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Abstract We develop the general theory of fopometric spaces, i.e., topological
spaces equipped with a well-behaved lower semi-continuous metric. Spaces of global
and local types in continuous logic are the motivating examples for the study of such
spaces. In particular, we develop Cantor-Bendixson analysis of topometric spaces,
which can serve as a basis for the study of local stability (extending the ad hoc devel-
opment in Ben Yaacov I and Usvyatsov A, Continuous first order logic and local
stability. Trans Am Math Soc, in press), as well as of global 8-stability. We conclude
with a study of perturbation systems (see Ben Yaacov I, On perturbations of contin-
uous structures, submitted) in the formalism of topometric spaces. In particular, we
show how the abstract development applies to Ro-stability up to perturbation.
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0 Introduction

Topometric spaces, namely spaces equipped both with a topology and with a metric,
are omnipresent in continuous logic and in fact predate it.

Global type spaces, in the sense of continuous logic, as well as in the sense of prede-
cessors such as Henson’s logic or metric compact abstract theories, are equipped with
a logic topology as well as with a natural metric d(p, g) = d(p(M), q(M)) (where
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236 I. Ben Yaacov

M is the monster model). Iovino’s notion of a uniform structure on the type spaces [8]
is an early attempt to put this metric structure in a more general setting, and as such
may be viewed as a precursor to the formalism we propose here. The metric nature of
global types spaces was used by Iovino and later by the author to define useful notions
of Morley ranks. These ranks play a crucial role in the proof of Morley’s Theorem for
metric structures in [3].

Continuous logic was proposed and developed in [7] as a model-theoretic formal-
ism for metric structures. Unlike its predecessors it provides a good notion of a local
type space S, (M), namely the space of ¢-types for a fixed formula ¢. Again, in addi-
tion to the logic topology, this space is equipped with a useful metric dy(p, q) =
supp |o(x, b)P — ¢(x, b)?|. More examples comes from the study of perturbations of
metric structures in [5], where perturbation metrics turn out to be alternative topometric
structures on the type spaces.

In addition, topometric analogues of the classical (one should say ‘“discrete”)
Cantor-Bendixson analysis in these spaces play important roles in various contexts. In
global type spaces they can be used to characterise RXg-stability and define the Morley
ranks which were constructed (in a far more complicated manner) in [3]. In local
type spaces they can be use to characterise local stability and independence, as in [7].
Finally, at the end of the present paper, we use them to for a rudimentary study of the
notion of a theory being Ro-stable up to perturbation, which occurs more and more
in recently studied examples. In particular we show that this property is characterised
by the existence of corresponding Morley ranks.

In the present paper we unite these examples under the single definition of a fopo-
metric space. We then proceed to study topometric spaces as such, much like general
topology studies topological spaces, with a particular emphasis on Cantor-Bendixson
analysis. Alongside this abstract study we provide many motivating examples from
continuous logic as well as applications of our abstract results to the study of metric
structures.

In Sect. 1 we define topometric spaces and the category of topometric spaces. While
we are quite certain about the category of compact topometric spaces, we propose to
extend our definitions to locally compact and even more general spaces, with some
lower degree of certitude. In particular, we study questions such the existence of quo-
tients which preserve part of the structure, which seem to be a little more complicated
than for classical topological spaces.

In Sect. 2 we study various notions analogous to isolation in classical topological
spaces. In the case of topometric type spaces, d-isolated types are indeed the correct
analogues of isolated types in classical logic (such types were referred to in [3] as
principal, following Henson’s earlier terminology).

In Sect. 3 we study several natural notions of Cantor-Bendixson ranks, showing that
they all give rise the same notion of Cantor-Bendixson analysability. We give several
results characterising Cantor-Bendixson analysability and comparing the Cantor-
Bendixson ranks of two spaces.

Finally, in Sect. 4 we study the special case of topometric spaces arising as type
spaces equipped with perturbation metrics. We study notions such as A-stability, and
in particular Ro-stability, up to perturbation.
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Topometric spaces and perturbations of metric structures 237

For the purpose of examples we shall assume familiarity with the basics of contin-
uous first order logic, as developed in [7]. For a general survey of continuous logic
and the model theory of metric structures we refer the reader to [2].

1 Topometric spaces
1.1 Basic properties

While a metric is usually defined to take values in [0, 00), we allow infinite dis-
tances. If (X, d) is a metric space then distances between sets are defined as usual
d(A,B) = inf{d(x,y): x € A,y € B} and d(x, A) = d({x}, A). We follow the
convention that d(x, @) = d(A, @) = inf & = oo.

Notation 1.1 Let (X, d) be a metric space, A C X, r € RT. We define:

BA,r)={xeX:dx,A) <r}
BA,r)={xeX:dx,A) <r)

When A is a singleton {a} we may write B(a, r) and B(a, r) instead.

Definition 1.2 A (Hausdorff) topometric space is a triplet (X, 7, d) = (X, Ix, dx)
where X is a set of points, .7 is a topology on X and d is a [0, co]-valued metric on
X:

(i) The metric refines the topology. In other words, for every open U C X and
every x € U thereis r > 0 such that B(x,r) C U.

(i1) The metric function d: X 2 5 [0, oo] is lower semi-continuous, i.e., for all
r € Rt the set {(a, b) € X%: d(a,b) < r}isclosed in X2.

Convention 1.3 We shall follow the convention that unless explicitly qualified other-
wise, terms and notations from the vocabulary of general topology (e.g., compactness,
continuity, etc.) refer to the topological space (X, .77), while terms from the vocab-
ulary of metric spaces which are not applicable in general topology (e.g., uniform
continuity, completeness) refer to the metric space (X, d).

The topological closure of a subset ¥ C X is denoted by Y. Note that the closed set
B(a, r) should not be confused with F(a, r), which is defined in pure metric terms.
Lower semi-continuity of d implies that B(a, r) is closed (more generally, we show in
Lemma 1.8 below that B(F, r) is closed for every compact F), so B(a,r) C B(a,r).
A discrete 0/1 metric provides us with an extreme example of proper inclusion:
B(a, 1) ={a} # X = B(a, 1).

Recall that the weight of a topological space X, denoted wt(X), is the minimal
cardinality of a base of open sets for X. Similarly, if X is a metric space, we use || X ||
to denote its density character, i.e., the minimal size of a dense subset. In case X is a
topometric space, wt(X) refers to its topological part while || X|| to its metric part. If
X is a finite space then || X || = wt(X) = | X|; otherwise both are infinite.
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238 I. Ben Yaacov

Lemma 1.4 A topological space X equipped with a lower semi-continuous metric
is Hausdorff. If X is in addition compact then the metric must refine the topology
and X is a topometric space (in other words, for compact spaces the second item in
Defininition 1.2 implies the first item).

Proof Assume X is equipped with a lower semi-continuous metric d. Then the diag-
onal AX =d~1(0) € X x X is closed and X is Hausdorff.

We observed earlier that B(a, r) is closed foralla € X andr € RT.If U is a neigh-
bourhood of a then ), B(a,r)={a) CU.If X is compact then B(a,r) C U for
some r > 0, so the metric refines the topology, as desired. O

Example 1.5 The motivating examples come from continuous first order logic [7].
Type spaces, which are naturally equipped with an intrinsic “logic topology”, also
admit one or several metric structures rendering them topometric spaces:

(i) The type spaces S, (T') of a theory T, equipped with what we call the standard
metric:

d(p,q) =inf{d(a,b): a F p and b F ¢q in a saturated model M F T}.

If T is incomplete and p, g belong to distinct completions then d(p, g) = oo.
(i) Type spaces in unbounded continuous logic were defined in [5], with the dis-
tance between types defined as above. Unlike type spaces in standard continuous
logic, these are merely locally compact.
(iii) Local type spaces S, (M) over a model:

d(pv Q) = Sup{lw(xv b)P - (p(x’ b)(I|: be M}

(iv) Perturbation systems are presented in [5] via an alternative system of topometric
structures on the type spaces S, (T), where the metric is the “perturbation dis-
tance” dyp. Here d(p, g) = 0o means that a realisation of p cannot be perturbed
into a realisation of g.

(v) The metric c?p, defined in [5] as a combination of d and dp, also renders the
topological space S, (T) a topometric space.

There are two extreme kinds of topometric spaces which arise naturally from stan-
dard topological and metric spaces:

Definition 1.6 (i) A maximal topometric space is one in which the metric is
discrete.

(i) A minimal topometric space is one in which the metric coincides with the
topology.

Example 1.7 Every Hausdorff topological space can be naturally viewed as a maximal

topometric space. Similarly, every metric space can be naturally viewed as a minimal
topometric space.
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Topometric spaces and perturbations of metric structures 239

Clearly a topometric space X is minimal if and only if the metric functiond : X> —
R is continuous (rather than merely lower semi-continuous). If X is compact, then
this is further equivalent to the metric topology on X being compact.

A topometric space is both minimal and maximal if and only if it is topologi-
cally discrete: thus the minimal topometric spaces should be viewed as the topometric
generalisation of classical discrete topological spaces.

Lemma 1.8 Let X be a topometric space, F C X compact. Then E(F ,r) is closed
for every r € RT (we say that F has closed metric neighbourhoods in X ).

Proof Forr e RTletG, = F x X ﬁd’l([O, r]). Then G, C F x X is closed. Since
F'is compact, the projection 7 : F' x X — X is closed, whereby 7 (G,) is closed. We
conclude that B(F, r) = (.., 7(G,) is closed. m]

In particular, if X is compact then every closed subset of X has closed metric
neighbourhoods. In fact we can say something slightly stronger:

Lemma 1.9 Let X be a Hausdorff topological space, d a metric on X. If X is com-
pact and d: X*> — [0, o] is lower semi-continuous then every closed set in X has
closed metric neighbourhoods. Conversely, if X is regular (in particular, if X is locally
compact) and every closed set has closed metric neighbourhoods then d is lower semi-
continuous.

Proof The first assertion is a consequence of Lemma 1.8. For the converse assume
B(F, r) is closed for every closed F and r > 0. Assume that d(x, y) > r, and choose
some intermediate values d(x, y) > r; > r» > r. First, we have x ¢ F(y, r1) and
the latter is closed. We can therefore find an open set V such thatx € V € V C
X ~ B(y, r1), whereby d(V,y) > r; > ry, and thus y ¢ B(V r2). Following the
same reasoning we find U open such thaty e U C U € X ~ B(V, ). We conclude
that d(V,U) = d(V,U) = r» > r,and (x,y) € V x U € X>~d~ ([0, r]), as
desired. O

Along with Lemma 1.4, this means that our definition of a compact topometric
space coincides with that given in [7], based on closed sets having closed metric
neighbourhoods. If we drop the compactness assumption then still in every “reason-
able” space lower semi-continuity of the metric is weaker than the closed metric
neighbourhoods assumption. It is nonetheless sufficient for our purposes in compact
and locally compact spaces, and as all natural examples are at least locally compact
we have no choice but to base our intuition on those. Finally, lower semi-continuity
passes to product spaces (equipped with the supremum distance) whereas the closed
metric neighbourhoods property does not seem to do so.

Lemma 1.10 Ler X be a topometric space, K, F € X compact. Then d(K, F) =
min{d(x,y): x € K,y € F}, ie., the minimum is attained by some xo € K and
Yo €Y.

Proof Let r = d(K,F) = inf{d(x,y): x € K,y € F}. Then for every r’ >
ri (K x Fynd='([0,7']) # @. As d~'([0,7]) = ,.~,d"'([0,r']) and this is
a decreasing intersection of compact sets we get (K x F) Nd ~1(o, rD # &, as
requried. O
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240 I. Ben Yaacov

Proposition 1.11 Every compact topometric space is complete.

Proof Let{x,},<,beaCauchysequencein X.Foreachnletr, = sup{d(x,, x;,): m >
n}, so r, \¢ 0. Then B(x,, ry) is closed for all n (by Lemma 1.8) and contains x,,
for all m > n. By compactness F = (),_,, B(xn, n) # . It follows that F = {x}
where x is the metric limit of {x,,}, <. O

On the other hand, for non-compact spaces completeness is not isomorphism-
invariant: indeed, the minimal spaces (0, 1) and R are isomorphic as (minimal) topo-
metric spaces, yet only one of them is complete. A more interesting example is that of
type spaces of a theory 7 in unbounded continuous logic (see [5]): Each type space
S, (T) is locally compact and complete. The compactification procedure described
there consists of embedding it S, (T) < S, (T°°), where S,,(T*°) is a compact type
space of a standard (i.e., bounded) theory 7°°. This embedding is a morphism (con-
tinuous and locally uniformly continuous) and the image is incomplete—indeed, it is
metrically dense in S, (7).

Question 1.12 Can a “single point” (or at least “few points”) compactification be
constructed for locally compact topometric spaces? In the case of an unbounded con-
tinuous theory 7, we should like S, (T°°) to be a “few points compactification” of
Sn(T).

1.2 The category of topometric spaces

In this paper we deal mostly with compact or locally compact topometric spaces (by
our convention this means the topology is compact or locally compact). The correct
notion of a morphism of compact topometric spaces seems clear.

Definition 1.13 Let X and Y be topometric spaces, X compact. A morphism f: X —
Y is a mapping which is both continuous (topologically) and uniformly continuous
(metrically).

We seek a candidate for the definition of a morphism between general topometric
spaces. In the non compact case uniform continuity seems too strong a requirement.

Definition 1.14 Let f: X — Y be a mapping between topometric spaces. We define
some properties of f which depend both on the topological and the metric structures
of X:

(i) We say that f is locally uniformly continuous if for every x € X has a
neighbourhood on which f is uniformly continuous.

(i) We say that f is weakly locally uniformly continuous if for every x € X and
& > 0 there are a neighbourhood U of x and § > 0 such that if y, y’ € U and
dx(y,y") < éthendy(f(y), f())) <e.

(iii) We say that f is uniformly continuous on every compact if every restriction of
f to a compact subset of X is uniformly continuous.

Lemma 1.15 The properties defined in Definition 1.14 imply one another from top to
bottom.
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Proof We only need to prove that if X is compact and f: X — Y is weakly locally
uniformly continuous then f is uniformly continuous.

Indeed, let ¢ > 0. Then X admits an open cover X = |J ;<7 Ui such that for each U;
there is §; > 0 such that if x, x’ € U; and dx (x, x") < §; then dy (f(x), f(x")) < e.
The set | J;.; Ui x U; is a neighbourhood of the diagonal of X, which is equal to
ﬂ5>o d=1([0, 8. By definition of a topometric space each d=1([0, 8)) is closed.
Thus by compactness we may assume that |J,_, Ui x U; 2 d=1([0, 8'1). Now let
S=min{§;:i <n}U{§}.Ifx,x’ € X and d(x, x") < § then x, x’ € U; for some
i < n and therefore d(f(x), f(x")) < e. m|

Thus for locally compact X all these properties agree. For non locally compact
X even local uniform continuity seems too strong (e.g., for Proposition 1.17 below).
On the other hand, uniform continuity on every compact is too weak (let X be the
minimal space based on R \. Q and Y the maximal one: thenid: X — Y is uniformly
continuous on every compact while not being even metrically continuous.) We find
ourselves led to suggesting the intermediary property as the definition.

Definition 1.16 (Tentative) Let X and Y be topometric spaces. A morphism f: X —
Y is a mapping which is both continuous and weakly locally uniformly continuous.

We leave it to the reader to check that the composition of two morphisms is indeed a
morphism. By Lemma 1.15 this definition agrees with Definition 1.13.

Proposition 1.17 Let f: X — Y be a continuous mapping between topometric
spaces, and assume that either X is maximal or Y is minimal. Then f is a morphism.

Proof The case where X is maximal is immediate, so we prove the case where Y is
minimal. We need to show that f is weakly locally uniformly continuous. Solete > 0
andx € X.LetV = B(f(x),&/2) € Y.AsY isminimal, V is open, so U = F~Hwv)
is open in X. Then x € U, and for every y, y' € U we have d(f(y), f (")) < & (no
need for § here). O

This justifies the terminology: a maximal topometric structure is the strongest pos-
sible such structure on a topological space, while a minimal structure is the weakest
possible on a (metrisable) topological space.

We get another reassurance about our definition of a morphism of non-compact
topometric spaces from the following result, telling us that for all intents and pur-
poses we may identify classical Hausdorff topological spaces with maximal topometric
spaces and classical metric spaces with minimal topometric spaces:

Proposition 1.18 The construction of a maximal topometric space from a Hausdorff
topological space is a functor ¥ — TN, from the category of Hausdorff spaces and
continuous mappings to that of topometric spaces. As such it is the left-adjoint of the
Sorgetful functor TM — <. This functor is an equivalence of categories between
Hausdorff topological spaces and maximal topometric spaces.

Similarly the construction of a minimal topometric space from a metric one is
a functor M — TN, from the category of metric spaces and (metrically) contin-
uous mappings to topometric spaces. It is the right-adjoint of the forgetful functor
IM — M, and is an equivalence of categories between metric spaces and minimal
topometric spaces.
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242 I. Ben Yaacov

Proof Let Yz: € — TN be the maximal topometric space construction and
Yopr: M — TN be the minimal topometric space construction. Both are functors
by Proposition 1.17. Let also ¢g: T — T and @gy: I — TN be the forgetful
functors. It is immediate from the definition that ¢z is indeed a functor; it is also not
difficult to check that ggy is.

Let X € T, Y € TIM, and f: X — Y a mapping between their underlying sets.
Clearly if f: Yz(X) — Y is a morphism then f: X — ¢<(Y) is continuous, and
the converse is by Proposition 1.17. Thus v« is the left-adjoint of p. If X, Y € T we
get Homs (X, Y) = Homg (X, ¢z o ¥z (Y)) = Homgon(¥z(X), ¥5(Y)) whence the
equivalence of categories.

The argument for minimal topometric spaces and metric spaces is similar. O

Definition 1.19 Let X be a topometric space. A (topometric) subspace of X is a sub-
set Y C X equipped with the induced structure. One easily verifies that this is indeed
a topometric space (this was in fact used implicitly in the proof of Lemma 1.15) and
that the inclusion mapping ¥ < X is a morphisms.

A mapping f: Y — X is amonomorphism if it is an isomorphism with a subspace
of X (its image).

When dealing with quotients we feel more secure restricting to compact spaces.
Recall that a continuous surjective mapping from a compact space to a Hausdorff space
is automatically a topological quotient mapping, so we only need to worry about the
metric structure.

Lemma 1.20 Let (X, dx) be a compact topometric space andw : X — Y a Hausdorff
topological quotient of X. Let dy(y,y') = dx (n_l(y), n_l(y’)). Then (Y,dy) is
a topometric space and w: (X,dx) — (Y, dy) is a contractive homomorphism of
topometric spaces.

Proof For r > 0 let Ay = {(x,x’) € X*>: dx(x,x’) < r} and define A}, C Y?
similarly. The set A’y is closed in X 2 by the lower semi-continuity of dx and by
Lemma 1.10 we have A}, = (, 7)(A) so A} is closed as well. Therefore dy is
lower semi-continuous. By Lemma 1.9 dy refines the topology on Y and (Y, dy) is a
topometric space. The rest follows directly from the construction. O

For many purposes we shall require a somewhat stronger notion of quotient.

Definition 1.21 Let X and Y be topometric spaces, X compact. An epimorphism
f: X — Y is a surjective morphism satisfying that for every ¢ > 0 there is § > 0
such that forallx € X and y € Y

dy (f(x),y) <8 =>dx(x, [~ (») <e.

We then say that Y is a quotient space of X, and that f is a quotient mapping.

Note that this property is in some sense a converse of uniform continuity, which
may be stated as:

(Ve)(38)(Vxy) (dx (x, f ' (1) < 8 = dy (f(x), y) < ¢).
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Also, a mapping is a surjective monomorphism if and only if it is an injective epimor-
phism if and only if it is an isomorphism.

Definition 1.22 Let us call a mapping between metric spaces f: X — Y is precise if
foreveryx € Xandy € Y:dy(f(x),y) =dx(x, f_l(y)). We follow the convention
that d(x, @) = oco.

Lemma 1.23 Let f: X — Y be a continuous precise mapping between topometric
spaces. Then:

(1) It is uniformly continuous, and in particular a morphism.

(i) If f is surjective and X is compact then f is an epimorphism. (Any generalisa-
tion of the definition of epimorphisms to non-compact spaces should preserve
this property.)

(iii) The distance from f(X) to its complement Y ~. f(X) is infinite. Thus, if we
exclude in Y the infinite distance then a precise mapping is necessarily surjec-
tive.

(iv) If f is injective then it is isometric.

Proof ITmmediate. O

1.3 Existence of precise quotients

We shall need a result saying that interesting quotients of compact topometric spaces
exist. By interesting we mean ones which preserve some prescribed piece of infor-
mation without preserving too much else. Throughout this subsection X is a compact
topometric space (much of what we say can be extended to locally compact spaces in
a straightforward manner).

First, let us describe precise topometric quotients of X.

Lemma 1.24 Let ~ be an equivalence relation on X. Let [x] = {x' € X: x ~ x'}
andY = X/~ = {[x]: x € X} be the quotient set, w: X — Y the projection map.
Then the following are equivalent:

(i) The relation ~ is closed and for all x,y € X: dx(x, [y]) = dx([x], y).
(i) There exists a topometric structure on Y such that i is a precise quotient map.

Moreover, if such a topometric structure on Y exists then it is unique, given by the
quotient topology in Y and the metric:

dy ([x], [yD) = dx([x], [y]) = inf{dx (x', y"): x" ~ x, y ~ y}.

Proof Assume first ~ is closed and dx(x, [y]) = dx([x], y). Then Y is compact
and Hausdorff, and that each equivalence class is compact. By Lemma 1.10, for all
x,y € Xtherearex’ € [x]and y’ € [y]suchthatdy ([x], [y]) = dx(x’, y"). We obtain
that [x] # [y] = dx ([x], [y]) > 0 and dx([x], [y]) = dx(x', [y]) = dx([x], y) =
dx(x,[y]), whereby dx([x], [z]) =< dx([x].y) + dx(y,[z]) = dx(x],[yD) +
dx([y], [z]). Thus dy ([x], [y]D) = dx([x], [y]) is a metric.
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For all r € R the set {(x, y): dx(x,[y]) <r} C X2 is closed as the projection
on the first and last coordinate of {(x,y,z): dx(x,y) <randy ~ z} C X3. Thus
{(x], [yD: dy([x], [yD <r} C Y2is compact and therefore closed, and (Y, 9y, dy)
is a topometric structure. The property dy ([x], [y]) = dx (x, [y]) also implies that
is precise.

Conversely, assume that 7 is precise. Then it is immediate that the topometric
structure on Y is as prescribed in the moreover part, and that for all x, y € X:

dx (x, [y]) = dy([x], [yD = dx([x], ).
O

Lemma 1.25 Let ~ be a closed equivalence relation on X. Then the following are
equivalent:

(i) Forallx,y e X:d(x,[y]) =d(x], y).

(ii) For every class [x] € X and r € R™: B([x], r) is closed under ~.

(iii) For every closed set F € X and r € RY, if F is closed under ~ then so is
B(F,r).

(iv) There exists a family B of closed sets in X such that:
(a) B is closed under finite intersections.
(b) Forallx # ythereis F € Bsuchthatx € F,y ¢ F.
(c) Forall F € Bandr € QF: B(F, r) is closed under ~.

Proof (i) = (ii). Forall y ~ y' wehaved(y, [x]) = d([y], x) = d(y', [x]), so one
belongs to B([x],r) if and only if the other does.

(i) = (iii). As F and each [x] are compact and closed under ~, we have from
Lemma 1.10 that B(F, r) = User B, r) = U, ep B([x1, 7).

(iii)) = (iv). Immediate.

(iv) = (i). It is enough to show that d(x, [y]) > d([x], ¥). Let B be a family as
in the assumption, and assume that d(y, [x]) > r € Q™. Then we can find a family
By C B closed under finite intersections such that (] By = [x]. As E(y, rNNx] =9,
we obtain by compactness that B(y, )N F = @ forsome F € By. Theny ¢ B(F,r),
and since the latter is closed under ~: [y] N B(F, r) = @. In particular d([y], x) > r.

O

Let A = C(X, [0, 1]). It is known that the closed equivalence relations on X are
precisely those of the form ~o3 where 8 C A and x ~p3 y <= (Vf € B)(f(x) =
f (). In this case for each f € B there is a unique f' € C(Y, [0, 1]) such that
f = f' om.If B is closed under —, % and -, then the set B’ = {f’: f € B} dense
in uniform convergence in C (Y, [0, 1]).

Lemma 1.26 Let B C A, and assume B is closed under —, % and —. Then the
following are equivalent:

() Forallx,y e X:d(x,[y]) =d(x], y).
(i) Forallr € QF, f € B: B(f~'({0}, r)) is closed under ~sg.
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Proof (i) = (ii). Follows from Lemma 1.25, as every set of the form f -1 0} is
closed in X and closed under ~g3.
(i) = (). Let B = {f~1({0}): f € B}. For every f, g € B we also have f V
g € ‘B, so B is closed under finite intersections. If x 793 y, there is f € B such
that f(x) # f(y). Possibly replacing f with —f € B we have f(x) < f(y). If
f(x) <s < f(y)and s € [0, 1] is dyadic, then we can replace f with f =~ s € B,
and have f(x) =0 < f(y). Thus B satisfies the hypotheses of Lemma 1.25(@v) .

O

As we use continuous functions to prescribe equivalence relations, we need to
measure how many such functions are required to capture a piece of information.

Definition 1.27 (i) The definition complexity y4ef(K) of a closed subset K C X
is the smallest infinite cardinal « such that there exists a family of continuous
functions { f;: i < «x} € A which define K in the sense that K = [; fl._l({O}).

(i) The definition complexity of the metric d is defined as:

Xdef(d) = sup{xaet(B(K,r)): r > 0, xaer(K) = Ro}.

Note that if xgef(K) = R then K is the zero set of a single continuous function.
In case xgef(K) = & > Rg we can find {K;: i < «} such that xgr(K;) = Ro,
K = (0; Ki, and the family {K; : i < «} is closed under finite intersections. It follows
by compactness that B(K,r) = N; B(K;,r). We conclude that Xdef(E(K, r)) <
Xdef(K) + Xdef (d)-

Theorem 1.28 Let X be a compact topometric space, B C A = C(X, [0, 1]). Then
there exists B C B’ C U such that:

i) 18] < Bl + Xaer(d).
(i) Y = X/~ admits a topometric structure for which the projectionw: X — Y
is a precise topometric quotient map.

Moreover, this quotient structure is unique given by the quotient topology and the
metric:

dy (Ix1, [yD = dx ([x1, [y]) = inf{dx (", ') : X"~ x, ¥ ~a5 ¥}

Proof For each f € A and r € QF choose a family B 7, C 2l such that [By,,| <
xdet(d) and B(f~1({0}), r) = N{g~' ({0} : g € B, .

Let B be the closure of 5 under —, % and =, so |Bg| < |B|+ Rg. GivenB,, C A
closed under these connectives, let 98,1 be the closure under the connectives of
B, U Ufe%n,re(@+ “str'

Let 8" = J, Bn. Then B € B’ C A, [B'| < [B| + xdef(d), and B’ satisfies the
hypotheses of Lemma 1.26. We conclude using Lemma 1.24. O

Corollary 1.29 Let X be a compact topometric space, 6 C A = C(X, [0, 1]). Then
X admits a precise topometric quotient w: X — Y such that each member of B
factors through w and wt(Y) < |B| + xdef(d).
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Proof Tmmediate from Theorem 1.28, since wt(X/~a) < |B'|4+R0 < |B|+ xdet(d).
O

Definition 1.30 Let X be a compact topometric space.

(i) A family 2 of (isomorphism classes of) quotients of X is sufficient if for every
subset B C C(X, [0, 1]) there is a quotient (Y, ) € 2 (where w: X — Y is
the quotient map) such that wt(Y) < |®8| + Rg and every member of B factors
via .

(i) We say that X has enough quotients if X admits a sufficient family of quotients.
(iii)) We say that X has enough precise quotients if X admits a sufficient family of
precise quotients.

Theorem 1.31 Let X be a topometric space. Then the following are equivalent:

(D) Xdef(dx) = Ro.
(ii) The family of all precise quotients of X is sufficient.
(i) X has enough precise quotients.

Proof (i) = (ii). By Corollary 1.29.

(il) = (iii). Immediate.

(iii) = (i). Let K C X be a zero set, K’ = B(K,r), and we need to show that

xdef(K") = R as well. Say that K = f_l(O), and let 7: X — Y be a precise quo-

tient such that wt(Y) = R and f = f ox.Let K = £ ~1(0), K’ = B(K, r). Then

K =771 (K), so K’ = 7~ 1(K’) by preciseness. On the other hand, as wt(Y) = R

every closed set is a zero set, so say K = g’l (0). Then K’ = (g o)~ 1(0), as desired.
O

The topometric spaces we are interested in are type spaces, with either the stan-
dard metric or some other (e.g., perturbation) metric. Such spaces almost always have
enough precise quotients.

Proposition 1.32 (i) Let T be a theory in a language of arbitrary size. Let d' be
a metric on S, (T), and assume that for every r the set of 2n-tuples {(a, b):
d'(tp(a), tp(b)) < r} is type-definable using only countably many symbols from
the language. Then (S, (T), d’) has enough precise quotients.

(i) Let T be a theory in a language of arbitrary size. Then (S,,(T), d) has enough
precise quotients where T is the standard metric. (Since we may name param-
eters in the language, this also applies to S, (A) for any set of parameters A.)

(iii) Let M be an X1-saturated and strongly 81-homogeneous structure in a count-
able language, and let d’ be a lower semi-continuous metric on S, (M) invariant
under the action of Aut(M). Then (S, (M), d") has enough precise quotients.

(iv) Let T be a theory in a language of arbitrary size, ¢ (X, ¥) a formula, M a model.
Then (Sy (M), dy) has enough precise quotients where d,, is the standard metric
on Sy (M).

Proof For the first item, let K € S, (T) be a zero set. Then K can be defined using
countably many symbols from the language, so B(K, r) can also be defined using
countably many symbols and is therefore a zero set as well. It follows that yger(d') =

@ Springer



Topometric spaces and perturbations of metric structures 247

Ko, and conclude using Theorem 1.31. The second and third items are special cases
of the first one.

For the last item, even though we allow a language of arbitrary size we may replace
it with a countable sub-language containing all symbols appearing in ¢. By downward
Lowenheim-Skolem, the family of all spaces S, (M "y where M’ < M is a sufficient
family of precise quotients. O

2 d-isolation

Usually we do not expect to find topologically isolated points in a non-maximal
topometric space, since by definition the topology cannot be stronger than the metric.
Instead, we define a notion of isolation relative to the metric by requiring the topology
to be as strong as possible around a point, i.e., to coincide with the metric:

Definition 2.1 (i) A pointx € X is d-isolated if the topology and the metric agree
near x, i.e., if x € B(x, r)° forallr > 0.
(i1) Itis weakly d-isolated if we only have B(x, r)°® # @ for all r > 0.

The need for two notions of isolation may be bothering. Indeed, in the case of the
standard metric on type spaces d-isolation and weak d-isolation are equivalent (see
[6, Fact 1.8]). On the other hand, the distinction is unavoidable in some cases, e.g.,
that of perturbation metrics, and each notion plays its own role.

For example, we have:

Lemma 2.2 The set of weakly d-isolated points in a topometric space X is metrically
closed.

Proof Let x € X, and assume that B(x, r) contains a weakly d-isolated point for
all r > 0. This means that B(x, r/2) contains a weakly d-isolated point x,, and
B(x;,r/2)° # @. Thus B(x,r)° # @ for all r > 0, and x is weakly d-isolated as
well. O

In particular, a metric limit of d-isolated points is weakly d-isolated, and we do not
know in general that it is d-isolated.

One can push the notion of weak d-isolation a bit further, allowing us to improve
the previous observation a little. Since the usefulness of this exercise is not clear we
do it briefly. Define the weak d-isolation rank of a point as follows: the rank of every
point is at least zero, and the rank of x is at least o« + 1 if B(x, r)° contains a point of
rank « for every r > 0. Thus a point is weakly d-isolated if and only if it has weak
d-isolation rank one or more, and every truly d-isolated point has rank co.

Lemma 2.3 (i) The set of all points of weak d-isolation rank > « is metrically
closed.
(ii) In a complete topometric space the set of point of weak d-isolation rank oo is
precisely the metric closure of the set of d-isolated points.

Proof The first item is proved like Lemma 2.2, and yields that every limit of
d-isolated points has weak d-isolation rank oco. Conversely, assume x has weak
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d-isolation rank oo. Fix r > 0, and let xg = x, rg = r. Given x,, of weak d-isolation
rank oo and r, > O the set B(x,, r,)° contains at least one point x,4+; of weak
d-isolation rank oo (as else the set of all ranks of points there is bounded by some
ordinal). As the metric refines the topology B(x,, r,)° is metrically open, is there is
rn+1 > 0 such that E(x,,H, +1) € B(x,, ry)°, and we may further assume that
a+1 < 1y/2. The sequence (x,: n > w) is Cauchy and thus converges to some
point y. We observe that by construction x,,, € B(x,,ry) forallm < n whereby
y € E(xn_H, Fn+1) € B(xy, ryp)°. In particular d(x, y) < r. More generally, for every
& < 0 there is n such that r, < ¢/2 in which case y € B(x,,r,)° € B(y,¢)°and y
is d-isolated. O

On the other hand, weak d-isolation does not seem to pass to sub-spaces while full
d-isolation does.

Lemma 2.4 Let X C Y be topometric spaces, where X carries the induced structure
from Y, and let x € X be d-isolated in Y. Then it is d-isolated in X.

Proof Letr > 0and U = By (x, r)°. Then x € U N X by assumption, U N X is open
inXand UNX C Bx(x,r). O

Recall that a mapping of topological spaces f: X — Y is open if the image of
every open set is open. Say it is weakly open if the image of every non-empty open
set has non-empty interior. Then we have the following:

Theorem 2.5 Let 7: X — Y be a morphism between locally compact topometric
spaces. Letx € X, y = w(x) € Y, and Z = 7w~ (y) the fibre over y with the induced
topometric structure. Then:

(1) Ifx is d-isolated in X then it is d-isolated in Z.
(i) If x is (weakly) d-isolated in X and 7w is (weakly) open then y is (weakly)
d-isolatedin Y.
(iii) If 7 is an epimorphism, x is (weakly) d-isolated in Z and y (weakly) d-isolated
in Y then x is (weakly) d-isolated in X.

Proof There is no harm in replacing X with a compact neighbourhood of x and
replacing Y with its image, so we may assume all spaces are compact, and thus that &
is uniformly continuous. Let A: (0, co) — (0, co) be a uniform continuity modulus
for 7, meaning that for all ¢ > 0, if dx (x’, x”") < A(e) then dy (w (x'), 7 (x")) < &.

For (i) just use Lemma 2.4.

For (ii) assume first that x is weakly d-isolated and = weakly open. Fix r > 0. Let
U = Bx(x, A(r))°in X. Then U # &, whereby & # n(U)° € By(y,r)°inY.Ifx
is d-isolated and 7 open we have furthermore that x € U and y € n(U) = 7w (U)°.

We now prove (iii). As 7 is assumed to be an epimorphism we may further assume
that if dy (y/, 7 (x")) < A(e) then dx(7~'(y’), x') < e. Assume that x is weakly
d-isolated in Z and y is weakly d-isolated in Y. Fix r > 0. Let U = Bz(x,r/2)° in
Z,s0 U # @& and we can fix some z € U. Then there is an open set V € X such that
U = Z N V. We can find an open subset V' C X such thatz € V' € V/ C V. Then
V' =N >0 B(V',s), and as V' has closed metric neighbourhoods and X is compact
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there is s > 0 such that EX(V/ ,8) € V. Decreasing s further we may assume that
s <r/2and Bx(z,s) C V.

Let W = By(y, A(s))°,and R = 7 ' (W)N V', soRis open. Then W # @, and
given y’ € W we know that dy (z, 71 (y')) < s. As 7~ (y") is compact, we obtain by
Lemma 1.10 that & # 7~ '(y) N Bx(z, s) C R. Finally we show that R € Bx(x, r).
Indeed, let x’ € R. Then 7w (x") € W,sody(m(x'), y) < A(s) = d(x’, Z) < s, and
by Lemma 1.10 there is x” € Z such that dy (x’, x”) < s. Thenx’ € V' = x" €
B(V',s)CV,sox" € ZNV =U C Bz(x,r/2). Thus x’ € Bx(x,r), as desired.
We conclude that By (x,r)° 2 R # &, so x is weakly d-isolated.

In case x is d-isolated in Z and y in Y then we may choose z = x € V' and we
know that y € W whereby x € R, so the same argument shows that x is d-isolated
in X. |

Corollary 2.6 Let: X — Y be an open epimorphism of locally compact topometric
spaces. Letx € X, y = mw(x) € Y, and Z = w~'(y) the fibre over y with the induced
topometric structure.

Then x is d-isolated in X if and only if x is d-isolated in Z and y is d-isolated in Y .

Corollary 2.7 Let w: X — Y be an epimorphism of locally compact topometric
spaces. Letx € X, y = w(x) € Y, and Z = .~ (y) the fibre over y with the induced
topometric structure. Let (Z, dz) be another topometric structure with the same under-
lying topological space Z, where dz is finer than dx, soid: (Z,dz) — (Z,dx) isa
morphism.

If x is dz-isolated in Z and y is dy-isolated in Y then x is dx-isolated in X.

Proof Since id: (Z,dz) — (Z,dx) is open we have that x is dy-isolated in Z by
Theorem 2.5(ii). Now apply Theorem 2.5(iii). m]

3 Cantor-Bendixson ranks

In classical topological spaces the Cantor-Bendixson derivative consists of removing
isolated points. One crucial property of the derivative is that it is a closed subspace.
In the topometric setting the situation is more complicated. If we simply tried to
take out the (weakly) d-isolated points the derivative would no longer be closed, and
the machinery would break down. We resolve this difficulty by viewing the classical
Cantor-Bendixson derivative as consisting of removing open sets which are “small”
(singletons, or finite sets). In a topometric space the metric gives rise to notions of
smallness which allow to recover much of the classical theory concerning Cantor-
Bendixson analysis.

Similar extensions of the classical Cantor-Bendixson analysis were also defined
and used by Newelski [11].

3.1 General definitions

Fix a topometric space (X, .7, d). We consider several natural notions of smallness
which depend on a parameter ¢ > 0, none of which a priori better than another:
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Definition 3.1 Let A C X, e > 0, « < w. We say that A is e-a-finite if there is no
subset {g;: i < a} C A satisfyingd(a;,a;) > ¢foralli < j < a.

(i) We observe that A is e-1-finite if and only if diam(A) < e.
(i) We say that A is e-finite if it is e-n-finite for some n < w.
(iii) We say that A is e-bounded if it is e-w-finite.

These notions of smallness relate as follows:

Lemma 3.2 Let U C X be open, ¢ > 0.

(i) Ifdiam(U) < ¢ then U is e-finite.
(i1) If U is e-finite then it is e-bounded.
(iii) If U is e-bounded then it is the union of open sets of diameter < 2¢.

Proof All but the last property are obvious. So assume U is e-bounded. Let ayp € U
and construct by induction a maximal set {a; : i < o} C U satisfyingd(a;, a;) > & for
alli < j < a. Since U is e-bounded o must by finite. Let V = U \ ;-4 B(a;, €).
Then V is open, since each E(ai, ) is closed, ag € V € U, and diam(V) < 2¢ by
the maximality of the set {a;: i < «}. O

To each notion of smallness we associate a Cantor-Bendixson derivative and rank.
We can also define Cantor-Bendixson derivative based on (weakly) d-isolation, but
showing these have the desired properties is trickier.

Definition 3.3 Lete > O and * € {d, f, b, i, wi}

(i) We define the (x, &)-Cantor-Bendixson derivative of X as:

X, ., =X~ UJ{U S X: U open, diam(U) < ¢}
X’f,g = X~ UJ{U <€ X: U open and e-finite}

ng =X~ U{g C X: U open and e-bounded}
Xl’.’s =X~ U{B(a,¢)°: a € X d-isolated}

X' =X~ |J{B(a,¢)°: a € X weakly d-isolated}.

wi, &

(i) We define the (x, &)-Cantor-Bendixson derivative sequence:

X9 =X
1 I
X = (32, ..
X = Npoo XV (o limit)

x|t

X’(F?g) = ﬂa ngs) = XL,S‘ .
(iii) For A C X we define its (x, £)-Cantor-Bendixson rank:
CBy. ¢ (A) = sup{a: ka"‘g NA # o).

Note that if A is compact then supremum is attained as a maximum.
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(iv) We say that X is (%, £)-CB-analysable if CB, .(X) < oo, i.e.,if X\°0 = &1t
is x-CB-analysable if it is (x, €)-CB-analysable for all ¢ > 0.

Definition 3.4 In case K C X is compact and has a Cantor-Bendixson rank we may
define its Cantor-Bendixson degree, in a manner depending on the kind of rank in
question:

1 If CBis(K) = o < oo then X((JO‘; NK C |Y;_, Ui where each U; C X;‘f‘; is
open of diameter < ¢, and we define CBdf,{ . (K) to be the minimal such 7.

@) If CB;{S(K) = a < oo then X;ﬁxe) N K C U where U C X}ag is open and

g-n-finite for some n, and we define CBd;{ . (K) to be the minimal such 7.

(i) If CB}fg(K) = o < oo then Xl(’ae) N K C U where U C Xl(jas) is open and
g-bounded, and thus 2&-n-finite for some n, and we define CBd,f’ - (K) to be the
minimal such #.

(iv) The definition in the previous item is based on the one we have already given in
[3] (see Remark 3.5 below). Alternatively, we observe that since U is e-bounded
there exists a maximal finite subset {a;: i < n} C U verifying d(a;, a;) > ¢
foralli < j < n and we may define CBdff/,E (K) to be the smallest n for which
this is possible.

i<n

Remark 3.5 (i) In the case of a maximal topometric space, which is just the topo-
metric representation of a classical topological space, these notions all coincide
(for ¢ small enough) with the classical Cantor-Bendixson ranks and derivatives.

(i) The Cantor-Bendixson rank which was defined in [7] is CBy .

(iii) Also, one can verify that the e-Morley rank of a closed or open set A as defined
in [3] coincides with CBj . (A) where we view A as a subset of the space of
types over a sufficiently saturated model, equipped with the standard metric.
The e-Morley degree defined there coincides with CBdj . (A).

The three notions of Cantor-Bendixson rank based on notions of smallness are
tightly related, and in particular define a unique notion of CB-analysability.

Proposition 3.6 For every topometric space X, ordinal o and ¢ > 0:
(o) (o) (o) ()
Xd,2s < Xb,s - Xf,s - Xd,s'
If follows for all A C X:
CBy2:(A) < CBpe(A) = CBfe(A) < CBge(A).

In particular, being *-CB-analysable for x € {d, f, b} are all equivalent properties,
and from now on we shall refer to them as being CB-analysable.

Proof Tt follows from Lemma 3.2 thatif X € Y € Z C W then X;’zg C Y,;,E C
Z' . & W, . and from there proceed by induction. o
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As we shall see below, the ranks CB f . and CB,, . are somewhat easier to study than
the CBy .. At the same time, the degrees associated to CBy . and CB . are more ele-
gant than those associated with CBy .. This “comparative study” suggests that among
these three, the most convenient rank to use is CB .

Proposition 3.7 Assume that X is locally compact and CB-analysable. Then the
d-isolated points are dense.

Proof Let U € X be open, non-empty. As X is locally compact, we may replace
U with a non-empty open subset such that U is compact. We construct a decreasing
sequence of non-empty open sets (U;: i < ) and numbers (¢; > 0: i < w) such
that Up = U, diam(U;;1) <27 and U1 C U;.

Start with Uy = U. Given U; open, non-empty, let V; be open and non-empty such
that V; C U;.

Let x € V; be such that CB ,-i (x) = « is minimal. This means that V; C X;a;,,-

and that there is an open subset W; 1 of X;“;,i such thatx € W; 1 anddiam(W; 1) <

271 Let Uiy = V;NW;, . Since V; C X;‘i‘;_i, Uiy 1isopenin X, diam(U; 1) <27/
and Uj1) € V; C U;.

Intheend N U; =N U; is non-empty as a decreasing intersection on non-empty
compact sets, and in fact consists of a single point {a}. It follows from the construction
that for all £ > O the set B(a, &) contains U; for some i, so a € U is d-isolated. 0O

Corollary 3.8 Let X be a locally compact topometric space. Then the following are
equivalent:

(1) X is CB-analysable.
(i) For all locally compact @ # Y C X the d-isolated points of the topometric
space Y (with the induced structure) are dense.
(iii) Forall closed @ # Y C X the topometric space Y (with the induced structure)
contains a weakly d-isolated point.

Proof (1) = (ii). By Proposition 3.7.

(i) = (iii). Immediate.

(iii) = (i). Lete > 0, and assume that « is such that X;‘Tg # . Then by assumption
there is a point a € X;‘f‘; which is weakly d-isolated there. Then the set B(a, £/2)°

(as calculated inside X((J“g

Therefore Xfioj) =0. O

) is non-empty and of diameter < &, so X‘(l“: b - Xfiag

We also obtain a converse for Lemma 2.2:

Corollary 3.9 Let X be a locally compact CB-analysable topometric space. Then the
set of weakly d-isolated points is the metric closure of the set of d-isolated points.

Proof One inclusion follows from Lemma 2.2. For the other, let x be a weakly
d-isolated point. Then for each r > 0 the set B(x, r)° is non-empty and by Prop-
osition 3.7 contains a d-isolated point. O
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We can now show the relation with the Cantor-Bendixson ranks based on (weakly)
d-isolated points:

Theorem 3.10 Let X be a locally compact topometric space. Then all notions of
CB-analysability defined so far are equivalent. Moreover, if X is CB-analysable then
for every ordinal o and ¢ > 0:

X(O‘) C X(a) C X(O‘) C X(a)

wit, e

Whereby for all A C X:
CBy,2:(A) < CBujie(A) = CBjs(A) < CBys(A).

Proof Clearly if X € Y C Z then X, C Y, < Z;,, whereby Xd e C

wi,e — zs’ —

x©@ C X (a) for all e. Thus i-CB- analysable implies wi-CB-analysable implies

wi, e

CB- analysable To close the circle assume that X is CB-analysable. By Proposition 3.7,
if X l( 8) is non-empty then it contains a d-isolated point, so Xi(iﬂ) C Xl('? Thus
x> =g

For the moreover part assume X is CB-analysable. Assume U C X is open and

gam(U ) < e. By Proposition 3.7 U contains a d-isolated point a, and clearly U C
B(a, ¢)°. It follows that le’s C X’d’s, and the rest follows. O

Remark 3.11 Clearly, if & > & then X . C X ;. One may therefore define X/ _ =
’ s ,€

(s<e X, 5 and then proceed to define X iaz, and CB*X . accordingly. We observe that
forall e > ¢

X@cx“ cx®.  cBX.(4)<CB,_(4) < CBY, (1),

In particular, no new notion of CB-analysability arises with these ranks. For some
specific model-theoretic considerations (e.g., local Shelah stability ranks) the CB, .-
are more convenient to use than the CB, , ranks we defined earlier. In the present
paper we shall restrict our attention to ranks of the form CB, .

3.2 Cantor-Bendixson analysis of subspaces and quotients

Lemma 3.12 Let X C Y be topometric spaces. Then foreveryx € {d, b, f,i}, x € X,
e >0 CBi{S(x) < CBI!E(X). In particular if Y is CB-analysable then so is X.

Proof Tt is straightforward to verify that X C Y implies X, C Y, for x €
{d, b, f, i} (though not for * = wi, since a weakly d-isolated point is not necessarily
so in a subspace). The statement follows. O

Lemma 3.13 Let: X — Y be a surjective morphism of compact topometric spaces,
and let A be such that d(x,y) < A(¢) = d(w(x),n(y)) < ¢&. Then forallb € Y
and ¢ > 0: CBY L) < CBfA(S)(rr (y)) ie., Y}E) Cr (X;Q)A(E)) forall a. In
particular, if X is CB-analysable so is Y.
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Proof We show that Y[ < 7 (X{7,,) by induction on e For o = 0 and limit this

is clear from the induction hypothesis. For o + 1, let us assume that y € Y}f":l) AN
b4 (X.(f(f;r(lg))). Then each x € 7~ (y) has an open neighbourhood V, such that V, N
X ;“)A © is A(e)-finite. Since 7 ~! (y) is compact it can be covered by a finite sub-family:
7 '(y) € VyU---UV,_, = V. Then V N X;?)A(e) is A(e)-n-finite for some
n<o.

Let N(y) denote the set of all open neighbourhoods of y. Then for all U € N(y)
there are points yy; € U N Y}?S fori <nsuchthati < j = d(yu.i, yu,j) > €.

By the induction hypothesis there are xy; ; € o (ui)NX ;a)A ()" By assumption on
AL < = d(xy,,xu,j) > Ae).

For each i < n, the net (yy,;: U € N(y)) converges to y. As X is compact we
can find a directed partially ordered set (S, <) and a decreasing function o: § —
N(y) sending s +— Uj such that for each i < n the sub-net (xy, ;: s € S) con-
verges in X, say to z;. Then necessarily 7 (z;) = y, i.e., z; € n_l(y). Thus for some
se€Sand U = Uy € N(y) we have xy; € V foralli < n, in contradiction with

A(e)-n-finiteness of V N X ;Q)A ) This contradiction concludes the proof. O

Definition 3.14 Let X be a topometric space and ¢ > 0. An e-perfect tree in X is a
tree of compact non-empty sets {F, : o € 2<%} where:

(i) Ifo,t€2~?ando < 7 (i.e., T extends o) then F; C F.
(ii) Forall o € 2<?: d(Fy0, Fy1) > €.

Lemma 3.15 Let X be a locally compact topometric space, ¢ > 0, and assume an
e-perfect tree {Fy: 0 € 2<%} exists in X. Let 2 be a base of closed sets for the
topology on X, closed under finite intersections, and such that for every compact set
F C X there is a compact F' € % such that F C F'. Then there exists in X an
e-perfect tree {F;: o < 2%} C A, such that moreover F(; D Fy forallo € 2<%,

Proof We let F; be any compact member of % containing Fg.

We now proceed by induction on |o'|. Assume F, C F, € 2 has been chosen. By
assumption B(F,0, )N F, N Fy| = @.Since Fy is compact, B(F,, €) is closed and
thus B(Fy0, &) N F] is compact. Since Fy is an intersection of members of 4, there
is a finite sub-intersection F satisfying B(Fy0,€) N F,NF) =o.Since F, € #
we may assume that F, D F,, so F_, is compact and B(Fy0,€) N F!, = @. Since
Fy0 is compact as well we get d(Fyo0, Fél) > ¢, and since % is closed under finite
intersections we have F, € . We can now do the same thing to find F, € % com-
pact such that F,o0 € F., € F, and d(F}, F.,) > €. This completes the induction

step. O

Remark 3.16 Notice that the second requirement on 4 is not superfluous. Indeed, the
set of all complements of bounded open sets in R is a base for the closed sets and
is closed under finite intersections, but equipping R with the maximal (i.e., discrete)
metric we obtain a locally compact topometric space in which Lemma 3.15 fails.
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On the other hand, let X be a locally compact space and let & be the family of all
zero sets of functions in C(X, [0, 1]). Then it is easy to verify that 4 satisfies all the
assumptions of Lemma 3.15.

Proposition 3.17 Let X be locally compact. Then X is CB-analysable if and only if
forno ¢ > 0 is there an g-perfect tree in X.

Proof Assume X is not CB-analysable, say it is not (d, ¢)-CB-analysable. We may
replace X with X f;”j), S0 every non-empty open set has diameter greater than ¢. Given
anopensetd # U C X thereare x, y € F be suchthatd(x, y) > ¢. Then we can find
compact neighbourhoods Fy and F; of x and y, respectively, such that d(Fp, F1) > e.
In particular F§ and F} are non-empty open sets. We can thus proceed by induction
to construct the tree.

Conversely, assume an e-perfect tree (F, : o € 2=) exists. Let F, = (U e Fo
and F = (), F,. Then F C X is compact, and there is a natural surjective map-
ping 7: F — 2% sending F; = (), F;}, to 7 for all T € 2“. Viewing 2 with the
natural topology and the discrete metric, 7 is a surjective morphism. Since 2% is not
CB-analysable, F' is not CB-analysable by Lemma 3.13, so X is not CB-analysable
by Lemma 3.12. O

Theorem 3.18 Let X be a compact topometric space with enough precise quotients,
and let 2 be a sufficient family of precise quotients of X (see Definition 1.30). Then
the following are equivalent:

(i) X is CB-analysable.
(i) All homomorphic images of X are CB-analysable.
(iii) All precise quotients of X are CB-analysable.
(iv) All'Y € 2 admitting a countable base are CB-analysable.

Proof The firstimplication follows from Lemma 3.13. The second and third are imme-
diate.

For the last, assume X is not CB-analysable. By Proposition 3.17, for some & > 0
there exists an e-perfect tree {Fy: 0 € 2<%} in X. Let & be the collection of zero
sets of continuous functions f € C(X, [0, 1]). Then A satisfies the assumptions of
Lemma 3.15, so we may assume that each Fy, is the zero set of some f, € C(X, [0, 1]).
Let B = {f,: 0 € 2=?}. By definition there is a quotient (Y, ) € 2 such that
wt(Y) = Rp and each f;, factors as f, o w with f, € C(Y, [0, 1]). Let F, = n(Fy,)
for each o € 2=“. Then as f, factors through 7= we have F, = n_l(F[,), and since
7 is precise we see that dy (F, F.,) > e forall o, s0 {F}: 0 € 2<“} is an e-perfect
tree in Y, and Y is not CB-analysable. O

We now seek to relate CB-analysability of a topometric space, its metric density
character and its topological weight.

Proposition 3.19 Let X be a CB-analysable topometric space. Then | X| < wt(X).

Proof We may assume wt(X) > Ry.
Fix abase % of openssets for X, || = wt(X).ForeachU € #Bandn < w,if U con-
tains a point of maximal CB, ,-»-rank we let xy , be such a point, otherwise xy , € U
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isanarbitrary point. Let A = {xy ,: U € &, n < w}.Clearly |A| < Ro-|HB| = wt(X),
and we claim A is metrically dense.
Indeed, let x € X and & > 0. Then for some n: ¢ > 27". Let a = CB; -n(x),

and let Uy € X @ be relatively open of diameter < 27", Let U C X be open

d,2-n
sothat Uyp = U N XC(Z“%_,,. Then CB, 5+ (U) = a, so CBy r-n(xy,n) = a, whereby
xuy.n € Up. Thus xyy , € B(x, ) N A. O

The converse does not hold in general (the disjoint union of a small non-
CB-analysable space with a large CB-analysable one would be a counterexample).
The converse does hold when wt(X) is countable:

Proposition 3.20 Let X be a locally compact topometric space with a countable base.
Then X is CB-analysable if and only if | X|| < R if and only if | X || < 2%0.

Proof If X is CB-analysable then || X|| < wt(X) = 8y < 2%, Conversely, assume X
is not CB-analysable. Then for some ¢ > 0 there is an e-perfect tree { Fy : 0 < 2<“}in
X. By compactness, for each T € 2¢ the intersection F; = (1, _,, Fr, is non-empty,
and we may choose xo € F;. Then t # v/ = d(x;, x;/) > &, whereby || X|| > 2%0.

]

In conjunction with Theorem 3.18 we obtain:

Corollary 3.21 Let X be a compact topometric space with enough precise quotients,
and let 2 be a sufficient family of precise quotients of X.

(1) X is CB-analysable.

(i) Every homomorphic image Y of X satisfies ||Y || < wt(Y).
(iii) Every precise quotient Y of X satisfies ||[Y || < wt(Y).
(iv) Every Y € 2 with a countable base is metrically separable.

3.3 Comparing Cantor-Bendixson ranks of two spaces

Earlier we compared the Cantor-Bendixson ranks of two topometric spaces admit-
ting a special relation, such as an inclusion or a surjective homomorphism from one
to the other. Such (and other) homomorphisms can be identified with their graphs,
which are a special kind of closed relations between two spaces. We shall now explore
inequalities of Cantor-Bendixson ranks between spaces admitting an arbitrary closed
relation.

Notation 3.22 Let X, Y be two compact spaces, R € X x Y a closed relation. For
x € X and A C Y we define:

Ry ={yeY: (x,y) € R},
R ={x e X: R, C A},
R4 ={xeX: R, NA#0o).
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Note that:

(i) Forall A C Y: RV = x R,
(ii) If A C Y is closed then R34 is closed.
(iii) If A C Y is open then R4 is open.

For example, if ¥ € X then R = Ay C Y x X is a closed relation, R, = {y},
R =R¥M = ANY.Ifr: X — Y is a projection, then R = {(r(x),x): x € X} C
Y x X is again a closed relation, Ry, = A ), R3A = 7 (A).

The formalism of closed relations allows us to compare Cantor-Bendixson ranks
of spaces (or of subsets thereof) in very general situations. In particular, the following
result, albeit more technical, is a proper generalisation of Lemma 3.13 and a partial
generalisation of Lemma 3.12.

Let us fix:

e A pair of locally compact topometric spaces X, Y.
e A closed relation R € X x Y such that R, is compact for every x € X.
e ¢&,8 > Osuch that for all (x, y), (x’, y') € R:if dy(y, y") < 8 thendx(x, x') < e.

Lemma 3.23 IfU C Y is open and 8-finite (8-bounded) then R¥Y N (R3Y)° is open
and e-finite (e-bounded).

Proof Since both R¥V and (R7Y)° are open so is their intersection. Assume now
that for some ordinal @ < @ we have x; € R"Y N (R3Y)° for i < « satisfying
i <j<a=d(x,xj) > ¢c Thenwecanfind y; € Ry, C U foralli < « which
necessarily satisfy i < j <a = d(y;, y;) > 9. O

This remains true if we replace 5-finite with diameter < § (i.e., 6-1-finite). However,
it will not be of much use since the family of open sets of diameter < § is not closed
under finite unions.

Lemma 3.24 Under the assumptions above, let x € {f, b}, and set X' = Xiag
Y@ = Yfg). Then for every ordinal o: (R3V)° N X@ C R,

Proof Indeed for « = 0 this holds by assumption, and for « limit a compactness
o ®)
argument shows that RV — RINpa ¥ — Npe RV

Assume now that (RHY)o NnNx@ c Ray(m), and we shall prove this for o + 1.
Let x € (R¥)° N X@) < RIY“"": we need to show that x ¢ X©@+D Let K =
R, NY@ = (R@), . where R¥ = RN (X x Y@),

Then K is compact, and by assumption on x: K # @, K N Y@+ = & The latter
means that K admits a covering K < |J;_, U; where each U; € Y @ is relatively
open and §-finite in case * = f (§-bounded in case * = b). By compactness of K
we may take this union to be finite. Since a finite union of §-finite (§-bounded) sets
is such, we find that K € U where U € Y@ is open and §-finite (§-bounded). Let
U' = (R®)YU N (R¥Y)° € X@ Thenx € U’, and by Lemma 3.23 applied to R,
U’ is open in X @ and e-finite (s-bounded). Thus U’ N X@+D = g and x ¢ X@+D,
as desired. O
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Theorem 3.25 Let X, Y be two locally compact topometric spaces. Let R € X x Y
be a closed relation such that R, is compact forall x € X. Let e, § > 0 be such that for
all (x,y), (x',y") € R:ifdy(y,y') < & thendx(x,x") < &. Let K C X be compact
and F C Y any set such that K € (R?)° 0 RYF. Then CB} ,(K) < CBY ;(F) for
x € {f, b}.

Proof Assume that CBY (K) > a,i.e., there exists x € Knx® c (R7)ynx® c
@

RVxs ,sothereis y € Ry N Y*(ffs). Since K € RYF we have y € R, € F. Thus

Fn Y,ff’Q # @ and CBY (F) > a as well. O

Corollary 3.26 Lemma 3.13 can be obtained as a special case of Theorem 3.25. In
fact it is enough to assume that X and Y are locally compact and w: X — Y is
surjective with compact fibres.

Proof We follow the notations and assumptions of Lemma 3.13. Let R € ¥ x X
be the transposed graph of 7, i.e., R = {(7w(x),x): x € X}. Then Ry = 77 () is
compact for all y € Y by assumption. As 7 is surjective, R = Y. Lete > 0 and
yeY,andsetd = A(e), K = n’l(y) Ry € X.Then y € (R¥*)°N R, and by
Theorem 3.25: CBY, (y) < CB¥ ;(x ' (»)). O

The same argument shows that CBZ’ L) = CB})){ a(n_l(y)) as well, improving
Lemma 3.13.

In particular, if w: X — Y is precise, then CB . ranks go down, in the sense
that CB;E(K) < CB)f{E(JT_1 (K)) for K C Y. We now seek sufficient conditions for
equality.

Definition 3.27 Let 7: X — Y be a precise surjective mapping of compact spaces.
We say that X is homogeneous over Y (or more precisely, over ) if for every K C
U C Y, where K is compact and U open, and every countable set Xo € n_l(K ),
there is an isometric automorphism f of X such that 7 o f [, is isometric with image
inU.

(All the results below hold if we replace “compact” with “locally compact” and
require in addition that if K C Y is compact then so is 7~ HK).)

Proposition 3.28 Let M < N be two structures, M approximately Ro-saturated and
N strongly R1-homogeneous. Then S,,(N) is homogeneous over S, (M) and S, (N) is
homogeneous over S, (M), each with the respective standard metric.

Proof LetK C U C S, (M) beclosed and open, respectively, andlet Xo € 7~} (K) C
Sn(N) be countable, say Xo = {p;: i < w}.Then one can find a formula ¢ (x, b) with
parameters b € M such that K C [p(x, b)y=0]C [o(x, b) < 1/2] € U. Then there
is some ¢ > 0 such that for all b’ € M, if d(b,b') < ¢ then [p(xX,b) = 0] C U as
well.

For eachi < j < o one can find a countable set A;; € N such that d(p; fA,-,»
pjla;) = d(pi,pj). Then A = J;,_;_, Aij is countable. By approximate
Ro-saturation of M (see [6, Fact 1.4]) we can find '’ A’ C M such that Ab = A’b and
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d(b,b’) < e. By homogeneity of N there exists f € Aut(N) sending Ab — A'D.
Then f induces an isometric automorphlsm f of S,(N), w o f (Xo) C [p(x, b) =
0] C U, and since A’ € M we get that 7 o f is isometric on Xj.

The proof for w: S, (N) — S, (M) is essentially the same. O

Lemma 3.29 Letw: X — Y be precise, and assume X is homogeneous over Y. Let
x €Xandy=m(x) €Y. Then CB! ,(y) = CBY (x) foralle > 0, x € {d, f, ).

Proof We only prove the case * = f, the others being similar. It is enough to show
by induction on « that 7 (X (f“)) c Y}a)
For & = 0 or limit this is clear. For « + 1, assume that U C Y is open such that

Uun Y](f? is e-finite, say ¢-n-finite. Let y € U NY ](cas). Then it will suffice to find
'y cv open such that V N X is e-n-finite as well.

fe -
Indeed, find U’ C Y opensuchthaty e U’ C U’ C U,andlet V = 7~ (U’). We
claimthat VNX &“) is e-n-finite. If not, then there are xg, ..., x, € VNX }O‘) such that

i < j<n=d(x;,x;j)> & By the homogeneity assumptlon there exists a precise
automorphism f of X such that w o f'[ . ) isisometric with image in U. Since

f is a precise automorphism it leaves X }O’g invariant, so f(xg), ..., f(xn) € X (a) as
well. By the induction hypothesis 7 o f(xg), ..., T o f(x,) € Y ( ) contradlctlng the
assumption that U N Y}ag) is g-n-finite. O

Theorem 3.30 Let w: X — Y be precise, and assume X is homogeneous over Y.
Then forall K € Y, x € {f, b} and & > 0: CBY ,(K) = CBY (! (K)).
Moreover, if this common rank is ordinal then: CBdg’g(K) = CBdi{E(TL’_l (K)).

Proof Only the moreover partis left to be proved. Indeed, assume ﬁrstthatCBY LK) =
CBX (rr‘l(K)) = a < oo. Let X® = X;az and Y@ = Y}a) By the first part
n(X("‘>) =Y®,

Letn = CBd;E(K). Then there is an open set K € U C Y such that U N y@

is e-n-finite. By the same argument as in the proof of Lemma 3.29 we find V C X
open such that 7 =1 (K) € V and V N X is g-n-finite so n > CBd (rr_l(K)) On

the other hand, let m = CBd;{g(n’l (K)), so there is an open set 71’1 (KYCVCX

such that V N X @ is g-m-finite. Let U = Y ~ (X V). Then U is open, K C U,
and 7~ (U) € V. It follows that 7 ' (U N Y®) € V N X and since 7 is precise
UNY@® ig g-m-finite, so m > CBd;s(K).

The case * = b is similar. O

Together with Proposition 3.28 this means we can define the e-Morley rank of a
type-definable set X as RM.(X) = CBS"(M)([X 1) where M is any approximately
Ro-saturated model containing the parameters for X. Indeed, if M is the monster
model then S, (M) is homogeneous over S, (M) whereby CB“;i:lg(M)([X]Sn(M)) =
CBS”(M)([X]S"(M)). Similarly we define the e-Morley degree of X as dM,(X) =
CBdS"(M>([X]>
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The same is true for CBj  ranks and degrees (which coincide with the Morley
ranks and degrees defined in [3]). However, CB s . ranks seem to have the advantage
of a more natural notion of degree.

3.4 Measures

We conclude this section with a few results concerning Borel probability measures on
CB-analysable spaces. Some of these results come from joint work with Anand Pillay,
whom we wish to thank for allowing their inclusion here.

Recall that a measure on a topological space X is regular if for every measurable S:

w(S) = sup{u(K): S 2 K compact} = inf{u(U): S € U open}.

Regular Borel measures on X are in bijection with positive integration functionals
on C(X, R) (or C(X, [0, 1])). Following our convention concerning terminology, the
Borel o-algebra of a topometric space is the o -algebra generated by the topology.

Theorem 3.31 Let X be a locally compact, CB-analysable topometric space, i a
regular Borel probability measure on X. Then for every ¢ > 0, 1 — ¢ of the mass of |
is supported by a metrically compact set.

Proof Fix r,6 > 0, and let U, = X X(far) Thus Uy+1 N X(far) is a union of open

r-finite subsets of X ('Ir).

Assume first that ,lL(Ul) > §. By regularity there is a compact subset I C U,
such that u(F) > n(Uy) — 6. Since F C U is compact it is covered by finitely many
r-finite sets, and is therefore r-finite. It follows that for arbitrary o, if £ (Uy41 N\ Uy) >
§ then there is a compact set ' C U1 \ Uy such that w(F) > n(Uyy1 \ Uy) — 6.

We now claim that u(Uy) = Zﬂ<a m(Upgq1 \ Ug) for all a. In case « is count-
able this is just by o-additivity, but for the general case a small inductive argument is
required. @ = 0 (and indeed, « countable) is immediate, as is the successor case. For
« limit, we have U, = | B<a Ug. Then every compact set K C Uy, is contained is
some Ug, so by regularity: u(Uy) = supg_, it(Up).

By CB-analysability we have u(X) = >, u(Ug+1  Uy). Only countably many
summands can be non-zero, and we may enumerate their indexes by {«,, : n < w} (not
necessarily in order). For each n find F,, € Uy, +1 \ Uy, compact, r-finite and satisfy-
ing u(Fy) > u(Ug,+1\Uy,) —27"=18. Then for some m: WUy Fn) > n(X)—34,
and K = |J,,_,, Fu is r-finite and compact, and therefore complete.

Letting r and § vary, we see that for all n we can find K,, € X compact, 27" -finite,
satisfying (K,) > u(X) — 27" le. Let K = () K,,. Then K totally bounded and
complete, i.e., it is metrically compact, and u(K) > u(X) — €. O

Corollary 3.32 Let X be alocally compact, CB-analysable topometric space, |4 a reg-
ular Borel probability measure on X. Then there is a sequence {{i,: n < w} of prob-
ability measures with finite support converging weakly to w, i.e., [ fdu, — [ fdu
for every continuous function with compact support f € C.(X,C). Moreover, if
F C C.(X,C) is a family of uniformly bounded, and equally uniformly continuous
functions then [ f du, — [ f dp uniformly for all f € 7.
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Proof For each n < w, choose K, C X metrically compact such that u(K,) >
1 — 27", By compactness we can find points {x,;: i < £,} € K, such that K,, <
U B(xn,i,27"). Fori < £, let Sy ; = Kn N B(xn,i, 27" \ U ;_; Su,j. Then each
Sy, 1s a Borel set, and they form a partition of Kj,. Let p, 0 = iid" w(Sn,i)8x, ;5
where 38, denotes the Dirac measure concentrated at x. Then u, = w(K ,1)_l Unoisa
probability measure with finite support.

Now let f: X — C be a continuous function with compact support. Then f
is uniformly continuous and bounded. Let M = sup|f|, and for each § > 0 let
A1) = sup{| f(x) — f(»)|: d(x,y) < 8}. Then A1) = 0as s — 0, so:

[ran- [ raw| <>

i<ty

/X\Kn fd,u‘ + ‘/fd“” _/fdﬂn,o

—1,~A—n . -n " - !
SZA Q7 u(Sp,i) + M27" + M2 (1 M(Kn))

/ fdu— fduno
Syl Syl

+

i<ty

<A'@™MH+3.27'M.

This goes to 0 as n — oo. The moreover part is implicit in the proof above. O
Measures on type spaces were originally studied by Keisler [10].

Definition 3.33 Let T be a theory, A a set of parameters. An n-ary Keisler measure
u(x) over a set A is a Borel probability measure on S, (A).

Such measures generalise the notion of a type (the Dirac measures being in bijection
with types).

Let p(x) be a Keisler measure over A. Then a definable predicate ¢ (x) with parame-
ters in A is a continuous function ¢ : S, (A) — [0, 1], and we can calculate its integral
I, = f ? du(p). Conversely, the integration functional /,, determines /.

Let now w(x) be a Keisler measure over a model M. Let ¢(x, y) be a definable
predicate, possibly with some parameters in M, and let us restrict our attention to
instances ¢ (X, b) over M. This defines a predicate b I wp(x, b) on M, which we
denote by I,,z)p(x, ¥).

Let 11, be the image measure of  on S, (M). Then ji, is a Borel probability mea-
sure as well, so we say it is a Keisler ¢-measure over M. Conversely, 1, determines
I,@)@(x,y), so the family of all such 1, determines p (in fact we only need the
family of 1, where ¢(x, y) are formulae without hidden parameters).

Corollary 3.34 Assume (X, y) is a stable formula, M a model, and 1, a p-Keisler
measure over M. Then i, is definable, meaning that the predicate I,,(z)@(x,y) is
equal on M to some definable predicate \ (y) with parameters in M (it follows that
¥ is unique).

Moreover, Y is a ¢-predicate, namely a continuous function on Sg(M) where
Py, X) = ¢(x, y).
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Proof By [7], (S4(M), d,) is CB-analysable. By Corollary 3.32 u is the weak limit
of a sequence of finitely supported measures u,. The family of all functions of the
form ¢ (%, b) is uniformly bounded (by 1) and equally uniformly continuous (all are
1-Lipschitz) on S,(M). By the moreover part of Corollary 3.32 the predicates
1., @ (x,y) converge uniformly to /,,(z)¢(x, y) on M.

Let us write pt,, = > an,i8p, ;- Bach p, ; is definable, and let v, ; (y) denote
its definition. Set '

i<ty

Un(3) = D aniVni () = L, @@(E, §).

i<t

Then the definable predicates v, (y) converge uniformly (on a model M and therefore
everywhere) and their limit is the desired definable predicate .
As each ¥, ; is a ¢-predicate so is each ¥, and therefore . O

Let us now look more closely at Keisler measures over a set A which is not a model.
Let ¢(x, ¥) be a definable predicate, possibly with some parameters in A. Recall from
[7, Section 6] that a definable g-predicate over A is a definable predicate x (x, C)
which is at the same time over A and (equivalent to) a uniform limit of continuous
combinations of instances of ¢ which need not be over A. We may write it as an
infinitary continuous combination x (x, C) = 6 o (¢(X, ¢;));<e- It may be more con-
venient to write x (X, Y) = 6 o (¢(x, ¥;))i<e and then replace it with x (x, z) where
z is in the sort of canonical parameters for 6 o (¢ (X, ¥;))i<,. Call such a x(x,z) a
@-scheme. Thus a @-predicate over A can always be written as x (x, ¢) where yx (x, z)
is a ¢-scheme and ¢ € dcl(A), and conversely every such x (x, ¢) is a p-predicate
over A.

We define Sy(A) as the quotient of S, (M) through which all the A-definable
p-predicates factor. It is thus a quotient both of Sy, (M) and of S,,(A). This construc-
tion does not depend on M and yields a compact Hausdorff space where the continu-
ous mappings S,(A) — [0, 1] are precisely the A-definable g-predicates. Applying
Lemma 1.20 to the quotient mapping Sy, (M) — S, (A) we may equip Sy, (A) with a
topometric structure. If ¢ is stable then S, (M) is CB-analysable and by Lemma 3.13
s0i8 Sy (A).

A Keisler measure /1 over A gives rise to predicates b > Loy (x, b) on dcl(A),
which we denote by 1,,(z)¢(x, y). Let 11, be theimage measure of ;w on Sy, (A). Then
is a Borel probability measure as well, so we say it is a ¢-Keisler measure over A. The
measure fi, determines, and is determined by, the family of predicates 1,,(z) x (X, z)
defined above where x varies over all p-schemes. We say that 1, is definable if all
these predicates I,(z)x (X, z) are definable over A. In case A is a model this agrees
with our earlier notion of definable gp-measure in which we only considered instances
of ¢.

Recall that the Galois group Gal(A) of a set A is defined as Aut(acl®?(A)/A),
namely the group of elementary permutations of acl®? (A) fixing A point-wise. This is
a compact group in the topology of point-wise convergence of its A-invariant action
on acl®?(A).
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Lemma 3.35 Let i be a Keisler measure over A. Let G = Gal(A) and let H be its
Haar measure. Then [ admits a unique extension to acl®d (A) which is invariant under
the action of G.

More precisely, if ¢(x,b) is a definable predicate over acl(A) then X +>
fG @(x, gb) dH is a p-predicate over A which we may denote by 9© (%, b). The unique
invariant extension is then given by 1;¢(x, b) = M(pG()E, b).

Similarly, a Keisler p-measure 1, over A admits a unique A-invariant extension
to acl®d(A) given by I x(x,c) = IMXG()_C, ¢) for every @-predicate x(x,c) over
acl®?(A).

Proof TIf b € acl(A) then its orbit over A is metrically compact. We can therefore
approximate fG @(x, gb) d H arbitrarily well by weighted sums Dk aip(x, gib), so
itis indeed a g-predicate. It is clearly A-invariant and therefore over A. In particular
if x (x, ¢) is a g-predicate over acl(A) then XG()E, ¢) is a x -predicate, and therefore a
@-predicate, over A. Thus our definition of & makes sense and it is not difficult to see
that it does indeed define a regular Borel probability measure on S, (acl®?(A)) (or on
Sy (acl®?(A))).

For uniqueness, assume that i extends u to acl®? (A) and is A-invariant. Let ¢ (X, b)
be over acl®?(A) and let > ; _; a;j@(x, gib) be an e-approximation of ¢ (x, b). Then

Lip(E.b) = D Iip(%, gib) = Iz > ¢(%. gib)
i<k i<k

~e 19 (%, b) = 1,9 (%, b).
Therefore 1;¢(x, b) = M(pG()E, b), as desired. O

Corollary 3.36 Let A be analgebraically closed set, M a strongly | A|T-homogeneous
and | A| T -saturated model containing A. Let ¢ be a stable formula and let X C Sy (M)
the collection of types which do not fork over A. Then every Keisler p-measure (i
over M which is A-invariant is supported on X.

Proof Assume not. Then by Theorem 3.31 there is a metrically compact set ¥ C
Se(M), Y N X = &, such that 1, (Y) > 0. For each p € Y there exists ¢, > 0 and
an infinite family {g, ;} of A-conjugates of p such that d(q, i, qp, ;) > 2¢, for all
i # j. We may assume that ¢, is maximal for which such a family exists. Notice
that e, > &, — d(p, p') forall p, p’ € Y. Since Y is metrically compact it admits
a countable dense subset {p;}i<,. For p € Y there exists some p; € B(p,¢&,/2).
Thus &, > €,/2 and p € B(p;, €p;). In other words, Y = J;_,, B(pi, €p;). Since
n(Y) > 0 there is p such that u,(B(p, £p)) =71 > 0. Then py(B(gp,i. €p)) = r for
each A-conjugate g, ; of p in the family we chose earlier. Since the sets B(gp.;, &p)
are disjoint u has infinite total measure, a contradiction. This contradiction concludes
the proof. O

We can now improve Corollary 3.34.
Corollary 3.37 (Compare with Keisler [9, Theorem 2.1].)

Assume @(x, y) is a stable formula, A a set, and vy a ¢-Keisler measure over A. Then
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Wy is definable. Moreover, it admits a unique definition scheme over A which defines
a Keisler ¢-measure over any set containing A, and this definition scheme necessarily
consists of ¢-predicates.

Proof By Lemma 3.35 we may assume that A = acl®?(A) is algebraically closed.
Fix a very saturated and homogeneous model M O A and let X C S, (M) be the
collection of ¢-types which do not fork over A, i.e., which are definable over A. The
restriction mapping 7 : X — S, (A) is a homeomorphism, so we may use it to pull
Wy to a regular Borel probability measure ji, on Sy, (M) which is supported on X.
By Corollary 3.34 fi, is definable. Since automorphisms which fix A necessarily fix
every point in X they fix i, and therefore fix its definition. Therefore i, is definable
over A.

For uniqueness, assume that ﬂﬁp is another A-invariant extension of i,. By Cor-
ollary 3.36 it must be supported on X. Now fix b € M and let ¢(3) € Sz(M) be
the unique non-forking extension of tp (b/A) to M, (%) is definition. Then v is a
@-predicate over A. By forking symmetry, if p € X then ¢(X, b)? = 1 (X)?. Therefore

I;l"P(X,E)=/<P(x,l;)pdﬁfp=/xgo(x,l;)”dﬁfp

= [ weordn, = [wwrag,
= L) = L) = .. = Lip(r. B,

O

Given the uniqueness of the good definitions we may always regard /,¢(x, y) as
@-predicate over the parameter set of u (or of uy) without ambiguity.

Corollary 3.38 (Compare with Keisler [10, Corollary 6.16].)

Let A be a set and let ¢(x,y) be any stable formula (or even definable predicate,
possibly with hidden parameters in A). Let u(x) and v(y) be two Keisler measures
over A. Then Fubini’s Theorem holds for v and v:

Loy hiye(x,y) = Ly lume, y).

Proof We know by Corollary 3.37 that I,,5)¢(x, y) is a ¢-predicate and 1,,(z)@(X, ¥)
is a ¢g-predicate, so in fact the statement is only concerned with ji, and vg. In case
these are Dirac measures, i.e., complete types, this is just standard forking symmetry:

I Iy, §) = Lpedgp(X) = dg@p(X)P
= dpp(N? = Liydpe (V) = Iy Ip 9 (X, 3).
In the general case proceed use Corollary 3.32 to approximate i, and vg by finite
sums of complete types with weights, and apply the first case. O

Note that if T is stable we can then define a Keisler measure (i x v)(x, y) over A
by: Iiv@(x, y) = L) lv)@(X, ). This is the free product of 1 and v, generalising
free product of types.
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4 Perturbation metrics

In this section we apply earlier results to questions around perturbations of continuous
structures, originally studied in [5]. We shall therefore leave the abstract setting and
deal exclusively with topometric structures on type spaces S,(T) (or S,,(A)) in the
context of continuous logic.

4.1 Definitions and characterisations

We recall from [5] that a perturbation system p for a theory T can be given by a system
of perturbation metrics dy , on S, (T) for each n < w such that n — (S, (T), dp) is
a precise topometric functor, namely:

(i) Each (S,(T), dp) is a topometric space.
(i) For every n,m < w and mapping o: n — m, the corresponding mapping
o*: S (T) — S, (T) is a precise morphism of topometric spaces.

We shall follow the notation from [5] and denote Edp (X,r)by X p(r),

Definition 4.1 Let p be a perturbation system for 7, M, N E T, and r > 0.

(1) A partial p(r)-perturbation from M to N is a partial mapping f: M --» N
such that for all a € dom(f): dp(tp,, (@), tpy(f(a))) <r.

(i) If f above is bijective then it is a p(r)-perturbation of M into N. We denote
the set of all such mappings by Perty (M, N).

Remark 4.2 What we call a perturbation here was called a bi-perturbation in [5],
the term perturbation being reserved there for the somewhat weaker notion of a total
(but not necessarily surjective) partial perturbation. The distinction is more important
when dealing with asymmetric perturbation radii and pre-radii with which much of
that paper was concerned and which do not appear here at all. We apologise for the
inconvenience.

The preciseness of o* has a concrete meaning for various special cases for o

e Preciseness of 0* when o : 2 — 1 is the unique mapping is equivalent to the prop-
erty thatif p(x, y) € So(T) theneither p € [x = y]ordp(p, [x = y]) = oo (since
p ¢ [x = y] implies that d(q, (o*)_l(p)) =d(q, ) = oo forall g € S|(T)).
By compactness it follows that for every r > 0 and ¢ > 0 there is § > 0 such
that [d(x, y) < 8]°") C [d(x,y) < ¢], and by symmetry: [d(x, y) > &]P") C
[d(x,y) > 8]. In particular every partial p(r)-perturbation is uniformly continuous
and injective, and its inverse is a partial p(r)-perturbation by symmetry of dy.

e Preciseness of 0™ when o : n — n is a permutation just means that a permutation
of the variables is an isometry of (S, (T'), dp), i.e., the notion of perturbation does
not depend on the order of an enumeration.

e Preciseness of 0* when o: n — n + 1 is the inclusion tells us that a partial
p(r)-perturbation can be extended to one more element.

Along with a standard back-and-forth argument this yields:
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Fact 4.3 Let p be a perturbation system for T, r > 0. Let M,N F T, a € M",
b € N". Then the following are equivalent:

(i) dp(tpy (@), tpy (b)) <r. i
(i) Thereare M' = M, N' > N and f € Perty(M', N') such that f(a) = b.

This means that the perturbation system is determined by the mapping (M, N, r) —
Perty (M, N), and it will be useful to give a general characterisation of mappings of
this form.

Theorem 4.4 Let p be a perturbation system for T. Then for each r € RY and
M, N € Mod(T), Pertp;)(M, N) is a set of bijections of M with N satisfying the
following properties:

(i) Monotonicity: Pertpy(M, N) = (., Perty() (M, N).

(ii) Strict reflexivity: Pertp)(M, N) is the set of isomorphisms of M with N.

(i) Symmetry: f € Pertp (M, N) if and only fle Perty) (N, M).

(iv) Transitivity: if f € Pertpiy(M, N) and g € Perty)(N, L) then g o f €
Pertp(r_,_s) (M, L).

(v) Uniform continuity: for each r € R™, all members of Perty (M, N), where
M, N vary over all models of T, satisfy a common modulus of uniform conti-
nuity.

(vi) Ultraproducts: If f; € Pertp;(M;, N;) fori € I, and % is an ultrafilter on
I then [y, fi € Pertpe([14 Mi, 19y Ni). (Note that T[]y, fi exists by the
uniform continuity assumption).

(vii) Elementary substructures: If f € Pertpy(M, N), Mo < M, and No = f (Mp) =
N then ero € Perty() (Mo, No).

Conversely, every mapping associating to every triplet (r, M, N) € RT x Mod(T)? a
set of bijections Pert. (M, N) satisfying the properties above is of the form (r, M, N) +—>
Perty (M, N) for a unique perturbation system p.

Proof The first part is fairly immediate from facts we already know, so we only prove
the converse. The uniqueness part follows from Fact 4.3 so we prove existence.

Say that “dyp(p, g) < r” (in quotes, since we have not yet given a value to dp(p, q))
if there are models M, N = T and f € Pert/r (M, N) sending a realisation of p to one
of g.

First we claim that “dy(p, g) < r” if and only if “dy(p, q) < s” forall s > r. Left
to right is immediate from monotonicity. For right to left, let s, \, r. For each n let
fn € Pert;” (M,,, Ny) witness that “dy(p, q) < s,” sending a, € M, to by € Ny,. Let
7 be a non-principal ultrafilter on w, and let (M, N, f) = [[4, (M,, Ny, f,). Then
fe Pertgn (M, N) for all n by the ultraproduct property and f([a,]) = [b,], whereby
f € Pert. (M, N) witnesses that “d(p, q) < r”.

We may therefore define dy(p, q) = inf{r: “dy(p,q) <r”} € [0, oo] and drop
the quotes. Strict reflexivity tells us that dp(p, g) = 0 <= p = g, and symmetry
and transitivity imply symmetry of dj, and the triangle inequality, so dj is a metric.
The ultraproduct property implies that {(p, q) € S,(T)>: dp(p,q) < r}is closed,
and (S, (T), dp) is a topometric space for all n.
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For preciseness, letnow o : n — m, p € S,,,(T), g € S;,(T), and we need to show
thatdy(p, (0*)71(q)) = dp(c*(p), q). Assume firstthatdy(p, (0*) () = r < o0,
sodp(p, q") = rforsomeq’ € (0*)7!(q). Let f € Pert.(M, N) witness this, sending
a F p (of length m) to f(a) F ¢q'. Let a; = ao;) fori < n. Then a’ F o*(p) and
f(@) E q, whereby dy(c*(p), q) < r. Conversely, assume dp(c*(p),q) =r < oo.
Let f € Pert,. (M, N) witness this, sending a = o*(p) (of length m) to f(a) F g. By
the ultraproduct property we may replace M with an R{-saturated elementary exten-
sion, in which there is a tuple ¢, such that a; = ¢, ;) fori < n. Then f(c) realises
atype in (6*)~!(¢), showing that dp(p, (6*)"!(q)) < r. Equality follows.

We have shown that dy, is indeed the perturbation metric associated to a perturbation
system p. The inclusion Pert, (M, N) C Perty((M, N) is immediate from the con-
struction. Assume now that f° € Perty) (M, N).Let A C M be afinite subset and enu-
merateitas atuple a. Let p = tp(a), g = tp(f(a)),sodp(p, q) < r.Thisis witnessed
by some fa € Pert. (M4, N4) sending @’ E p to fa(a’) E g. In other words, there
are partial elementary mappings 04 : M --» My and 0/, : N --» N4, with domains A
and f (A), respectively, such that f4 004 = 6),0 fonA.Set] ={A C M: |A| < oo}
and let % be an ultrafilter on I containing the set {A € I: a € A} foreacha € M. Let
(M, N, f) =[]y (Ma, Na, fa), so f € Pert!, (M, N) by the ultraproduct property.
Define 6: M — M by 6(a) = [aalaer where agq = 64(a) if a € A, and any-
thing otherwise. Define #’: N — N similarly. Then @ and 6’ are (total) elementary
embeddings, and f 0§ = 6’ o f. It follows that f € Pert.(M, N) by the elementary
substructures property, as desired. O

Remark 4.5 Let f% be the language for triplets (M, N, f), consisting of two disjoint
copies of .Z plus a new function symbol f going from one to the other. Then the ultra-
product and elementary substructures properties are not equivalent (modulo previous
axioms) to the elementarity of the class

{(M,N, f): M,NET, f €Perty(M, N)}.

Indeed, The assumption that (M, N, f) € (M',N’, f’)and M < M’, N < N’ does
not imply that (M, N, f) < (M’, N’, f'), so elementarity is not strong enough to
imply the elementary substructures property.

The correct equivalent assumption is that the class above is elementary and that its
theory is “universal over .Z”. In case T eliminates quantifiers (which we may always
assume) this just means that it is given by:

{MET}U{N E T} U {some universal axioms (involving both copies and f)}.

4.2 Extensions of perturbation systems

By definition, a perturbation system p for a theory 7 compares complete types without
parameters, telling us the by how much one needs to be perturbed in order to obtain
the other. What about types with parameters? Adding a parameter in a set A C M to
the language consists of two steps: adding new constant symbols to the language for
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the members of A, and replacing T" with T'(A) = Th ¢ 4y(M). Given a perturbation
system for 7 in .Z(A), the second step merely consists of the restriction to a smaller
family of type, so let us concentrate on the first step. More generally, let us explore
the extension of perturbation systems to a bigger language .’ O .. Replacing a
function symbol f(x) with the predicate G r(x, y) = d(f(x),y), we may assume
only predicate symbols are added.

Let us first consider the case where a single new symbol is added: £p = Z U {P}.
Let T’ denote the set of .Zp-consequence of T (i.e., T viewed as an .£p-theory). Then
it is natural (to the author, at least, which is what counts at the moment) to extend p
to a perturbation system pp for 77 allowing small perturbations of P. Thus for every
(M, PM) (N, PN) E T’ we define:

forall b € M:
Perty,, (M, PM), (N, PV)) = {0 ePertp (M, N): _ _
d » N ) [ b (M 1) |PM(b>—PN<9<b>)|5r]

It is fairly straightforward to verify that this definition satisfies the list of properties
from Theorem 4.4, and thus indeed defines a perturbation system pp.

In case we wish to add several new symbols P = {P;: i < k}, we merely iterate
this construction.

Perty ) (M, Py, ..), (N, P, ..0)
foralli <kandb € M: ]

= 9 P t r M’N: N b
[ € Perty() ( ) |PM(b) — PN@ODb)) <

This is particularly elegant as it does not depend on the order in which we add the
symbols. However, one could come up with several variants of this definition, such
as:

Pertyy () (M, P ) (NP L)
foralli <kandb € M:
= 10 € Pertyy(M, N):

|PM(b) — PN @by <27'r

Perty ;) (M, P, (NP, ..0)

foralli <kandb € M:
=10 € Pertp (M, N):

|PM(b) — PN (0(b))| < 2'r

As long as we only add finitely many symbols, all three definitions are equivalent,
in the sense that the metrics dy;, d,, A and dy, ;. are all uniformly equivalent metrics.
Of course, one can come up with many more varlants of this kind, but as long as we
allow to perturb each of the finitely many new symbols, we are always going to get
something equivalent to p 5, which, as we said, seems the most elegant of the lot.
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Let us now consider the case where countably many new symbols are added. All
three constructions suggested above admit an obvious generalisationto P = {P;: i <
w}. However, an essential distinction now presents itself between p 5, p/}-) on the one
hand, and p’; on the other.

Indeed, p;g is a very relaxed perturbation system, as a positive perturbation distance
only takes into account finitely many of {P;: i < w}. More precisely, the question
whether or not 0 € Pertp/}%(r)(M, N) depends only on {P;: 0 < i < —log, r}. This
is essentially the only way of getting a non trivial perturbation system for first order
logic. For example, let T be a theory in a countable language .Z. Let p be the trivial
perturbation system for the language of equality, and let pi/f be as above. Then T is
p:%,-&o—categorical if and only if every restriction_of T to a finite sub-language is NRo-
categorical. In the case of an uncountable tuple P, in order to obtain a “perturbation
system” with similar properties we should have to replace metrics with non-metrisable
uniform structures. At the moment we do not see the point in doing so, as the useful-
ness of p’f’_, for infinite P is not at all clear. In particular, type spaces over infinitely
many parameters in classical logic do not involve non-trivial perturbation systems, so
the “correct” way to extend p to types over an infinite set A should go through another
construction.

In contrast, p 5 and p’l-) can be arbitrarily strict when applied judiciously to infinitely

many new symbols. Indeed, in the case of p’ﬁ, we may enumerate P with repetitions,
repeating each symbols infinitely many times (or, if this bothers the reader, we could
enumerate many copies of each new symbol and later add to T the axioms that all cop-
ies of a single symbol coincide). In that case, a p’l-) (r)-perturbation of .#5-structures
would necessarily fix the interpretation of every new predicate symbol P;. In case of the
apparently more relaxed p 5, the same can be achieved by replacing each new symbol
P; with a tree of symbols {P7 : 0 € 2=¢}, viewing Pi@ as P;, and adding axioms that
P70 =2P? Aland P?! = (2P? — 1) v 0. Then for 7 < 1 a p 5(r)-perturbation of
models of these axioms would necessarily fix all the new symbols.

The somewhat philosophical discussion in the previous paragraph is meant to con-
vince the reader that when adding infinitely many new symbols to the language, the
most reasonable (and canonical) way of extending p is by fixing all the new symbols.
In that case we might as well define directly the extension p[ 5 (“p over P”) by:

Perty i (M, PM), (N, P)) =0 €Perty (M, N): PM=PY 06 forall PeP).

In particular, when we extend p to S,,(A) where A is infinite we shall use p|4.

Let us now re-examine the distance between two types p,q € S,(T). If pisa
perturbation system then dy(p, g) measures by how much a realisation of p needs to
be perturbed in order to get a realisation of ¢. But we can also identify p and ¢ with
completions of T in the language £ (c), where ¢ is an n-tuple of new constant sym-
bols, which we denote by p’, ¢’ € Sa(i(”) (T). Let id be the trivial perturbation system
for T, and let id;z be constructed as above. Then Pertiq.((M, a), (N, b)) consists of
all isomorphisms of : M — N such that (b, (a)) < r, and dia-(p’', q') is simply
the standard distance d(p, ¢), measuring by how much a realisation of p needs to be
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moved in order to obtain a realisation of ¢. Finally, we can combine both constructions
defining Jp (p,q) = dp.(p', q"). We obtain a notion of distance which allows both to
perturb the underlying structure and to move the realisations. We could also define it
directly (as was done in [5]) as:

i (EIM E p(@). N E q(b), 0 € Perty() (M, N))
dp(p,q) =inf 7r > 0:
(Vc €M, i< n)(|dM(c, ai) —dV (0(c). by)| < r)

In the terminology of Sect. 2 we can restate [5, Theorem 3.8 and Proposition 3.9]
as:

A complete countable theory T is p-Ro-categorical if and only if every finite
tuple a, every type p € Si(a) is weakly dj,;-isolated.

And:

If T is a complete countable theory and every type p € S,(T) is cip-isolated,
then T is p-Rg-categorical.

Remark 4.6 C. Ward Henson pointed out thatif (X, d) is a complete topometric space,
then the following are equivalent:

(i) Every point x € X is weakly d-isolated.
(i) The set of d-isolated points in d-dense in X.

This is a special case of Lemma 2.3.

4.3 )-stability up to perturbation

In the course of studying metric structures one encounters many which should, accord-
ing to all moral standards, be 8¢-stable (or at least superstable), but are not. Examples
for this are probability spaces with a generic automorphism [1] or Nakano spaces
[4]. Reassuringly enough, both turn out to be Rp-stable up to a natural perturbation
system. Our earlier work allows us to conclude almost immediately that this notion of
Rp-stability, and more generally, of A-stability, satisfies some expected properties. In
particular, 8p-stability coincides with the existence of appropriate Morley ranks. As
pointed out in the introduction, definitions and results of Iovino [8] can be viewed as
precursors to some presented here.

Convention 4.7 Henceforth, when p is a perturbation system for 7" and A a set of
parameters, we always interpret dy on S, (A) as dy, , , and accordingly, dy as dy, .

Definition 4.8 Let T be a theory, A~2 |-Z], and p a perturbation system for 7. We
say that T is p-A-stable if [|(S,(A), dp)|| < A whenever |A| < A.

First of all it should be pointed out that for any perturbation system p, p-A-stability
is weaker than A-stability, since c?p is always coarser than the standard metric d (which
coincides with djq). We thus need to make sure that p-A-stability is still strong enough
to imply stability.
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Fact4.9 Let T be a theory, . > |Z|, and p a perturbation system for T.ThenT is
p-A-stable if and only if for any model M = T: |M| = A = [|[(S,(M), dp)|| = A.

Proof By Lowenheim-Skolem and the fact thatif A € M is dense then (S, (A), Jp) =
(S, (M), dp). o

Lemma 4.10 Let T be a theory, p a perturbation system for T, and M = T. Let
@(x,y) be any formula, |x| = n. Then 7wy, : (S, (M), dp) — (Sy(M), dy) is uniformly
continuous and thus a morphism of topometric spaces.

Proof We need to show that for all ¢ > 0 thereis § > O such thatif p, g € S,,(M) and
c]p(p, q) < & then for all b e M:|p(x,b)P —(x, b)?| < ¢.Indeed, as p is a perturba-
tion system for 7', one can find §; > O such that whenever 6 € Pertys,) (M, N) then for
alla, b € M: |p@a, )M —(6(a), 0(b))V| < &/2. By uniform continuity one can find
8> > Osuchthatifa,a’, b € Mandd(a,a’) < 8 then |p(a, b)M —p(@@’, b)M| < &/2.
Now § = min{éy, 87} will do. O

Proposition 4.11 Let p be any perturbation system for T. Then T is stable if and only
if T is p-A-stable for some X, if and only if T is p-A-stable for all . = A1

Proof Assume that T is stable and let A = A1 Then |S,(M)| = A whenever
|M]|| = A, so T is p-A-stable independently of p. In particular, T is p—2|g |_stable.
Conversely, assume 7 is unstable, say due to an unstable formula ¢, and let
A > |.Z|. Then there exists M F T such that ||[M|| = X and || S, (M)|| > A. Since
the projection (S, (M), Jp) — (S¢(M), dy) is uniformly continuous, it follows that
(Su(M), dp)|| > A, and T is not p-A-stable. O

Remark 4.12 Recall the various alternatives we considered for the extension of a
perturbation system p to countably many new symbols (in this case, constant sym-
bols): the strict variants p4 and p’, allowed us essentially to fix A (as long as we
enumerate it judiciously enough), while the relaxed variant p’; only considers finite
parts of A. Had we chosen the latter as a basis for extending perturbation systems to
new parameters, the previous Proposition would fail. Indeed, if 7 is any small theory
and A any countable set, then || (S, (A), JP;’,) || = N, even though T need not be stable.

Lemma 4.13 Let p be a perturbation system for T, A € B C M F T. Then the pro-
Jjection map 7w : (Sy(B), dp) — (S, (A), dp) is precise (and in particular a quotient of
topometric spaces).

Proof Exercise. O

It follows that:

Proposition 4.14 Let T be a countable theory, p a perturbation system for T . Then the
collection {(S,(M"), dp): M’ < M} is a sufficient family of quotients of (S,(M), d).

Theorem 4.15 Let T be a countable theory, p a perturbation system for T. Then the
following are equivalent:

(1) T is p-A-stable for all \.
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(ii) T is p-Ro-stable. _
(iii) For every separable model M: ||(S,,(M), dp)|| = Ro.
(iv) For every model M, the space || (S, (M), dp) || is CB-analysable.

Proof (1) = (ii). Immediate.
(i) = (iii). If M is separable and A € M is countable and dense, then S, (A) =
S (M).
(iii) = (iv). By Corollary 3.21.
(iv) = (1). By Lowenheim-Skolem and Proposition 3.19.
O

Corollary 4.16 Let T be a complete countable theory, M a monster model for T.
For a non-empty type-definable set X € M" and ¢ > 0, define the e-Morley rank of

X up to p by: RMp¢(X) = CB‘S"‘M ) (X 1), Then T is p-No-stable if and only if
RMy, - (X) is an ordinal for every type-definable set X and every ¢ > Q.

In particular:

Corollary 4.17 A theory T is Ro-stable if and only if RM, (X) is an ordinal for every
type-definable set X and every & > 0.
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