. Since the map x 7→ x(a) defined by (23)
is limited and continuous for limited a, it follows by Lemma B.3 that nearly equivalent
L2 rvs have nearly equal mean and variance. Hence E(X) ' 0 and var(X) ' 1. By
(22a) and (22b), Y is L2 and clearly E(Y) ' α and var(Y) ' β2 .

Finally, Theorem 3.1 asserts that one particular normal random variable has cdf nearly
equal to Φ. Hence by Corollary 2.20, Theorem 2.21, and the fact that Z is limited
almost surely, an rv is normal if and only if its distribution function is nearly equal to
Φ, equation (15).

Remark 3.3 The assertion of the CLT is that every rv of the form (14) defined with an
IID L2 sequence is nearly equivalent to an rv of the same form defined starting with
some other IID L2 sequence and we have labeled any such rv as “normal”. In REPT the
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12 Charles J. Geyer and Bernardo B. de Andrade

term “normal” cannot name a distribution. It is an external property that distributions
may or may not have. As with any external property, it is illegal set formation to try to
form the set of all normal distributions.

Definition 3.4 If X is a normal rv, µ is a limited real number, and σ is a positive
appreciable real number, then we say Y = µ+ σX is general normal and we also apply
this terminology to the distribution of Y .

Remark 3.5 Like normality, general normality is an external property. It is tempting
to call µ the mean and σ the standard deviation but in REPT this does not make sense.
A (general) normal distribution, as we have defined the concept, need not have moments
anywhere close to those of a conventional normal distribution. What the theorem shows
is that if X is L2 then E(Y) ' µ and var(Y) ' σ2 . If a rv X is normal, in our sense,
then for g limited nearly continuous we have E[g(X)] ' E[g(Z)] and FX ' Φ which
does not imply (cf. Weisshaupt [16, Definition 4.18])

E[g(X)] '
∫

g(x)Φ(dx).

Remark 3.6 It can be shown that if X is a normal rv and Y = µ+ σX , µ�∞ and
0 ≤ σ �∞, then the median(Y ) ' µ and the Φ(1)-quantile of Y is nearly equal to
µ+ σ , where Φ is defined by (15).

4 Final Remarks

In conventional probability the binomial CLT, the classical CLT and any fCLT are three
well separated results. The binomial case can be proved with Stirling’s formula and
combinatorics and it is not used in the proof of the classical CLT which is typically
demonstrated by means of characteristic functions. fCLTs require the apparatus of
advanced stochastic analysis.

Within REPT we have used the binomial CLT as an important stepping stone for the
classical CLT. We needed, however, to develop the apparatus of Section 2 which boils
down to Lemma 2.14 and the two subsequent results. Lemma 2.14 could have been
replaced by a more general result regarding trajectories of stochastic processes [11,
Theorem 17.3] and the associated notion of near equivalent processes but we chose
to develop a separate model for independent random variables. REPT’s fCLT [11,
Theorem 18.1] is just a page away from [11, Theorem 17.3]. Andrade [3] argues that
deriving the classical CLT as a special case of the much more general fCLT is not an
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absurd circumvention as it would be in conventional probability. The results proved
in this paper make clear the close connection between the binomial and the classical
CLT (within REPT) and also the notion of normality which is only implicit in REPT’s
fCLT [11, Theorem 18.1]. Therefore the present paper can be seen as a complement to
Andrade [3] interconnecting the binomial, the classical and the martingale CLTs within
REPT.

Appendices

The following appendices summarize some definitions and results from Nelson [11,
Chapters 7-8] and bring some new results in infinitesimal summation or integration (see
also Robert [12, Chapter 6]).

A Radically Elementary Nonstandard Analysis

A.1 Convergence of a Real Sequence

A sequence x1 , x2 , . . ., xν of nonrandom real numbers nearly converges to a real
number x if

(16a) xn ' x, n ' ∞.

Equivalently, a sequence nearly converges if

(16b) ∀ε� 0 ∃N �∞∀n ≥ N (|xn − x| ≤ ε).

For example, if x1, . . . , xν , ν ' ∞, nearly converges to zero and M = max
1≤n≤ν

|xn| � ∞,

then it can be shown that the partial sums

Sn =
1
n

n∑
i=1

xi

nearly converge to zero. However, allowing for M ' ∞ creates a number of cases.
Two trivial situations with M ' ∞ are: (i) x1 = M , x2 = −M and xi = 0, i > 2 then
Sn nearly converges to zero but (ii) if x1 = M , xi = 0, i > 1, Sn would not converge
since @ε� 0 such that |M/N| ≤ ε for some N �∞.
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A.2 Continuity

Let S ⊂ R. The function f : S→ R is nearly continuous at the point x ∈ S if

(17) ∀y ∈ R
(
x ' y =⇒ f (x) ' f (y)

)
and nearly continuous on S if (17) holds for all x ∈ S . Near continuity at a point x is
analogous to conventional continuity at x , but near continuity on a set S is analogous to
conventional uniform continuity on S . For instance, the function x 7→ 1/x is continuous
(but not uniformly continuous) on S = (0,∞), but it is not nearly continuous on S .
Another example is the function x 7→ ex which is not nearly continuous on R. The next
result from Robert [12] establishes near continuity for the common functions used in
calculus.

Lemma A.1 ([12, Chapter 4]) Suppose f is a differentiable function S→ R, where S
is an open interval, and f ′ is limited on S . Then f is nearly continuous on S .

A.3 Integration

Within REPT integrals must be replaced by unlimited finite sums. Let T be a finite
subset of R. For t ∈ T ′ = T \ {max(T)} we write dt to mean the difference between t
and its successor in T , that is,

(18) dt = min{s ∈ T : s > t} − t.

For t = max(T), we set dt = 0. We refer to dt collectively as the spacings of T . If all
the spacings are infinitesimal and each t ∈ T is limited, then we call T a near interval.
We say that T is a near line if all the spacings dt are infinitesimal with min(T) ' −∞
and max(T) ' ∞.

If x and y are real numbers such that y 6= 0 and x/y ' 1, we say that x is asymptotic to
y, denoted by x ∼ y. The external relation ∼ is an equivalence on R \ {0}. We use
this notion in the following study of sums with an unlimited number of terms which are
the analogues of conventional infinite series and integrals.

Lemma A.2 ([11, Chapter 5]) Suppose x or y is appreciable. Then x ∼ y if and only
if x ' y.

Lemma A.3 ([11, Chapter 5]) If xi > 0, yi > 0, and xi ∼ yi for each i, then

(19)
ν∑

i=1

xi ∼
ν∑

i=1

yi.
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Thus, if one side of (19) is appreciable, there is no difference between asymptotic
equivalence and near equality (∼ and ' respectively). We now present the following
“integration” results.

Theorem A.4 Suppose T is a near interval and suppose f and g are limited-valued
functions on T such that f (t) ' g(t) for all t ∈ T . Then∑

t∈T

f (t) dt '
∑
t∈T

g(t) dt.

Proof Let L be the maximum of all |f (t)| and |g(t)| for t ∈ T . The maximum is
achieved because T is finite and hence is limited by assumption. Fix ε� 0 and define

T+ = { t ∈ T : f (t) ≥ ε }
T0 = { t ∈ T : |f (t)| < ε }
T− = { t ∈ T : f (t) ≤ −ε }

Then by Lemma A.2 we have

f (t) ∼ g(t), t ∈ T+ ∪ T−

and hence by Lemmas A.3 and A.2 again we have∑
t∈T+

f (t) dt '
∑
t∈T+

g(t) dt

and the same with T+ replaced by T− . Also∣∣∣∣∣∑
t∈T0

f (t)

∣∣∣∣∣ ≤∑
t∈T0

|f (t)| ≤ ε(b− a)

where a and b are the endpoints of T , and the same with f replaced by g and ε replaced
by 2ε, because |f (x)| ≤ ε implies |g(x)| ≤ 2ε. Since ε� 0 was arbitrary and a and b
are limited (by the near interval assumption), we have∑

t∈T0

f (t) ' 0

and the same with f replaced by g. Thus from the triangle inequality and the sum of
infinitesimals being infinitesimal we obtain∣∣∣∣∣∑

t∈T

f (t)−
∑
t∈T

f (t)

∣∣∣∣∣ . 3ε(b− a)

Since ε� 0 was arbitrary and a and b are limited (by the near interval assumption),
we obtain the desired result.
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Theorem A.5 Suppose T = {a, . . . , b} is a near interval and suppose f : [a, b]→ R
a Riemann integrable function with a limited bound and nearly continuous on T . Then∑

t∈T

f (t) dt '
∫ b

a
f (t) dt.

Proof Fix ε� 0. By definition of Riemann integrability, there exists a subset S of R
with endpoints a and b such that∣∣∣∣∣∑

s∈S

f (s) ds−
∫ b

a
f (t) dt

∣∣∣∣∣ ≤ ε
(where ds is the spacing of S at s), and the same holds when S is replaced by a finer
partition, in particular, ∣∣∣∣∣∑

u∈U

f (u) du−
∫ b

a
f (t) dt

∣∣∣∣∣ ≤ ε
where U = S ∪ T (and where du is the spacing of U at u).

Define h : U → R by

h(u) = f (t), t ∈ T and t ≤ u < t + dt.

By near continuity of f we have f (u) ' h(u) for u ∈ U , and hence by Theorem A.4∑
u∈U

f (u) du '
∑
u∈U

h(u) du =
∑
t∈T

f (t) dt.

Hence by the triangle inequality, we have∣∣∣∣∣∑
t∈T

f (t) dt −
∫ b

a
f (t) dt

∣∣∣∣∣ . ε.

Since ε� 0 was arbitrary, this finishes the proof.

Corollary A.6 Suppose T is a near line and suppose f : R→ R is absolutely Riemann
integrable with a limited bound and nearly continuous at each point of T . Also suppose∫ a

−∞
|f (t)| dt +

∫ ∞
a
|f (t)| dt ' 0, a ' ∞.

Then ∑
t∈T

f (t) dt '
∫ ∞
−∞

f (t) dt.
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Proof Fix ε� 0. Then ∫ a

−∞
|f (t)| dt +

∫ ∞
a
|f (t)| dt ≤ ε

holds for every a ' ∞ hence, by overspill, for some limited a. Applying previous
theorem we get ∑

t∈T
|t|≤a

f (t) dt '
∫ a

−a
f (t) dt,

and by the triangle inequality and the arbitrariness of ε we establish the desired
result.

Remark A.7 Consider the following inequality obtained by integration by parts∫ ∞
x

e−t2/2 dt ≤ e−x2/2

x

This shows that the integral is infinitesimal for unlimited x and since t 7→ e−t2/2 is
nearly continuous for all t and bounded by 1, the above corollary gives

(20)
∑
t∈T

e−t2/2 dt '
√

2π

whenever T is a near line.

For a different treatment of integration using the full apparatus of IST see Diener and
Diener [6, Chapter 9].

B Random Variables

B.1 Almost Sure Infinitesimality and Limitedness

In REPT, a random variable X is infinitesimal almost surely if for every ε� 0 there
exists an event N (which may depend on ε) such that Pr(N) ≤ ε and X(ω) ' 0 holds
except for ω ∈ N .

We say that X is limited almost surely if for every ε� 0 there exists an event N (which
may depend on ε) such that Pr(N) ≤ ε and |X(ω)| � ∞ holds except for ω ∈ N .

In REPT there exists three characterizations of almost sure infinitesimality (Nelson [11,
Theorem 7.1]). We prove similar characterizations for almost sure limitedness.
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Theorem B.1 The following three conditions are equivalent.

(i) X is limited almost surely (i.e |X| � ∞, a.s.).
(ii) If η ' ∞, then Pr(|X| ≥ η) ' 0.

(iii) For every ε� 0 there exists a limited x such that Pr(|X| ≥ x) ≤ ε.

Proof Assume (i). Then for every ε� 0 there exists an event N , Pr(N) ≤ ε, such that
X(ω) is limited except when ω ∈ N . Hence if x ' ∞ the event |X| ≥ x is contained in
N , and Pr(|X| ≥ x) ≤ ε. Since ε was arbitrary, (ii) holds. Thus (i)⇒ (ii).

Assume (ii). Fix ε � 0. Then Pr(|X| ≥ x) ≤ ε holds for all unlimited positive x.
Hence by overspill it holds for some limited x, which is (iii). Thus (ii) ⇒ (iii) and
(iii)⇒ (i) is obvious.

B.2 L2 Random Variables

In REPT the mere existence of the expectation is vacuous since every random variable
has expected value given by a finite sum so a stronger property is imposed. Thus
definition of L1 is as follows. A random variable X is L1 if

(21) E
{
|X|I{|X|>a}

}
' 0, a ' ∞,

and this is stronger than limited absolute expectation because X is L1 if and only if
E|X| � ∞ and Pr(M) ' 0 =⇒ E{|X|IM} ' 0 (Nelson [11, Theorem 8.1]).

An rv X is L2 if X2 is L1 .

Remark B.2 In REPT, we must always write “X is L1 ” and never “X ∈ L1 ” to
emphasize that L1 is a property, not a set. Forming the set (of random variables)
{X ∈ RΩ : X is L1} would be an instance of illegal set formation [11, Chapter 4]
because L1 is an external property. The following useful properties hold.

X and Y are L1 =⇒ X + Y is L1(22a)

X is L1 and |a| � ∞ =⇒ aX is L1(22b)

Y is L1 and |X| ≤ |Y| =⇒ X is L1(22c)

For any random variable X and any positive real number a define another random
variable

(23) X(a)(ω) =


−a, X(ω) < −a

X(ω), −a ≤ X(ω) ≤ a

a, X(ω) > a
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Lemma B.3 (Approximation) Suppose X and Y are L1 random variables and
EX(a) ' EY (a) for all limited a. Then EX ' EY .

Proof For every ε� 0 we have

(24) |EX − EX(a)| ≤ ε and |EY − EY (a)| ≤ ε

for all a ' ∞ by (21) and hence by overspill for some a�∞. But for this a we have
EX(a) ' EY (a) and hence by the triangle inequality

(25) |EX − EY| ≤ 3ε.

Since (25) holds for every ε� 0, the left hand side must be infinitesimal.
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