Embedding an analytic equivalence relation in the transitive closure of a Borel relation

Edward J Green

Abstract

The transitive closure of a reflexive, symmetric, analytic relation is an analytic equivalence relation. Does some smaller class contain the transitive closure of every reflexive, symmetric, closed relation? An essentially negative answer is provided here. Every analytic equivalence relation on an arbitrary Polish space is Borel embeddable in the transitive closure of the union of two smooth Borel equivalence relations on that space. In the case of the Baire space, the two smooth relations can be taken to be closed, and the embedding to be homeomorphic.

2010 Mathematics Subject Classification 03E02 (primary); 28A05 (secondary)

Keywords: analytic equivalence relation, transitive closure

1 Introduction

This note answers a question in descriptive set theory that arises in the context of the Bayesian theory of decisions and games. It concerns the notion of common knowledge, formalized by Robert Aumann [1]. For an event A that is represented as a subset of a measurable space Ω, Aumann defines the event that an agent knows A to be the event $\Omega \backslash[\Omega \backslash A]_{\mathcal{P}}$, where \mathcal{P} is the agent's information partition of $\Omega .{ }^{1}$ If \mathcal{P} is the meet of individual agents' information partitions (in the lattice of partitions where $\mathcal{P}^{\prime} \leq \mathcal{P}^{\prime \prime} \Longleftrightarrow \mathcal{P}^{\prime \prime}$ refines \mathcal{P}^{\prime}), then Aumann defines

$$
\begin{equation*}
\Omega \backslash[\Omega \backslash A]_{\mathcal{P}} \tag{1}
\end{equation*}
$$

to be the event that A is common knowledge among the agents. ${ }^{2}$

[^0]Aumann restricts attention to the case that Ω is countable (or that the Borel σ-algebra on Ω is generated by the elements of a countable partition), so that measurability issues do not arise. But, otherwise, measurability problems dictate that information partitions should be represented as equivalence relations. If E_{1} and E_{2} are Σ_{1}^{1} (that is, analytic) equivalence relations, then the meet of the partitions that they induce is induced by the transitive closure of their union. This transitive closure is also a Σ_{1}^{1} equivalence relation. ${ }^{3}$

In most applications to Bayesian decision theory and game theory, it is reasonable to specify each agent's information as a Δ_{1}^{1} (that is, Borel) equivalence relation, or even as a smooth Borel relation or a closed relation rather than as an arbitrary Σ_{1}^{1} equivalence relation. ${ }^{4}$ Thus it may be asked: if the graphs of E_{1} and E_{2} are in Δ_{1}^{1} or in some smaller class, then how is the graph of the transitive closure of $E_{1} \cup E_{2}$ restricted?

It will be shown here that no significant restriction of the common-knowledge partition is implied by such restriction of agents' information partitions. This finding is not surprising, since restricting the complexity of individuals' equivalence relations does not obviate the use of an existential quantifier to define the transitive closure of a relation. Nevertheless, it needs to be shown that common-knowledge equivalence relations derived from Borel equivalence relations are not lower in set-theoretic complexity, as a class, than their definition would suggest. ${ }^{5}$

To define the transitive closure of $R \subseteq \Omega \times \Omega$, let $R^{(1)}=R$ and $R^{(n+1)}=R R^{(n)}$ (that is, the composition of relations R and $\left.R^{(n)}\right)$. Letting $\mathbb{N}_{+}=\{1,2, \ldots\}$, denote the transitive closure of R by $R^{+}=\bigcup_{n \in \mathbb{N}_{+}} R^{(n)}$. It will be proved here that, if Ω is a Polish space and $E \subset \Omega \times \Omega$ is a Σ_{1}^{1} equivalence relation, then there are smooth Δ_{1}^{1} equivalence relations E^{\prime} and $E^{\prime \prime}$ and a Δ_{1}^{1} subset Z of Ω, such that $\left(E^{\prime} \cup E^{\prime \prime}\right)^{+} \upharpoonright Z$ is Borel equivalent to $E .^{6}$ If Ω is the Baire space, then E^{\prime} and $E^{\prime \prime}$ can be taken to

[^1]be closed, Z can be taken to be open, and the Borel equivalence can be taken to be a homeomorphic equivalence.

2 The case of the Baire space

First take Ω to be the Baire space, $\mathcal{N}=\mathbb{N}^{\mathbb{N}} .^{7}$ Define subsets X and Y of \mathcal{N} by $X=\left\{\alpha \mid \alpha_{0}>0\right\}$ and $Y=\left\{\alpha \mid \alpha_{0}=0\right\} . X$ and Y are both homeomorphic to \mathcal{N}, and homeomorphisms $f: X \rightarrow Y$ and $g: Y \times Y \times Y \rightarrow Y$ are routine to construct. ${ }^{8}$ Each of X and Y is both open and closed in \mathcal{N}. It follows that, if Z is either X or Y, then $A \subseteq Z$ is open (resp. closed, Borel, Σ_{1}^{1}) as a subset of A iff it is open (resp. closed, Borel, Σ_{1}^{1}) as a subset of Z. This invariance to the ambient space extends to product spaces. (For example a subset of $X \times Y$ is closed in $X \times Y$ iff it is closed in $\mathcal{N} \times \mathcal{N}$.) In subsequent discussions, subsets of these subspaces will be characterized (for example, as being closed) without mentioning the subspace.

Theorem 2.1 If $E \subseteq X \times X$ is a Σ_{1}^{1} equivalence relation, then there are equivalence relations I and J on \mathcal{N}, each of which has a closed graph, such that $E=(I \cup J)^{+} \upharpoonright X$.

Remark It is important that the closed eqivalence relations are defined on a bigger domain than the original analytic one. Thus it still remains a problem whether I and J can have the same domain as the original E.

Before proceeding to the proof of this theorem, note that $I \cup J$ is a closed, reflexive, symmetric relation. Thus, theorem 2.1 has the following corollary.

Corollary 2.2 If $E \subseteq X \times X$ is a Σ_{1}^{1} equivalence relation, then there is a closed, reflexive, symmetric relation R on \mathcal{N}, such that $E=R^{+} \upharpoonright X$.

Theorem 2.1 can be viewed as being a stronger version of corollary 2.2 , in which the closed, reflexive, symmetric relation R of the corollary is specified to be the union of two closed equivalence relations, I and J. The following example shows that not every closed, reflexive, symmetric relation on \mathcal{N} is such a union. In fact, although every closed, reflexive, symmetric relation is trivially the union of $2^{\aleph_{0}}$ closed equivalence

[^2]relations, no lower cardinality suffices. Moreover, the trivial lower bound on cardinality cannot be improved even if the equivalence relations are not required to be closed.

Denote the diagonal (that is, identity) relation in $\mathcal{N} \times \mathcal{N}$ by $D=\{(\alpha, \alpha) \mid \alpha \in \mathcal{N}\} . D$ is closed.

Proposition 2.3 Let $\alpha \in \mathcal{N}$. Define $R=D \cup(\{\alpha\} \times \mathcal{N}) \cup(\mathcal{N} \times\{\alpha\})$, and define

$$
\mathcal{E}=\bigcup\{D \cup\{(\alpha, \beta),(\beta, \alpha)\} \mid \beta \in \mathcal{N} \backslash\{\alpha\}\} .
$$

$R=\bigcup \mathcal{E} ;$ every $E \in \mathcal{E}$ is an equivalence relation; R is closed, reflexive, and symmetric; and $2^{\aleph_{0}}$ is the cardinality of \mathcal{E}. Except for \mathcal{E} and $\mathcal{E} \cup\{D\}$, there is no other set \mathcal{F} of equivalence relations such that $R=\bigcup \mathcal{F}$. Thus, R is not a union of fewer that $2^{\aleph_{0}}$ equivalence relations.

Proof The assertions regarding \mathcal{E} are obvious from its construction. To obtain a contradiction from supposing that \mathcal{E} were not unique, suppose that R were also the union of a set $\mathcal{F} \notin\{\mathcal{E}, \mathcal{E} \cup\{D\}\}$ of equivalence relations. \mathcal{F} could not be a proper subset of \mathcal{E}, for, if $D \cup\{(\alpha, \beta),(\beta, \alpha)\} \notin \mathcal{F}$ and $\mathcal{F} \subseteq \mathcal{E} \cup\{D\}$, then $(\alpha, \beta) \in R \backslash \bigcup \mathcal{F}$. Consequently, there must be some $E \in \mathcal{F} \backslash \mathcal{E}$. By symmetry, there must be three distinct points, α, β, γ such that $\{(\beta, \alpha),(\alpha, \gamma)\} \subseteq E$. Since E is transitive, $(\beta, \gamma) \in E \backslash R$, contrary to $R=\bigcup \mathcal{F}$.

3 Proof of the theorem

If $1 \leq i<j \leq k$ and $\vec{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right) \in \mathcal{N}^{k}$, then a transposition mapping is defined by $t_{i j}(\vec{\alpha})=\left(\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{j}, \alpha_{i+1}, \ldots, \alpha_{j-1}, \alpha_{i}, \alpha_{j+1}, \ldots, \alpha_{k}\right) .{ }^{9}$ The abbreviation $\widetilde{A}=t_{12}(A)=\left\{t_{12}(\alpha) \mid \alpha \in A\right\}$ will sometimes be used. Each $t_{i j}$ is a homeomorphism of \mathcal{N}^{k} with itself. Note that $t_{i j} \upharpoonright X$ and $t_{i j} \upharpoonright Y$ map X^{k} and Y^{k} homeomorphically onto themselves.

Recall that a relation $E \subseteq X \times X$ is ${ }_{1}^{1}$ iff there is a set F such that

$$
\begin{equation*}
F \subseteq X \times X \times \mathcal{N} \text { is closed, and }(\alpha, \beta) \in E \Longleftrightarrow \exists \gamma(\alpha, \beta, \gamma) \in F \tag{2}
\end{equation*}
$$

Lemma 3.1 If $E \subseteq X \times X$ is symmetric, then E is ${ }_{1}^{1}$ iff there is a closed, t_{12}-invariant set $F \subset X \times X \times X$ that satisfies $(\alpha, \beta) \in E \Longleftrightarrow \exists \gamma(\alpha, \beta, \gamma) \in F$.

[^3]Proof Let F_{0} satisfy (2). Let h be a homeomorphism from \mathcal{N} onto X, and define $F_{1} \subseteq X \times X \times X$ by $(\alpha, \beta, \gamma) \in F_{0} \Longleftrightarrow(\alpha, \beta, h(\gamma)) \in F_{1}$. F_{1} also satisfies (2), then, and it is closed. By symmetry of $E, \widetilde{F_{1}}$ is another closed set that satisfies (2). Consequently, $F=F_{1} \cup \widetilde{F_{1}}$ is a t_{12}-invariant closed set that satisfies $(\alpha, \beta) \in E \Longleftrightarrow$ $\exists \gamma(\alpha, \beta, \gamma) \in F$.

The two closed equivalence relations that theorem 2.1 asserts to exist are defined from the homeomorphisms f and g introduced in Section 2, and the closed, t_{12}-invariant set F guaranteed to exist by lemma 3.1, as follows. Recall that D denotes the diagonal (that is, identity) relation in $\mathcal{N} \times \mathcal{N}$ by $D=\{(\alpha, \alpha) \mid \alpha \in \mathcal{N}\}$.

$$
\begin{align*}
j(\alpha, \beta, \gamma)= & g(f(\alpha), f(\beta), f(\gamma)) \\
& \quad[j \operatorname{maps} X \times X \times X \text { homeomorphically onto } Y] ; \\
G= & \{(\alpha, j(\alpha, \beta, \gamma)) \mid(\alpha, \beta, \gamma) \in F\} \subseteq X \times Y ; \\
H= & \{(j(\alpha, \beta, \gamma), j(\beta, \alpha, \gamma)) \mid(\alpha, \beta, \gamma) \in X \times X \times X\} \subseteq Y \times Y ; \tag{3}\\
I= & D \cup G \cup \widetilde{G} \cup \widetilde{G} G \subseteq D \cup((\mathcal{N} \times \mathcal{N}) \backslash(X \times X)) ; \\
J= & D \cup H \subseteq D \cup(Y \times Y)
\end{align*}
$$

The assertions collected in the following lemma are routinely verified.

Lemma $3.2 D, G, \widetilde{G}, H, J, \widetilde{G} G$ and I are closed. $G \widetilde{G}=D \upharpoonright X . \widetilde{G} G=$ $\{(j(\alpha, \beta, \gamma), j(\alpha, \delta, \epsilon)) \mid(\alpha, \beta, \gamma) \in F$ and $(\alpha, \delta, \epsilon) \in F\} . \quad H=\widetilde{H} . \quad H^{(2)}=D \upharpoonright Y$. $G H=\{(\alpha, j(\beta, \alpha, \gamma) \mid(\alpha, \beta, \gamma) \in F\} . G H \widetilde{G}=E$.

Lemma 3.3 I and J are equivalence relations.

Proof These relations are reflexive and symmetric, so their transitive closures are equivalence relations. Thus, the lemma is equivalent to the assertion that $I=I^{+}$and $J=J^{+}$. For any relation $K, K^{(2)}=K$ is sufficient for $K=K^{+}$. In the following calculations of $I^{(2)}$ and $J^{(2)}$, composition of relations is distributed over unions. Terms that evaluate by identities that were calculated in lemma 3.2 to a previous term or its sub-relation, are omitted from the expansion by terms in the penultimate step of each
calculation.

$$
\begin{aligned}
I^{(2)}= & (D \cup G \cup \widetilde{G} \cup \widetilde{G} G)(D \cup G \cup \widetilde{G} \cup \widetilde{G} G) \\
= & (D \cup G \cup \widetilde{G} \cup \widetilde{G} G) \cup(G \cup G \widetilde{G} \cup G \widetilde{G} G) \cup(\widetilde{G} \cup \widetilde{G} G \cup \widetilde{G} \widetilde{G} \cup \widetilde{G} \widetilde{G} G) \\
& \cup(\widetilde{G} G \cup \widetilde{G} G G \cup \widetilde{G} G \widetilde{G} \cup \widetilde{G} G \widetilde{G} G) \\
= & D \cup G \cup \widetilde{G} \cup \widetilde{G} G \\
= & I . \\
& \\
J^{(2)}= & (D \cup H)(D \cup H) \\
= & (D \cup H) \cup\left(H \cup H^{(2)}\right) \\
= & D \cup H \\
= & J .
\end{aligned}
$$

Proof of theorem 2.1 Lemmas 3.2 and 3.3 show that the each of the relations I and J on \mathcal{N}, is an equivalence relation that has a closed graph. It remains to be shown that that $E=(I \cup J)^{+} \cap(X \times X)$. Note that, since $D \subseteq I \cup J, I \cup J \subseteq(I \cup J)^{(2)} \subseteq(I \cup J)^{(3)} \subseteq \ldots$ Hence, if $(I \cup J)^{(n)}=(I \cup J)^{(n+1)}$, then $(I \cup J)^{(n)}=(I \cup J)^{+}$.

The following calculation shows that $(I \cup J)^{(5)}=(I \cup J)^{(6)}$. The calculation is done recursively, according to the following recipe at each stage $n>1$:
(1) Begin with the equation $(I \cup J)^{(n+1)}=(I \cup J)(I \cup J)^{(n)}$.
(2) Rewrite $(I \cup J)$ as $D \cup G \cup \widetilde{G} \cup \widetilde{G} G \cup H$ according to (3), rewrite $(I \cup J)^{(n)}$ according to the result of the previous stage, and then distribute composition of relations over union in the resulting equation.
(3) For each identity stated in lemma 3.2, and for each identity that, for some $K \in\{G, \widetilde{G}, H\}$, equates a composition $K D$ or $D K$ of K and D (or a restriction of D to a product set of which K is a subset) to K, do as follows: Going from left to right, apply the identity wherever possible. ${ }^{10}$ Repeat this entire step (consisting of one pass per identity) until no further simplifications are possible.

[^4](4) Delete compositions of relations that include terms $K L$ such that the range of K and the domain of L (viewed as correspondences) are disjoint, in which case the term denotes the empty relation. Delete $D \upharpoonright X$ (occurring as a term by itself), of which D is a superset.
(5) Delete each term of form $[K] \widetilde{G}[L]$ (resp. $[K] G[L]$) from a union in which the corresponding term for its superset, $[K] \widetilde{G} E[L]$ (resp. $[K] E G[L]$) also appears. (One or both of the bracketed sub-terms may be absent from both terms in the pair.) Delete D (occurring as a term by itself) from every union that contains both $D \upharpoonright Y$ and E, since $D \subseteq D \upharpoonright Y \cup E$.
(6) Reorder terms lexicographically, in the order $D<D \upharpoonright Y<E<G<\widetilde{G}<H$. Delete repeated terms.
\[

$$
\begin{align*}
(I \cup J) & =D \cup G \cup \widetilde{G} \cup \widetilde{G} G \cup H \\
(I \cup J)^{(2)} & =D \cup D \upharpoonright Y \cup G \cup G H \cup \widetilde{G} \cup \widetilde{G} G \cup \widetilde{G} G H \\
& \cup H \cup H \widetilde{G} \cup H \widetilde{G} G \\
(I \cup J)^{(3)} & =D \upharpoonright Y \cup E \cup E G \cup G H \cup \widetilde{G} E \cup \widetilde{G} E G \cup \widetilde{G} G H \\
& \cup H \cup H \widetilde{G} \cup H \widetilde{G} G \cup H \widetilde{G} G H \tag{5}\\
(I \cup J)^{(4)} & =D \upharpoonright Y \cup E \cup E G \cup E G H \cup \widetilde{G} E \cup \widetilde{G} E G \cup \widetilde{G} E G H \\
& \cup H \cup H \widetilde{G} E \cup H \widetilde{G} E G \cup H \widetilde{G} G H \\
(I \cup J)^{(5)} & =D \upharpoonright Y \cup E \cup E G \cup E G H \cup \widetilde{G} E \cup \widetilde{G} E G \cup \widetilde{G} E G H \\
& \cup H \cup H \widetilde{G} E \cup H \widetilde{G} E G \cup H \widetilde{G} E G H \\
& =(I \cup J)^{(6)}
\end{align*}
$$
\]

Thus $(I \cup J)^{+}=(I \cup J)^{(5)}$. Note that $D \upharpoonright Y, G, \widetilde{G}, H$ and all relations of form or $\widetilde{G} Q$ or $H Q$ or $Q G$ or $Q H$ (where variable Q ranges over compositions of G, \widetilde{G}, H, and E), are disjoint from $X \times X$. Therefore, from the calculation in (5) of $(I \cup J)^{(5)}$ as a union of E with such relations, it follows that $(I \cup J)^{+} \upharpoonright X=E$.

4 The general case of a standard Borel space

In this concluding section, theorem 2.1 is generalized in two ways to an arbitrary standard Borel space (that is, to a Borel subset of a Polish space with its inherited Borel structure). A Borel isomorphism of standard Borel spaces Φ and Ω is a Δ_{1}^{1} function $k: \Phi \rightarrow \Omega$ such that $k^{-1}: \Omega \rightarrow \Phi$ exists and is also Δ_{1}^{1}. Every two uncountable standard Borel spaces are isomorphic. ${ }^{11}$

In both generalizations, the concept of smoothness of a Borel equivalence relation substitutes for the concept of closedness that appears in theorem 2.1. If $E \subseteq \Omega \times \Omega$ is a Δ_{1}^{1} equivalence relation, and if there is a set $\left\{Y_{n}\right\}_{n \in \mathbb{N}}$ of Δ_{1}^{1} sets such that $(\psi, \omega) \in E \Longleftrightarrow \forall n\left[\psi \in Y_{n} \Longleftrightarrow \omega \in Y_{n}\right]$, then E is a smooth equivalence relation. By Harrington, Kechris and Louveau [2, proof of Theorem 1.1, p. 920], every equivalence relation with closed graph is smooth. If $k: \Phi \rightarrow \Omega$ is Δ_{1}^{1} and $E \subseteq \Omega \times \Omega$ is a smooth Δ_{1}^{1} equivalence relation, then $F \subseteq \Phi \times \Phi$ defined by $(\phi, \chi) \in F \Longleftrightarrow(k(\phi), k(\chi)) \in E$ is also smooth, with F-equivalence determined by $\left\{k^{-1}\left(Y_{n}\right)\right\}_{n \in \mathbb{N}}$.

The first generalization of theorem 2.1 asserts Borel embeddability of an arbitrary Σ_{1}^{1} equivalence relation. If Φ and Ω are standard Borel spaces, and $F \subseteq \Phi \times \Phi$ and $E \subseteq \Omega \times \Omega$ are Σ_{1}^{1} equivalence relations, then a Borel embedding of F into E is a function $e: \Phi \rightarrow Z \subseteq \Omega$ that extends naturally to a Borel isomorphism from F to $E \upharpoonright e(Z)$. That is, $(\phi, \chi) \in F \Longleftrightarrow(e(\phi), e(\chi)) \in E$.

Corollary 4.1 Let Ω_{0} and Ω be standard Borel spaces, and let $E_{0} \subseteq \Omega_{0} \times \Omega_{0}$ be a Σ_{1}^{1} equivalence relation. There are smooth Δ_{1}^{1} equivalence relations $E_{1} \subseteq \Omega \times \Omega$ and $E_{2} \subseteq \Omega \times \Omega$ such that E_{0} is Borel embeddable in $\left(E_{1} \cup E_{2}\right)^{+}$. If Ω is the Baire space, then E_{1} and E_{2} can be chosen to be closed.

Proof If Ω_{0} is countable, then E_{1} and E_{2} can both be taken to be the union of D with the image of E_{0} under an arbitrary injection of Ω_{0} into Ω. Otherwise, there is a Borel isomorphism k_{0} from Ω_{0} onto X (where X is as in theorem 2.1), and there is a Borel isomorphism k from Ω onto \mathcal{N}. Define $e=k^{-1} \circ k_{0}$. Note that the range of e is a Borel set, as is required for e to be an embedding. If $E \subset X \times X$ is defined by $(\alpha, \beta) \in E \Longleftrightarrow\left(k_{0}^{-1}(\alpha), k_{0}^{-1}(\beta)\right) \in E_{0}$, then E is a Σ_{1}^{1} equivalence relation. ${ }^{12}$ Let I and J be the closed equivalence relations defined in (3), and define $(\psi, \omega) \in E_{1} \Longleftrightarrow(k(\psi), k(\omega)) \in I$ and $(\psi, \omega) \in E_{2} \Longleftrightarrow(k(\psi), k(\omega)) \in J . E_{1}$ and

[^5]E_{2} are smooth. Now the corollary follows from theorem 2.1. That is: (a) k_{0} is an embedding of E_{0} in E by construction; (b) E is embedded in $(I \cup J)^{+}$by theorem 2.1; and (c) $(I \cup J)^{+}$is embedded in $\left(E_{1} \cup E_{2}\right)^{+}$by construction; so the corollary holds, since the composition of embeddings is an embedding.

The second generalization of theorem 2.1 concerns embedding the restriction, to the uncountable complement in Ω of some Borel subset B of Ω, of a Σ_{1}^{1} equivalence relation into the transitive closure of a smooth relation on Ω by the inclusion map. ${ }^{13}$ This corollary is proved in a closely analogous way to corollary 4.1, by setting $E_{0}=$ $E \upharpoonright \Omega_{0}$ and setting e to be the inclusion map.

Corollary 4.2 Suppose Ω is a standard Borel space, that $E \subseteq \Omega \times \Omega$ is a Σ_{1}^{1} equivalence relation, and that that B is uncountable Δ_{1}^{1} proper subset of Ω. Then there are smooth Δ_{1}^{1} relations E_{1} and E_{2}, such that $E \upharpoonright(\Omega \backslash B)=\left(E_{1} \cup E_{2}\right)^{+} \upharpoonright(\Omega \backslash B)$. That is, the inclusion map embeds $E \upharpoonright(\Omega \backslash B)$ in $\left(E_{1} \cup E_{2}\right)^{+}$.

Finally, corollary 4.3 provides a negative answer to the question, implicit in the preceding discussion of Aumann's formulation of common knowledge of an event, of whether the saturations of Borel sets (or even of singletons) with respect to the transitive closures of unions of smooth Borel equivalence relations lie within any significantly restricted sub-class of Σ_{1}^{1}.

Corollary 4.3 Suppose Ω is a standard Borel space and that $S \subseteq \Omega$ is a Σ_{1}^{1} set such that, for some Δ_{1}^{1} set $\Omega_{0}, S \subseteq \Omega_{0}$ and $\Omega \backslash \Omega_{0}$ is uncountable. Then there are smooth Δ_{1}^{1} relations E_{1} and E_{2}, such that for every non-empty $A \subseteq S,[A]_{\left(E_{1} \cup E_{2}\right)^{+}} \cap \Omega_{0}=S$.

Proof Define $(\psi, \omega) \in E \Longleftrightarrow[\{\psi, \omega\} \subseteq S$ or $\psi=\omega]$, specify $B=\Omega \backslash \Omega_{0}$, and apply corollary 4.2. For some block, π, of the partition induced by $\left(E_{1} \cup E_{2}\right)^{+}$, $\pi \cap \Omega_{0}=S$. Therefore, if $\emptyset \neq A \subseteq S$, then $[A]_{\left(E_{1} \cup E_{2}\right)^{+}} \cap \Omega_{0}=S$.

[^6]
Acknowledgements

The author thanks the Human Capital Foundation, (http://www.hcfoundation.ru/ en/) and particularly Andrey P. Vavilov, for research support through the Center for the Study of Auctions, Procurements, and Competition Policy (CAPCP, http://capcp. psu.edu/) at the Pennsylvania State University. Also he gratefully acknowledges the hospitality of CEMFI (http://www.cemfi.es/) where the research was conducted. The exposition of the article has benefitted significantly from suggestions made by an anonymous referee.

References

[1] R J Aumann, Agreeing to disagree, Ann. Statist. 4 (1976), 1236-1239; doi:10.1214/aos/1176343654.
[2] LA Harrington, AS Kechris, A Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, J. Amer. Math. Soc. 3 (1990), 903-928; doi: 10.1090/S0894-0347-1990-1057041-5.
[3] SA Kripke, A completeness theorem in modal logic, J. Symbolic Logic 24 (1959), 1-14.
[4] G W Mackey, Borel structure in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134-165; doi:10.1090/S0002-9947-1957-0089999-2.
[5] Y N Moschovakis, Descriptive Set Theory, second edition, American Mathematical Society, 2009.
[6] W Pohlers, Proof Theory: The First Step into Impredicativity, Springer-Verlag, 2009.

Department of Economics, The Pennsylvania State University, University Park, PA 16802, USA
eug2@psu.edu
http://personal.psu.edu/eug2
Received: 21 July 2012 Revised: 12 March 2013

[^0]: ${ }^{1}[A]_{\mathcal{P}}$ denotes $\bigcup\{\pi \mid \pi \in \mathcal{P}$ and $\pi \cap A \neq \emptyset\}$, the saturation of A with respect to \mathcal{P}. If E is an equivalence relation, then $[A]_{E}$ denotes the saturation of A with respect to the partition induced by E. Aumann's definition corresponds to the truth condition for $\square A$ in Kripke [3]
 ${ }^{2}$ Aumann sketches an argument-reminiscent of a general principle in proof theory (cf Pohlers [6, Lemma 6.4.8, p. 89]) that this definition is equivalent to the intuitive, recursive definition of common knowledge: that A has occurred and that, for $n=0,1, \ldots$, both agents know. . . that both agents know (n times) that A has occurred.

[^1]: ${ }^{3}$ Composition is defined with a single existential quantifier, and thus takes a pair of Σ_{1}^{1} relations to a Σ_{1}^{1} relation. The countable union of Σ_{1}^{1} relations is Σ_{1}^{1}. (Moschovakis [5, Theorem 2B.2, p. 54])
 ${ }^{4}$ Smoothness (also called tameness) and closedness are co-extensive for equivalence relations on subsets of Polish spaces. (Harrington, Kechris and Louveau [2, proof of Theorem 1.1, p. 920])
 ${ }^{5}$ If the graph of a function defined on a Borel set in a Polish space is an analytic set, then it is a Borel set. (Moschovakis [5, exercise 2E.4]) This is an example of a class of Borel sets, the definition of which does not have a syntactic form that overtly excludes non-Borel analytic sets from the class.
 ${ }^{6} R \upharpoonright Z=R \cap(Z \times Z)$. Let restriction take precedence over Boolean operations. For example, $X \cup R \upharpoonright Z \cap Y$ means $X \cup(R \upharpoonright Z) \cap Y$.

[^2]: ${ }^{7} \mathbb{N}=\{0,1, \ldots\} . \mathcal{N}$ is topologized as the product of discrete spaces.
 ${ }^{8}$ Since Y is homeomorphic with \mathcal{N}, g can be constructed from the function described by Moschovakis [5, p. 31].

[^3]: ${ }^{9}$ A sub-sequence of subscripted alphas distinct from α_{i} and α_{j} having subscripts that are not increasing, which occurs if $i=1$ or $j=i+1$ or $j=k$, denotes the empty sequence.

[^4]: ${ }^{10}$ Let $P=D \upharpoonright X$ and $Q=D \upharpoonright Y$. Identities are applied in the following order at each stage of the recursion: $D D=D, D E=E, D G=G, D \widetilde{G}=\widetilde{G}, D H=H, D P=P, D Q=Q$, $E D=E, E E=E, E P=E, G D=G, G \widetilde{G}=P, G H \widetilde{G}=E, G Q=G, \widetilde{G} D=\widetilde{G}, \widetilde{G} P=\widetilde{G}$, $H D=H, H H=Q, H Q=H, P D=P, P E=E, P G=G, P P=P, Q D=Q, Q \widetilde{G}=\widetilde{G}$, $Q H=H, Q Q=Q$.

[^5]: ${ }^{11}$ Mackey [4, pp. 338-9].
 ${ }^{12}$ Moschovakis [5, Theorem 2B.2, p. 54].

[^6]: ${ }^{13} \mathrm{An}$ analogous result, in which the B is required only to be Σ_{1}^{1} - not necessarily Borelcan be formulated by adding a hypothesis under which the complement of B will have an uncountable Borel subset. One sufficient condition for an uncountable Π_{1}^{1} set, W, to have an uncountable Δ_{1}^{1} subset is that there should be a nonatomic measure, μ, on Ω such that $\mu^{*}(\Omega \backslash W)<\mu(\Omega)$ (where μ^{*} is outer measure). Another sufficient condition is that W should have a perfect (hence both uncountable and Δ_{1}^{1}) subset. A sufficient condition for every uncountable Π_{1}^{1} set to have a non-empty perfect subset-albeit one that is independent of ZFC set theory-is that Π_{1}^{1} is determinate. (Moschovakis [5, Exercise 6G.10, p. 288]) It is provable in ZFL that there is an uncountable Π_{1}^{1} set (in fact, a Π_{1}^{1} set) without a non-empty perfect subset. (Moschovakis [5, Exercise 5A.8, p. 212])

