
Journal of Logic & Analysis 4:17 (2012) 1–16
ISSN 1759-9008 1

A logical analysis of the generalized
Banach contractions principle

Alexander P. Kreuzer

Abstract: Let (X , d) be a complete metric space, m ∈ N \ {0}, and γ ∈ R
with 0 ≤ γ < 1. A g-contraction is a mapping T : X −→ X such that for
all x, y ∈ X there is an i ∈ [1,m] with d(T ix,T iy) <R γ

id(x, y).
The generalized Banach contractions principle states that each g-contraction
has a fixed point. We show that this principle is a consequence of Ramsey’s
theorem for pairs over, roughly, RCA0 + Σ0

2-IA.
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In this paper we will show that a generalization of the Banach contraction
mapping principle—the generalized Banach contractions principle—follows from
Ramsey’s theorem for pairs over a weak basis theory.

Let (X , d) be a complete metric space, let m ∈ N \ {0}, and let γ ∈ R with
0 ≤ γ < 1. We call a function T : X −→ X a (m, γ)-g-contraction if for all
x, y ∈ X there is an i ∈ [1,m], such that d(T ix,T iy) <R γ

id(x, y).

The ordinary Banach contraction mapping theorem states that every (1, γ)-g-con-
traction has a fixed point. The generalized Banach contraction mapping principle
is the statement that every (m, γ)-g-contraction has a fixed point.

First results on the generalized Banach contraction mapping principle have been
established in Jachymski, Schroder and Stein [12], where it is shown that this
principle is true for g-contractions where m = 2. In Jachymski and Stein [13] it
was shown that the principle is true for all m if the g-contraction is uniformly
continuous. Later in Merryfield, Rothschild and Stein [18] it was shown that
this principle is true for all continuous g-contractions and for m = 3 without
this continuity assumption. The proof of the former statement uses Ramsey’s
theorem. However, it also uses full arithmetical comprehension, which is—as
we will see below—much stronger than this contraction principle. Therefore,
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2 Alexander P. Kreuzer

this proof is not suitable for a faithful formalization. The principle in its full
generality was finally proved in Arvanitakis [1] and independently in Merryfield
and Stein [19].

1 Logical Systems

We will work in the second-order system RCA0 and its extension to all finite
types RCAω0 . This use of RCAω0 is necessary since the operator T might be
non-continuous and has to be presented by a type 2 object in general. (In [12]
it was shown that there exists a (3, γ)-g-contraction which is not continuous.)

The set of all finite types T is defined to be the smallest set that satisfies

0 ∈ T, ρ, τ ∈ T⇒ τ(ρ) ∈ T.

The type 0 denotes the type of natural numbers and the type τ(ρ) denotes
the type of functions from ρ to τ . The type 0(0) is abbreviated by 1 the type
0(0(0)) by 2. The type of a variable will sometimes be written as superscript of
a term.

Equality =0 for type 0 objects will be added as a primitive notion to the
systems together with the usual equality axioms. Higher type equality =τρ will
be treated as abbreviation:

xτρ =τρ yτρ :≡ ∀zρ xz =τ yz.

Define the recursor Rρ of type ρ to be the functional satisfying

Rρ0yz =ρ y, Rρ(Sx0)yz =ρ z(Rρxyz)x.

Let Gödel’s system T be the T-sorted set of closed terms that can be build
up from 00 , the successor function S1 , λ-abstraction, and the recursors Rρ for
all finite types ρ. Denote by T0 the subsystem of Gödel’s system T where
primitive recursion is restricted to recursors R0 . The system T0 corresponds to
the extension of Kleene’s primitive recursive functionals to mixed types whereas
full system T corresponds to Gödel’s primitive recursive functionals, see [14, 10]
and [16].

The system RCAω0 is defined to be the extension of the term system T0 by
Σ0

1 -induction, the extensionality axioms

(Eρ,τ ) : ∀zτρ, xρ, yρ (x =ρ y→ zx =τ zy)
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for all τ, ρ ∈ T, and the schema of quantifier free choice restricted to choice of
numbers over functions (QF-AC1,0 ), i.e.

∀f 1 ∃x0 Aqf(f , x)→∃F2 ∀f 1 Aqf(f ,F(f )).

This schema is the higher order equivalent to recursive comprehension (∆0
1-CA).

(Strictly speaking the system RCAω0 was defined in [15] to contain only quantifier
free induction instead of Σ0

1 -induction. Since Σ0
1 -induction is provable in that

system, we may also add it directly.)

It is clear the RCA0 can be embedded into RCAω0 . The system RCAω0 is conser-
vative over its second-order counterpart, where the second-order part is given
by functions instead of sets. This second-order system can then be interpreted
in RCA0 . See [15].

A complete separable metric space (X̂ , d̂) is represented as completion of a
countable metric space (X , d). A point in X̂ is given by a Cauchy sequence of
elements of X having a fixed Cauchy-rate. Thus, a point in X̂ is represented
by a type 1 object. The metric d̂ is the continuous extension of d to X̂ . Two
points x, y ∈ X̂ are defined to be equal (x =X̂ y) if d̂(x, y) =R 0. A function
T : X̂ −→ X̂ can then be represented by a type 2 object. To build the iteration
Tn of T we, in general, require the recursor R1 , we will therefore work over
RCAω0 + (R1), where (R1 ) is the axiom that states that the recursor R1 exists.
See [16, Chapter 4]. Note that over RCAω0 the axiom (R1) implies Σ0

2-IA and
that the provably recursive functions of RCAω0 + (R1) are that same as for Σ0

2-IA,
see [21].

In case the function T is continuous in the sense of reverse mathematics, i.e. T
has a continuous modulus of continuity, then T can be represented by a type 1
object (or a set), see [23]. One can prove the totality of the iteration Tn in
Σ0

2-IA and, in fact, it is equivalent to Σ0
2-IA, see [8, Theorem 4.3]. Thus, if one

is only interested in such T one could weaken the base theory to RCA0 + Σ0
2-IA.

(If one additionally assumes that X̂ is compact then one could also use WKL
instead of Σ0

2-IA, see [8, Theorem 4.5].)

We are now in the position to define the generalized Banach contraction mapping
principle formally. This definition is relative to RCAω0 + (R1).

Definition 1 Let GBCCm be that statement that for each presentable complete
separable metric space space (X , d) and each function T : X −→ X , which is a
(m, γ)-g-contraction for a γ with 0 ≤ γ < 1 there exists a fixed point of T .
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4 Alexander P. Kreuzer

Further, let GBCC :≡ ∀m GBCCm and let GBCCcont
m , GBCCcont be the restriction

of those principles to continuous functions T . (GBCC is an abbreviation for
“Generalized Banach contraction conjecture”.)

The definition of GBCCcont
m , GBCCcont also makes sense in the weaker system

RCA0 + Σ0
2-IA.

Definition 2 (Ramsey’s theorem for pairs) Let [X]2 be the set of all unordered
pairs of X . Ramsey’s theorem for pairs and n colors (RT2

n) is the statement
that for each coloring of pairs of N using n colors c : [N]2 −→ [0, n[ there exists
an infinite, homogeneous set X , i.e., X is infinite and the restriction of c to [X]2
is constant. Ramsey’s theorem for pairs and arbitrary many colors (RT2

<∞ ) is
defined to be ∀n RT2

n .

It is easy to see that for each n ≥ 2 we have RCA0 ` RT2
2 ↔ RT2

n . How-
ever, RT2

<∞ is stronger than RT2
2 . Therefore, we can restrict our attention to

RT2
2 and RT2

<∞ . It is known that neither RT2
2 nor RT2

<∞ imply arithmetical
comprehension, [22]. For more details on the strength of these principles, see
[3, 11].

We will show the following theorem.

Theorem 3

(i) RCA0 + Σ0
2-IA ` RT2

2→GBCCcont
m for each m,

(ii) RCA0 + Σ0
2-IA ` RT2

<∞→GBCCcont ,

(iii) RCAω0 + (R1) ` RT2
2→GBCCm for each m,

(iv) RCAω0 + (R1) `
(
RT2

<∞ ∧ Σ0
3-IA

)
→GBCC.

Theorem 3 is established by formalizing the proof of the generalized Banach
contraction mapping principle of Fremlin [7] and by using some ideas of the
proof of [1].

We will first prove the case where T is continuous and then extend it to the
general case. Before we can do this, we provide some facts on Ramsey’s theorem
for pairs and some combinatorial lemmata.
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2 Combinatorial lemmata

A coloring c : [N]2 −→ [0, n[ is called stable if c({x, ·}) eventually becomes
constant. The restriction of Ramsey’s theorem for pairs to stable colorings is
called stable Ramsey’s theorem for pairs and denoted by SRT2

2 resp. SRT2
<∞ .

A set X is called cohesive for a sequence (Ri)i∈N of subsets of N if

∀i
(
X ⊆∗ Ri ∨ X ⊆∗ Ri

)
,

where X ⊆∗ Y :≡ (X \ Y is finite).

The cohesive principle (COH) states that for every (Ri)i∈N an infinite, cohesive
set exists. The following proposition shows that COH is the counterpart to the
stable Ramsey’s theorem.

Proposition 4 ([3, 4])

• RCA0 ` RT2
2 ↔ COH ∧ SRT2

2

• RCA0 ` RT2
<∞ ↔ COH ∧ SRT2

<∞

Proposition 5 ([3, Lemmas 7.10, 7.12], [5, 4]) Over RCA0 the principle SRT2
2

is equivalent to the statement that for every ∆0
2 -set A there exists an infinite

set X such that X ⊆ A or X ⊆ A.

The principle SRT2
<∞ is equivalent to the statement that for every finite ∆0

2 -par-
tition (Ai)i<n of N there exists an i < n and an infinite set X such that X ⊆ Ai .
(If n is uniformly bounded this principle follows from SRT2

2 by induction on the
metalevel.1)

1Here and in the following we call a number in a statement uniformly bound if it is
bound from outside of the logical system. In Proposition 5 this means that we have
that

RCA0 + SRT2
<∞ ` ∀n

{
for all partitions of ∆0

2 -sets (Ai)i<n

there exists an infinite X and an i with X ⊆ Ai ,

and

for all n RCA0 + SRT2
2 ` ∀n′ ≤ n

{
for all partitions of ∆0

2 -sets (Ai)i<n′

there exists an infinite X and an i with X ⊆ Ai .
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Remark 6 (COH as partial non-principal ultrafilter) Let (Ri)i∈N be a sequence
of sets Ri ⊆ N and let S be an infinite cohesive set for this sequence.

Define F ⊆ P(N) by
X ∈ F iff S ⊆∗ X.

Then as long as one is only concerned about sets in (Ri)i the usual properties of
a non-principal ultrafilter hold; i.e. let i, j ∈ N then

• Ri ⊆ Rj ∧ Ri ∈ F ⇒ Rj ∈ F ,
• Ri,Rj ∈ F ⇒ Ri ∩ Rj ∈ F ,
• Ri ∈ F ∨ Ri ∈ F (by cohesiveness of S),
• Ri ∈ F ⇒ Ri is infinite.

In other words, F defines a non-principal ultrafilter in the algebra of sets created
by (Ri)i . Hence, if one can fix in advance a countable number of sets, for which
the properties of a non-principal ultrafilter are needed, the ultrafilter may be
replaced by the filter F .

Note that the statement X ∈ F is ∆0
2(S) for X ∈ (Ri).

2.1 Syndetic sets

Definition 7 (Syndetic)

• Let m ≥ 1. A set I ⊆ N is called m-syndetic if for all k ∈ N the set
I ∩ [k, k + m[ is not empty.

• A set I ⊆ N is called piecewise m-syndetic if there exists arbitrary large
intervals [j1, j2], such that for all k ∈ [j1, j2−m] the set I ∩ [k, k +m[ is not
empty.

Lemma 8 (RCA0 + SRT2
<∞) Let n ∈ N. If (Ai)i<n is a finite sequence of

pairwise disjoint ∆0
2 -subsets of N, such that I :=

⋃
i<n Ai is m-syndetic for an

m, then there exists an infinite set X such that X ⊆ Ai for an i.

This lemma requires SRT2
2 if n and m are fixed and SRT2

<∞ otherwise.

Proof Define a ∆0
2 -function f : N −→ [0, n], via a ∆0

2 -formula for its graph,
denoting to which set a number belongs, by

f (x) :=

i if x ∈ Ai,

n otherwise.
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We now divide the natural numbers into blocks of size m, and define the
∆0

2 -function g assigning to each of those blocks the sequence of values of f on it:

g(x) := 〈f (x · m), . . . , f (x · m + m− 1)〉

Note that because I is m-syndetic g(x) 6= 〈n, . . . , n〉 for all x. The function g(x)
defines a ∆0

2 -partition (Bi)i<n′ of N with

Bi := { x | g(x) = i }, n′ := 〈n, . . . , n︸ ︷︷ ︸
m times

〉.

By Proposition 5 we can find an infinite set Y on which g is constant. Since
g(Y) 6= 〈n, . . . , n〉 there is a j < m such that

(
g(Y)

)
j 6= n. Let X := {x · m + j |

x ∈ Y}. By definition f is constant on X and f (X) 6= n. Thus, X ⊆ Af (X) .

The original proof of Arvanitakis uses the well known fact that piecewise syndetic
is a partition stable property. This was proved by Brown in [2] and others later,
see for instance [9, Theorem 1.23]. These proofs use the Bolzano-Weierstraß
principle for the Cantor space and hence comprehension and are, therefore, not
faithful, i.e. the proofs do not formalize in a system weaker than ACA0 . Luckily
we only need the following weaker facts about partitions of even syndetic sets
and not piecewise syndetic sets.

The following two lemmas are based on [2, Lemma 1].

Lemma 9 (RCA0) Let X be an m-syndetic set. If X is partitioned into 2
parts A0,A1 = X \ A0 then either each Ai is piecewise m-syndetic or there are
i < 2 and k such that Ai is k-syndetic.

Proof Suppose that there is no k such that A0 is k-syndetic. Then there
are intervals I of arbitrary length such that A0 ∩ I = ∅. This means that
A1 ∩ I = X ∩ I hence A1 is piecewise m-syndetic. Same for A0 .

Corollary 10 (RCA0+Σ0
2-IA) Let X be an m-syndetic set. If X is partitioned

into finitely many parts (Ai)i<n then there is an J ⊆ [0, n[ and an k such that
each Ai with i ∈ J is piecewise k-syndetic and Y :=

⋃
i∈J Ai is k-syndetic.

If the numbers of partitions n is uniformly bounded no Σ0
2-IA is needed.
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Proof Note that being k-syndetic is a Π0
1 -statement (∀x ∃y < x + k (y ∈ X)).

We search for a ⊆-minimal set J ⊆ [0, n[, such that there is a k with
⋃

i∈J Ai is
k-syndetic. To do so we build by finite Σ0

2 -comprehension a finite sequence s
such that

(s)j = 0 iff
{there is a k , such that if j codes the set J
then

⋃
i∈J Ai is k-syndetic

and then search for a minimal set. This finite comprehension requires Σ0
2 -in-

duction if greatest index of a set J ⊆ [0, n[ is not fixed, i.e. if n is not uniformly
bounded.

The case J = ∅ is ruled out because then
⋃

i∈J Ai = ∅ and thus would not be
syndetic. Let j ∈ J . Heading for a contradiction suppose that Aj is not piecewise
k-syndetic. Then by Lemma 9 the set

⋃
i∈J\{j} Ai must be m-syndetic for an m.

Thus, J is not ⊆-minimal with this property which contradicts our choice of
J .

Combining Lemma 8 and Corollary 10 we obtain the following proposition.

Proposition 11 (RCA0 + SRT2
<∞ + Σ0

3-IA) Let X be an m-syndetic set. If
X is partitioned into ∆0

2 -sets (Ai)i<n , then there exists an i such that Ai is
piecewise k-syndetic and an infinite set I such that I ⊆ Ai . Note that we do
not require I to be piecewise syndetic.

If n is uniformly bounded only SRT2
2 is needed. Otherwise, Σ0

3-IA and SRT2
<∞

is needed.

Proof By Corollary 10 we can find a set J such that (Ai)i∈J is syndetic and
each Ai with i ∈ J is piecewise syndetic. Note that Σ0

3 -induction is needed since
the partition is ∆0

2 . An application of Lemma 8 now proves the proposition.

3 The proof of GBCC

3.1 The continuous case

Fix a provably presentable complete separable metric space (X , d) and a
(m, γ)-g-contraction T : X −→ X which is continuous.

Journal of Logic & Analysis 4:17 (2012)
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Lemma 12 (RCA0 + Σ0
2-IA, [7, Lemma 2]) For all points x, y ∈ X the set

I := { i ∈ N | d(T ix,T iy) <R γ
id(x, y) }

is m-syndetic.

Proof By the g-contraction property I ∩ [1,m] 6= ∅ and for each i ∈ I there is
a j ∈ [1,m] such that i + j ∈ I .

Lemma 13 (RCA0 + Σ0
2-IA, [18, Lemma 1], [7, Lemma 5]) For each x ∈ X

there exists an M >R 0 such that the set

I := { i ∈ N | d(T ix, x) <R M }

is m-syndetic.

Proof Let M = 2
1−γ maxi∈[0,m] d(T ix, x). (We assume that Tx 6=X x here,

otherwise we would be done.) It is clear that 0 ∈ I . For each i ∈ I there is a
j ∈ [1,m] such that d(T j+ix,T jx) <R γ

jd(T ix, x) <R γM and hence

d(T i+jx, x) <R γM + d(T jx, x) <R γM + (1− γ)M = M

and thus i + j ∈ I .

Remark 14 It is clear that the Lemmas 12 and 13 also hold for non-continuous
T if the theory RCA0 + Σ0

2-IA is replaced by RCAω0 + (R1).

Lemma 15 (RCA0 + Σ0
3-IA + RT2

<∞ , [1, 4.2], [7, Lemma 4])
Let R ⊆ N× N be such that

(i) the set { i | (i, 0) ∈ R } is m-syndetic,

(ii) for every (i, j) ∈ R the set { k | (i + k, j + k) ∈ R } is m-syndetic.

Then there exists an infinite set I and a piecewise syndetic ∆0
2 -set Ĩ such that

I ⊆ Ĩ ⊆ N and for every i, j ∈ Ĩ there is a k with

(1) (k, i) ∈ R and (k, j) ∈ R.

If m is fixed then RT2
2 suffices. If the existence of an I , such that for all i, j ∈ I

there is a k satisfying (1), is sufficient (in other words the ∆0
2 -set Ĩ is not

needed) then RT2
<∞ suffices. Otherwise, RT2

<∞ and Σ0
3-IA is needed.
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Proof We claim that R meets [l, l + 2m[×[k, k + m[ for all k, l ∈ N with k ≤ l.
To prove this claim note that by (i) there is an i ∈ [l− k, l− k + m[ such that
(i, 0) ∈ R, and by (ii) there is now a j ∈ [k, k + m[ such that (i + j, j) ∈ R and
that also (i + j, j) ∈ [l, l + 2m[×[k, k + m[.

For each i ∈ N and j < 2m let Lij := { l | (l + j, i) ∈ R }. Using the cohesive
principle (which follows from RT2

2 , see Proposition 4) we find a cohesive set
S for (Lij)i,j and a non-principal ultrafilter F := {X | S ⊆∗ X } in the algebra
created by (Lij). The ultrafilter is ∆0

2 , see Remark 6.

By the claim it follows that ⋃
i∈[k,k+m[

j<2m

Lij ⊇ [k,∞[.

Hence by the ultrafilter property of F there is for each k some i ∈ [k, k + m[
and j < 2m such that Lij ∈ F .

Now for j < 2m define Ij := { i | Lij ∈ F }. Observe that by the previous
argument the set

⋃
j<2m Ij is m-syndetic. The sets Ij are ∆0

2 -set since F is.

Using Proposition 11 we can find an infinite set I and a j such that Ij is piecewise
syndetic and I ⊆ Ij .

If i, i′ ∈ Ij , then Lij and Li′j belong to F , so they cannot be disjoint. Thus,
there is some l such that (l + j, i) and (l + j, i′) belong to R. Hence, I and
Ĩ = Ij satisfies the lemma. If one is only interested in I then Lemma 8 instead
of Proposition 11 suffices.

We are now in the position to show Theorem 3 restricted to the continuous case,
i.e.

(i) RCA0 + Σ0
2-IA ` RT2

2→GBCCcont
m for each m,

(ii) RCA0 + Σ0
2-IA ` RT2

<∞→GBCCcont .

Proof of Theorem 3 for the continuous case Fix an arbitrary x ∈ X . By
Lemma 13 an M >R 0 exists, such that { i | d(T ix, x) <R M } is m-syndetic. We
further may assume that M >R d(Tx, x). Let R ⊆ N× N be the relation

R :=
{

(i, j)
∣∣∣ d(T ix,T jx) <R Mγj

}
By definition { i | (i, 0) ∈ R } is m-syndetic. If (i, j) ∈ R then

{ k | (i + k, j + k) ∈ R } ⊇
{

k
∣∣∣ d(T i+kx,T j+kx) <R γ

kd(T ix,T jx)
}

Journal of Logic & Analysis 4:17 (2012)
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and hence is by Lemma 12 also m-syndetic.

The set R satisfies the assumptions of Lemma 15. This lemma is not directly
applicable since the set R is just a Σ0

1 -set because <R is a Σ0
1 -statement. How-

ever, we can easily build a recursive set R′ ⊆ R satisfying also the assumptions
of Lemma 15: By QF-AC0,0 and the properties of R we can find a function
f1(i,w) such that if w is a witness for (i, 0) ∈ R then f1(i,w) = (k,w′) with
k < m and w′ witnesses that (i + k + 1, 0) ∈ R. Similarly there exists a function
f2(i, j,w) = (k,w′) for the second property. Now let w be a witness for the fact
that (1, 0) is in R. Let

R′0 := {(1, 0,w)},
R′n+1 := {(i + k + 1, 0,w′) | (i, 0,w) ∈ R′n and f1(i,w) = (k′,w′)}

∪ {(i + k + 1, j + k + 1,w′) | (i, j,w) ∈ R′n and f2(i, j,w) = (k′,w′)},

and let R′ be the projection of
⋃

n R′n to the first two components. The member-
ship in R′ is decidable, since the first component of the elements of the sets (R′n)
always increases and thus (i, j) ∈ R′ iff ∃w (i, j,w) ∈

⋃
n≤i R′n . The ∃-quantifier

here is decidable since the sets (Rn) are finite. By definition R′ satisfies the
assumptions of Lemma 15 and is a subset of R.

Hence there is an infinite set I ⊆ N such that for all i, j ∈ I there is a k ∈ N
such that (k, i), (k, j) ∈ R′ ⊆ R. By definition of R we have

d(T ix,T jx) ≤R d(Tkx,T ix) + d(Tkx,T jx) ≤R Mγi + Mγj −→
i,j→∞

0.

Thus, the sequence (T ix)i∈I is a Cauchy-sequence with Cauchy-rate 2Mγi and
admits a limit point, call it z.

Note that by continuity of T for all k we have

lim
i∈I

T i+kx = Tkz.

Since (1, 0) ∈ R′ , the set L := { k | (1 + k, k) ∈ R′ } ⊆ { k | (1 + k, k) ∈ R } is
m-syndetic and so we can find for every i ∈ I a ji ∈ [0,m[ such that i + ji ∈ L,
i.e.

d(T i+ji+1x,T i+jix) ≤R Mγi+ji .

By the infinite pigeonhole principle there is a j and an infinite set J ⊆ I on
which ji = j is constant. For every i ∈ J then holds

d(T jz,T j+1z) ≤ d(T jz,T i+jx) + d(T i+jx,T i+j+1x) + d(T i+j+1x,T j+1z)
≤ d(T jz,T i+jx) + Mγi+j + d(T i+j+1x,T j+1z)

Journal of Logic & Analysis 4:17 (2012)



12 Alexander P. Kreuzer

The last expression tends to 0 as i ∈ J tends to infinity. This yields that T jz is
a fixed-point.

The proof formalizes in RCA0 + Σ0
2-IA except for Lemma 15, where we need

RT2
2 is m is uniformly bounded and RT2

<∞ otherwise. Hence, the statement
follows.

Remark 16 A careful inspection of the proof show that in the proof of (i) the
principle Σ0

2-IA is only used to establish that the all iterates Tn of T exists.
This is needed to build the set R. Thus, GBCCcont

m restricted to g-contractions
T where Tn provably exists follows from RT2

2 over RCA0 without Σ0
2-IA.

3.2 Proof of the general case

Now let T : X −→ X be an arbitrary g-contraction.

Lemma 17 (RCAω0 + (R1), [7, Lemma 3]) Let x ∈ X . If there exists an n ≥ 1
such that Tnx = x then already Tx =X x.

Proof Assume that n is minimal with Tnx =X x. Since x =X y is Π0
1 one can

find such an n using Σ0
1-IA.

If n ≥ 2 take i < j ∈ [1, n[ such that d(T ix,T jx) is minimal. Again Σ0
1-IA proves

that such i, j exists.

By the (m, γ)-g-contraction property there is a k ∈ [1,m] such that

γkd(T ix,T jx) >R d(T i+kx,T j+kx).

By the assumption Tn(x) = x the right side is equal to d(T(i+k) mod nx,T(j+k) mod nx)
which is a contradiction to the minimality.

Hence n = 1 and Tx =X x.

Lemma 18 (RCA0 , [1, Lemma 3.2]) Let N be a given multiple of m. Then
for all u, v ∈ N there exists a number p(u, v) ∈ N such that whenever R ∈
[1, p(u, v)]× [0,∞[ is a relation satisfying

(1) the set { i | (i, 0) ∈ R } meets every sets [k + 1, k + N] ⊆ [1, p(u, v)],
(2) if i + m ≤ p(u, v) and (i, j) ∈ R, then there are 1 ≤ i′, j′ ≤ J such that

(i + i′, j + j′) ∈ R,
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then there exists a subinterval [k + 1, k + N] ⊆ [1, p(u, v)] and k1, . . . , ku ∈ N
such that

(1) kr+1 − kr ≥ m for 1 ≤ r < u,
(2) for every kr there exists a q ∈ [k + 1, k + N] such that (q, kr) ∈ R.

Proof The proof of Arvanitakis in [1, Lemma 3.2] uses only quantifier free
induction and can be formalized even in elementary arithmetic.

Lemma 19 (RCAω0 + (R1), [1, Lemma 3.1]) Assume that no power of T has
a fixed-point, then for every N ∈ N there exists a p(N) ∈ N such that for every
point z ∈ X there exists an ε >R 0 with the property that for every y ∈ X one
finds N successive iterates of T in the set y,Ty, . . . ,Tp(N)−1y whose distance to
z is bigger than ε.

Proof This lemma is an elementary application of the previous lemma. The
proof of Arvanitakis ([1, Lemma 3.1]) can also be formalized in this system.

Proof of Theorem 3 Like in the continuous case we construct using Lemma 15
an infinite set I . We now use that this lemma also provides a piecewise N -syndetic
∆0

2 -set Ĩ , such that I ⊆ Ĩ ⊆ N. Again (T ix)i∈Ĩ is a Cauchy-sequence with Cauchy-
rate 2Mγi and limit point z. Note that the sequence restricted to the elements
in I converges to z, too. Hence, z is definable in the system.

Assume for a contradiction that T has no fixed point. By Lemma 17 no power
of T has a fixed point and hence by Lemma 19 for a given N there are p(N), ε,
such that for every point y ∈ X in (T iy)i∈[1,p(N)] there are N successive elements,
which are more than ε apart from z.

By the convergence of (T ix)i∈Ĩ there exists an i0 such that

d(T ix, z) < ε for i ∈ Ĩ and i ≥ i0 .

The ∆0
2 -set Ĩ0 := Ĩ ∩ [i0,∞[ is evidently also piecewise N -syndetic.

Using the piecewise N -syndetic property of Ĩ0 one can find a subset of size p(N)
where at least every N -th element is ε-close to z, contradicting the conclusion
of Lemma 19 and thus the assumption that T has no fixed-point.

This proves the theorem.

Again, the proof formalizes in RCAω0 + (R1) except for Lemma 15, where we
need RT2

2 is m if uniformly bounded and RT2
<∞ and Σ0

3-IA otherwise. Hence,
the statement follows.
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4 Final remarks

We showed that the generalized Banach contractions principle follows from
Ramsey’s theorem for pairs. The proof depends essentially on the fact that
Ramsey’s theorem splits into stable Ramsey’s theorem and the cohesive principle.
This shows that this split is not only useful as a technical tool to investigate the
strength of RT2

2 but also is (implicitly) used outside of logic.

The principle GBCCcont trivially implies Σ0
2-IA since it assumes by formulation

that for each functional T its iterates Tn exists which implies—as mentioned in
Section 1—Σ0

2 -induction. For the principle GBCCcont
m the formulation does not

require Σ0
2 -induction, since only iterations of T up to the uniform bound m are

needed.

We do not know whether GBCCcont
m or even the restriction mentioned in Re-

mark 16 implies Σ0
2 -induction. Given the fact that for RT2

2 this question is still
open, see [20], and for the weaker principle SRT2

2 this was just recently resolved,
see [6], this question might be very difficult to answer.

The usual Banach contractions principle is provable in the base system RCA0 .
Therefore, GBCCcont is stronger than the usual Banach contractions principle.
We were not able to show that GBCCcont

m does not follow from RCA0 . Thus,
it might be possible that this principle coincide with the Banach contractions
principle. Given that fact that the combinatorics of the generalized Banach
contractions principle is much more complicated we conjecture that this is
not the case and that there is a computable instance of GBCCcont

m having no
computable solution. However, it remains open to determine the strength of the
generalized Banach contractions principle below Ramsey’s theorem for pairs.

Our formalization shows that program extraction techniques we developed in
[17] are applicable. It is a first step to extract quantitative content—like rates
of asymptotic regularity—from the generalized Banach contractions principle.
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