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On uniform canonical bases in Lp lattices and other metric
structures

ITAÏ BEN YAACOV

Abstract: We discuss the notion of uniform canonical bases, both in an abstract
manner and specifically for the theory of atomless Lp lattices. We also discuss the
connection between the definability of the set of uniform canonical bases and the
existence of the theory of beautiful pairs (i.e., with the finite cover property), and
prove in particular that the set of uniform canonical bases is definable in algebra-
ically closed metric valued fields.
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Introduction

In stability theory, the canonical base of a type is a minimal set of parameters required
to define the type, and as such it generalises notions such as the field of definition of
a variety in algebraic geometry. Just like the field of definition, the canonical base
is usually considered as a set, a point of view which renders it a relatively “coarse”
invariant of the type. We may ask, for example, whether a type is definable over a
given set (i.e., whether the set contains the canonical base), or whether the canonical
base, as a set, is equal to some other set. However, canonical bases, viewed as sets,
cannot by any means classify types over a given model of the theory, and they may
very well be equal for two distinct types. The finer notion of uniform canonical bases,
namely, of canonical bases from which the types can be recovered uniformly, is a fairly
natural one, and has appeared implicitly in the literature in several contexts (e.g., from
the author’s point of view, in a joint work with Berenstein and Henson [5], where
convergence of uniform canonical bases is discussed).

Definitions regarding uniform canonical bases and a few relatively easy properties are
given in Section 1. In particular we observe that every stable theory admits uniform
canonical bases in some imaginary sorts, so the space of all types can be naturally
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identified with a type-definable set. We then turn to discuss the following two ques-
tions.

The first question is whether, for one concrete theory or another, there exist mathemat-
ically natural uniform canonical bases, namely, uniform canonical bases consisting of
objects with a clear mathematical meaning. A positive answer may convey additional
insight into the structure of the space of types as a type-definable set. This is in contrast
with the canonical parameters for the definitions, whose meaning is essentially tauto-
logical and can therefore convey no further insight. The case of Hilbert spaces is quite
easy, and merely serves as a particularly accessible example. The case of atomless
probability spaces (i.e., probability algebras, or spaces of random variables), treated in
Section 2, is not much more difficult. Most of the work is spent in Section 3 where
we construct uniform canonical bases for atomless Lp lattices in the form of “partial
conditional expectations” Et[·|E] and E[s,t][·|E] (defined there). To a large extent, it is
this last observation which prompted the writing of the present paper.

The second question, discussed in Section 4, is whether the (type-definable) set of
uniform canonical bases is in fact definable. We characterise this situation in terms of
the existence of a theory of beautiful pairs. In Section 5 we use earlier results to show
that for the theory of algebraically closed metric valued fields, the theory of beautiful
pairs does indeed exist, and therefore that the sets of uniform canonical bases (which
we do not describe explicitly) are definable.

For stability in the context of classical logic we refer the reader to Pillay [14]. Stability
in the context of continuous logic, as well as the logic itself, are introduced in [8].

1 Uniform canonical bases

In classical logic, stable theories are characterised by the property that for every model
M, every type p(x̄) ∈ Sx̄(M) is definable, i.e., that for each formula ϕ(x̄, ȳ) (say
without parameters, this does not really matter) there exists a formula ψ(ȳ) (with para-
meters in M ) such that for all b̄ ∈ M :

ϕ(x̄, b̄) ∈ p ⇐⇒ � ψ(b̄).

In this case we say that ψ is the ϕ-definition of p, and write

ψ(ȳ) = dp(x̄)ϕ(x̄, ȳ).

Obviously, there may exist more than one way of writing a ϕ-definition for p, but since
any two such definitions are over M and equivalent there, they are also equivalent in
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On uniform canonical bases in Lp lattices and other metric structures 3

every elementary extension ofM, and thus have inter-definable canonical parameters.
In other words, the canonical parameter of the ϕ-definition of p is well-defined, up to
inter-definability, denoted Cbϕ(p). The collection of all such canonical parameters, as
ϕ(x̄, ȳ) varies (and so does ȳ) is called the canonical base of p, denoted Cb(p). This
is, up to inter-definability, the (unique) smallest set over which p is definable. The
same holds for continuous logic with some minor necessary changes, namely that the
ϕ-definition may be a definable predicate (i.e. a uniform limit of formulae, rather than
a formula), and it defines p in the sense that

ϕ(x̄, b̄)p = dp(x̄)ϕ(x̄, b̄).

We shall hereafter refer to definable predicates as formulae as well, since for our
present purposes the distinction serves no useful end.

Since canonical parameters are, a priori, imaginary elements, the canonical base is a
subset of Meq . For most purposes of abstract model theory this is of no hindrance, but
when dealing with a specific theory with a natural “home sort”, it is interesting (and
common) to ask whether types admit canonical bases which are subsets of the model.
This is true, of course, in any stable theory which eliminates imaginaries. In continu-
ous logic, this is trivially true for Hilbert spaces, it is proved for probability algebras in
[3], and for Lp Banach lattices in [6] (so all of these theories have, in particular, weak
elimination of imaginaries, even though not full elimination of imaginaries).

A somewhat less commonly asked question is the following. Can we find, for each
formula ϕ(x̄, ȳ), a formula dϕ(ȳ,Z), where Z is some infinite tuple of variables of
which only finitely (or countably) many actually appear in dϕ, such that for every
model M, and every type p(x̄) ∈ Sx̄(M),

dp(x̄)ϕ(x̄, ȳ) = dϕ
(
ȳ,Cb(p)

)
.

The scarcity of references to this question is actually hardly surprising, since, first,
the question as stated makes no sense, and, second, the answer is positive for every
stable theory. Indeed, if we consider Cb(p) to be merely a set which is only known
up to inter-definability, as is the common practice, then the expression dϕ

(
ȳ,Cb(p)

)
is meaningless. We remedy this in the following manner:

Definition 1.1 Let T be a stable theory. A uniform definition of types in the sort of
x̄ consists of a family of formulae {dϕ(ȳ,Z)}ϕ(x̄,ȳ)∈L , where Z is a possibly infinite
tuple, such that for each type p(x̄) over a model M � T there exists a tuple A ⊆ Meq

in the sort of Z such that for each ϕ(x̄, ȳ):

dp(x̄)ϕ(x̄, ȳ) = dϕ(ȳ,A).
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4 Itaï Ben Yaacov

If, in addition, this determines the tuple A uniquely for each p then we write A =

Cb(p) and say that the map p 7→ Cb(p) is a uniform canonical base map (in the sort
of x̄), or that the canonical bases Cb(p) are uniform (in p(x̄)).

To complement the definition, a (non uniform) canonical base map is any map Cb
which associates to a type p over a model some tuple Cb(p) which enumerates a
canonical base for p.

First of all, we observe that every uniform canonical base map is in particular a ca-
nonical base map. Second, any uniform definition of types gives rise naturally to a
uniform canonical base map. Indeed, for each ϕ we let wϕ be a variable in the sort of
canonical parameters for dϕ(ȳ,Z), and let dϕ′(ȳ,wϕ) be the corresponding formula.
For a type p, let A be a parameter for the original definition, and for each ϕ let bϕ
be the canonical parameter of dϕ(ȳ,A), so dϕ(ȳ,A) = dϕ′(ȳ, bϕ). Now let W be the
tuple consisting of all such wϕ , so we may re-write dϕ′(ȳ,wϕ) as dϕ′(ȳ,W), and let B
be the tuple consisting of all such bϕ . Then dp(x̄)ϕ(x̄, ȳ) = dϕ(ȳ,A) = dϕ′(ȳ,B) for all
ϕ, and in addition this determines B uniquely. Thus Cb(p) = B is a uniform canonical
base map.

Lemma 1.2 Every stable theory admits uniform definitions of types and thus uniform
canonical base maps (in every sort).

Proof This is shown for classical logic in, say, [14], and for continuous logic (which
encompasses classical logic as a special case) in [8]. �1.2

Lemma 1.3 The image img Cb of a uniform canonical base map is a type-definable
set.

Proof All we need to say is that the tuple of parameters does indeed define a (finitely,
or, in the continuous case, approximately finitely) consistent type, which is indeed a
type-definable property. �1.3

Lemma 1.4 Let Cb be a uniform canonical base map in the sort x̄ , and let f be
definable function (without parameters) defined on img Cb, into some other possibly
infinite sort (this is equivalent to requiring that the graph of f be type-definable). As-
sume furthermore that f is injective. Then Cb′ = f ◦ Cb is another uniform canonical
base map. Moreover, every uniform canonical base map can be obtained from any
other in this manner.
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Proof The main assertion follows from the fact that if f is definable and injective and
dϕ(ȳ,Z) is a formula then dϕ

(
ȳ, f−1(W)

)
is also definable by a formula on the image

of f . For the moreover part, given two uniform canonical base maps Cb and Cb′ , the
graph of the map f : Cb(p) 7→ Cb′(p) is type-definable (one canonical base has to give
rise to the same definitions as the other, and this is a type-definable condition), so f is
definable. �1.4

Thus, in the same way that a canonical base for a type is exactly anything which is
inter-definable with another canonical base for that type, a uniform canonical base is
exactly anything which is uniformly inter-definable with another uniform canonical
base. A consequence of this (and of existence of uniformly canonical bases) is that in
results such as the following the choice of uniform canonical bases is of no importance.

Notation 1.5 When M is a model and ā a tuple in some elementary extension, we
write Cb(ā/M) for Cb(p) where p = tp(ā/M).

Lemma 1.6 Let z̄ = f (x̄, ȳ) be a definable function in T (say without paramet-
ers), possibly partial, and let Cb be uniform. Then the map f Cb

(
Cb(ā/M), b̄

)
=

Cb
(
f (ā, b̄)/M

)
is definable as well for (ā, b̄) ∈ dom f , b̄ ∈ M , uniformly across all

models of T . In case f is definable with parameters in some set A, so is f Cb , uniformly
across all models containing A.

Proof For the first assertion, it is enough to observe that we can define tp
(
f (ā, b̄)/M

)
by

ϕ
(
f (ā, b̄), c̄

)
= dψ

(
b̄c̄,Cb(ā/M)

)
,

where ψ(x̄, ȳz̄) = ϕ
(
f (x̄, ȳ), z̄

)
. The case with parameters follows. �1.6

Lemma 1.7 Let Cb be a uniform canonical base map, say on the sort of n-tuples,
into some infinite sort, and let Cb(p)i denote its ith coordinate. Then the map ā 7→
Cb(ā/M)i is uniformly continuous, and uniformly so regardless of M.

Proof For a uniform canonical base map constructed from a uniform definition as
discussed before Lemma 1.2 this follows from the fact that formulae are uniformly
continuous. The general case follows using Lemma 1.4 and the fact that definable
functions are uniformly continuous. �1.7
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Remark 1.8 The notion of a uniform canonical base map can be extended to simple
theories, and the same results hold. Of course, canonical bases should then be taken in
the sense of Hart, Kim and Pillay [10], and one has to pay the usual price of working
with hyper-imaginary sorts.

Now the question we asked earlier becomes

Question 1.9 Let T be a stable theory. Find a natural uniform canonical base map
for T . In particular, one may want the image to be in the home sort, or in a restricted
family of imaginary sorts.

Usually we shall aim for the image to lie in the home sort, plus the sort {T,F} in the
case of classical logic, or [0, 1] in the case of continuous logic.

Example 1.10 Let T = IHS , the theory of infinite dimensional Hilbert spaces, or
rather, of unit balls thereof (from now on we shall tacitly identify Banach space struc-
tures with their unit balls).

The “folklore” canonical base for a type p = tp(v̄/E) is the orthogonal projection
PE(v̄). Indeed, by quantifier elimination it will be enough to show that p(x̄) admits a
ϕ-definition over PE(v̄) for every formula of the form ϕ(x̄, y) = ‖

∑
λixi + y‖2 , for

any choice of scalars λ̄. We then observe that for all u ∈ E we have

ϕ(v̄, u) =
∥∥∥∑λivi

∥∥∥2
−
∥∥∥∑λiPE(vi)

∥∥∥2
+
∥∥∥∑λiPE(vi) + u

∥∥∥2
.

The second and third terms are definable from u using PE(v̄) as parameters, while the
first term is simply a constant which does not depend on u.

Since PE(v̄) alone does not allow us to recover ‖
∑
λivi‖2 , and therefore does not

allow us to recover p either, this canonical base is not uniform. By adding the missing
information (namely, the inner product on the vi , in the sort [−1, 1]) we obtain a
uniform canonical base:

Cb(v̄/E) =
(
PE(vi), 〈vi, vj〉

)
i,j<n.

This example, where we take a canonical base which is not uniform and make it uni-
form merely by adding information in a constant sort (namely, {T,F} in classical
logic, or [0, 1] in continuous logic) is a special case of the following.

Definition 1.11 Say that a canonical base map is weakly uniform if it can be obtained
from a uniform map by composition with a definable function (which need not neces-
sarily be injective, so the resulting canonical base need not suffice to recover the type
uniformly – compare with Lemma 1.4).
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On uniform canonical bases in Lp lattices and other metric structures 7

For example, in the case of Hilbert spaces discussed above, the canonical base map
tp(v̄/E) 7→ PE(v̄) is weakly uniform.

Proposition 1.12 Let Cb be any uniform canonical base map, and let us write its tar-
get sort as Z0×Z1 , where Z1 is a power of the constant sort. Let Cb0 be the restriction
to the sort Z0 . Then Cb0 is a weakly uniform canonical base map. Conversely, every
weakly uniform canonical base map can be obtained in this fashion.

Proof The main assertion is quite immediate, and it is the converse which we need to
prove. Let Cb0 be a weakly uniform canonical base map on a sort x̄ , with target sort
Z0 . By definition, it is of the form f ◦Cb′ , where Cb′ is a uniform canonical base map
with target sort W and f : img Cb′ → Z0 is definable. Let Φ be the set of all formulae
ϕ(x̄,W). For every such formula, the value ϕ

(
ā,Cb′(ā/M)

)
is uniformly definable

from Cb′(ā/M), call it gϕ
(
Cb′(ā/M)

)
, and let g = (gϕ)ϕ∈Φ . Then (f , g) : img Cb′ →

Z0 × Z1 is definable, and Z1 is a power of the constant sort. If we show that (f , g) is
injective then, by Lemma 1.4, we may conclude that Cb = (f , g) ◦ Cb′ is the desired
uniform canonical base map.

So let us consider a model M and two tuples ā and b̄ in the sort x̄ , lying in some
extension N �M. Let C = Cb′(ā/M), D = Cb′(b̄/M), and assume that (f , g)(C) =

(f , g)(D). Then g(C) = g(D) means that āC ≡ b̄D. Since also f (C) = f (D), we have
āf (C) ≡ b̄f (C), i.e., ā ≡f (C) b̄. Finally, by hypothesis, f (C) is a canonical base for
both types, whence ā ≡M b̄ and therefore C = D. This completes the proof. �1.12

Thus our question can be restated as

Question 1.13 Let T be a stable theory. Find a natural weakly uniform canonical
base map for T with image in the home sort.

Unfortunately, the canonical bases mentioned above for probability algebras and Lp

lattices are not even weakly uniform, so we cannot apply Proposition 1.12 and the
problem of finding uniform canonical bases requires some new ideas.

2 Uniform canonical bases in atomless probability spaces

The easier of the two “interesting cases” is that of atomless probability algebras. There
is a caveat, though, namely a uniform canonical base exists not in the home sort of
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events (see Corollary 2.5), but in the (still mathematically natural) imaginary sort of
[0, 1]-valued random variables.

In [2] we define the theory ARV of atomless spaces of [0, 1]-valued random vari-
ables, in the language {0,¬, 1

2 ,∨,∧}, where 0 is a constant, ¬X = 1 − X and 1
2 X

are unary, the lattice operations ∨ and ∧ are binary, and integration is recovered as
E[X] = d(X, 0). We show there that ARV is bi-interpretable with APr , the theory
of atomless probability algebra: to a probability algebra A one associates the space
M = L1(A , [0, 1]) of [0, 1]-valued A -measurable random variables, from which one
can recover A = σ(M). In addition, ARV is ℵ0 -stable, eliminates quantifiers, and ad-
mits definable continuous calculus: if τ : [0, 1]n → [0, 1] is any continuous function
then the map X̄ 7→ τ (X̄) is definable. Thus, in order to construct uniform canonical
bases for APr in the sort of [0, 1]-valued random variables, it will be enough (and in
a sense, better) to show that ARV admits uniform canonical bases in the home sort.

For models M � N � ARV and X ∈ N let us write E[X|M] for the conditional
expectation E[X|σ(M)], itself a member of M . For tuples X̄ ∈ Nn and k̄ ∈ Nn , let
X̄k̄ =

∏
Xki

i .

Lemma 2.1 Let M � N � ARV and let X̄ ∈ Nn , k̄ ∈ Nn . Then E[X̄k̄|M] is
uniformly definable from Cb(X̄/M). Also, for every ¯̀ ∈ Nm , E[X̄k̄Ȳ ¯̀] is uniformly
definable from E[X̄k̄|M] and Ȳ ∈ Mm .

Proof By the definable continuous calculus, the function (X̄,Y) 7→ |X̄k̄ − Y|2 is uni-
formly definable, and by Lemma 1.6 the predicate ‖X̄k̄ − y‖2 is uniformly definable
for y ∈ M from Cb(X̄/M). For Y ∈ M we have

Y = E[X̄k̄|M] ⇐⇒ ‖X̄k̄ − Y‖2 = inf
y
‖X̄k̄ − y‖2,

where the infimum is taken in M. Thus the graph of the function Cb(X̄/M) 7→
E[X̄k̄|M] is type-definable in M, whence it follows that the function itself is defin-
able, and uniformly so in all models of ARV . For the second assertion, use definable
continuous calculus and the fact that for Ȳ ∈ Mm we have E[X̄k̄Ȳ ¯̀] = E

[
E[X̄k̄|M] ·

Ȳ ¯̀]. �2.1

Theorem 2.2 For n-types over models in ARV ,

Cb(X̄/M) =
(
E[X̄k|M]

)
k̄∈Nn

is a uniform canonical base (in the home sort).
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On uniform canonical bases in Lp lattices and other metric structures 9

Proof By Lemma 2.1, this tuple is uniformly definable from any other uniform canon-
ical base, so by Lemma 1.4 all that is left to show is that this tuple determines the type.
By Lemma 2.1 again, this tuple determines E[X̄k̄Ȳ ¯̀] for every Ȳ ∈ Mm and ¯̀ ∈ Nm .
By the Stone-Weierstaß Theorem, every continuous function τ : [0, 1]n+m → [0, 1] is
uniformly approximated by polynomials, so E[τ (X̄, Ȳ)] is determined for every such
τ and Ȳ , which, by quantifier elimination, is enough to determine tp(X̄/M). �2.2

Corollary 2.3 For n-types over models in APr ,

Cb(Ā/A ) =

(
P

[∧
i∈s

Ai

∣∣∣∣∣A
])

∅6=s⊆n

is a uniform canonical base (in the sort of [0, 1]-valued random variables), where
P[·|A ] denotes conditional probability.

Proof Immediate. �2.3

Let us now show that this cannot be improved.

Lemma 2.4 There is no ∅-definable injective map from a model M � ARV to
σ(M)κ × [0, 1]λ (for any cardinals κ, λ).

Proof Assume there were one, say (f , g) : M → σ(M)κ × [0, 1]λ , where f goes to
σ(M)κ and g to [0, 1]λ . Let A ∈ σ(M) have measure one half, with indicator function
1A , and for 0 ≤ r ≤ 1 let Xr = r1A ∈ M . For i < κ, the event fi(Xr) must be definable
from Xr , namely from A, and therefore must belong to the discrete set {0, 1,A,¬A}.
Since the map fi , being definable, must be continuous, we conclude that r 7→ fi(Xr)
must be constant, so f (1A) = f (0).

Now let B ∈ σ(M) be any other event of measure one half. Then f (1A) = f (0) =

f (1B), and by quantifier elimination 1A ≡ 1B , whereby g(1A) = g(1B), so (f , g) is not
injective after all. �2.4

Corollary 2.5 The theory APr does not admit a weakly uniform canonical base in its
home sort (of events).

Proof Let A � APr , say the probability algebra of Ω, and let B be the probability
algebra of Ω× [0, 1]. Then B � APr as well, and identifying A ∈ A with A× [0, 1],
we obtain an embedding A ⊆ B which is elementary by quantifier elimination of
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APr . More generally X ∈ L1(A , [0, 1]), let BX = {(ω, r) : r ≤ X(ω)} ∈ B (which
is well defined, up to null measure). Thus, with Cb a uniform canonical base map as
in Corollary 2.3 (for types of singletons), we have Cb(BX/A ) = P[BX|A ] = X , so
img Cb = L1(A , [0, 1]).

Now, assume there existed a weakly uniform canonical base map for types of
singletons in APr with values in the home sort. Then by Proposition 1.12 there would
exist a uniform canonical base map with values in the home sort and [0, 1], and by
Lemma 1.4 it is of the form f ◦Cb, where f : img Cb→ A κ× [0, 1]λ is definable and
injective. This (together with the bi-interpretability of A with L1(A , [0, 1])) contra-
dicts Lemma 2.4. �2.5

3 Uniform canonical bases in atomless Lp lattices

Recall that LpL denotes the theory of Lp lattices for some fixed p ∈ [1,∞), and that
ALpL denotes the theory of atomless ones: their models are exactly those abstract
Banach lattices which are isomorphic to a Banach lattice of the form Lp(Ω), where Ω

is a measure space, atomless in the case of ALpL . We may write the measure space
more explicitly as (Ω,Σ, µ), where Ω is a set of points, Σ a σ -algebra on Ω and µ a
σ -additive measure on Σ, atomless in the case of ALpL .

Stability, independence and related notions were studied for ALpL by Berenstein, Hen-
son and the author in [6]. Here we shall consider Banach lattices (as we do all Banach
space structures) via their unit balls (from which the entire Banach lattice can be re-
covered), in the language {0,−, x+y

2 , | · |}, where, for æsthetic reasons, we halve the
distance: d(x, y) = ‖ x−y

2 ‖ (see [4]). The results of [6] were given in a different, yet
equivalent, formalism, so they hold fully in ours. The theory ALpL was shown to
be ℵ0 -stable, and canonical bases of 1-types were described as tuples of conditional
slices in the home sort (see Section 5 there). Even though they are very natural in-
variants of a 1-type, conditional slices are not uniform, or even weakly uniform, in
the sense of the present paper. Our aim here is to replace the conditional slices with a
related object which does provide a uniform canonical base.

We start by quickly recalling the Krivine calculus on Banach lattices (see also [13]).

Lemma 3.1 Every lattice term t(x̄) defines a function t : Rn → R which is finitely
piecewise affine, continuous, and R+ -homogeneous of degree one, by which we mean
that t(αx̄) = αt(x̄) for all α ≥ 0.

Journal of Logic & Analysis 4:12 (2012)
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In addition, an arbitrary function ϕ : Rn → R is continuous and R+ -homogeneous of
degree one if and only if it can be approximated by lattice terms uniformly on every
compact.

Proof The first assertion, as well as the if part of the second, are clear. For the only
if, let us assume that ϕ is continuous and R+ -homogeneous of degree one. Then it
is determined by its restriction to the unit sphere. Since every uniform approximation
of ϕ on the unit sphere yields a uniform approximation on the entire unit ball, it will
be enough to show that lattice terms are dense in C(Sn−1,R). They obviously form
a lattice there, so it will be enough to show that for every distinct x̄, ȳ ∈ Sn−1 , every
a, b ∈ R and every ε > 0, there is a lattice term t such that |t(x̄)− a|, |t(ȳ)− b| < ε.

We may assume that x0 6= y0 . If |x0| = |y0| then we may assume that x0 < 0 < y0 and
define t(z̄) = a

y0
z−0 + b

y0
z+

0 . Otherwise, we may assume that |x0| < |y0|, in which case
the opposite inequality must hold for some other coordinate, say |y1| < |x1|. Then
x1y0 − x0y1 6= 0 and we may define

t(z̄) =
bx1 − ay1

x1y0 − x0y1
z0 +

ay0 − bx0

x1y0 − x0y1
z1.

Either way, t(x̄) = a and t(ȳ) = b, which is even better than what we needed. �3.1

It is also a fact that if t is a lattice term with bound ‖t‖ on [−1, 1]n then for any
Banach lattice E and every sequence f̄ ∈ En one has |t(f̄ )| ≤ ‖t‖

∨
i |fi|. It follows

that if tk → ϕ uniformly on [−1, 1]n then tk(f̄ ) converges in norm to a limit ϕ(f̄ )
which does not depend on the choice of converging lattice terms, and at a rate which
only depends on the sequence tk and on ‖

∨
i |fi|‖. It follows that the map ϕ : En → E

is uniformly definable across all (unit balls of) Banach lattices.

Convention 3.2 For α > 0 we extend x 7→ xα to the whole real line by (−x)α = −xα

(so (−7)2 = −49).

Lemma 3.3 For every p, q ∈ [1,∞) the theories LpL and LqL are quantifier-free
bi-definable. More exactly, if E = Lp(Ω) and F = Lq(Ω) then we may identify their
respective underlying sets via the bijection f 7→ f

p
q . Under this identification, each

Banach lattice structure is quantifier-free definable in the other.

Moreover, if q ∈ (1,∞) and q′ = q
q−1 is its conjugate exponent, then the duality

pairing 〈f , g〉 =
∫

fg on Lq × Lq′ is definable in Lp .
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Proof The map θ : f 7→ f
p
q clearly is a bijection between Lp(Ω) and Lq(Ω). For

any definable map or predicate in Lq(Ω), call it τ , let τLq denote its pre-image in
Lp(Ω) by θ . Thus, for example, ‖x‖Lq = ‖x‖

p
q , so θ is also a bijection between the

respective unit balls. Also, 0Lq = 0, and similarly for −, and | · | (namely, they

commute with θ ). For x+y
2 , we have ( x+y

2 )Lq =
(

xp/q+yp/q

2

) q
p : as a map R2 →

R, this is continuous and R+ -homogeneous of degree one, and therefore uniformly
definable in all Banach lattices, and in particular in models of LpL . Finally, d(x, y)Lq =

‖ x−y
2 ‖

Lq = ‖( x−y
2 )Lq‖

p
q , and we already know that ( x−y

2 )Lq is definable. It follows that
the predicate f 7→

∫
f p is definable in Lp(Ω): when p = 1 this is merely ‖f +‖ −

‖f−‖, where f + = |f |+f
2 and f− = |f |−f

2 , and for the general case we use the bi-

definability proved above with q = 1. By the same arguments, (x, y) 7→ x
1
q y

1
q′ is

definable in Lp(Ω). Given f , g ∈ Lp(Ω) which represent f
p
q ∈ Lq(Ω) and g

p
q′ ∈ Lq′(Ω),

respectively, we have
〈

f
p
q , g

p
q′
〉

=
(∫

f
1
q g

1
q′
)p

, which is definable from f
1
q g

1
q′ and

therefore from (f , g), concluding the proof. �3.3

Recall from [6] that for any embedding E ⊆ F of Lp lattices there are presentations
of E and F as Lp(Ω1,Σ1, µ1) ⊆ Lp(Ω2,Σ2, µ2), such that Ω1 ⊆ Ω2 , Σ1 ⊆ Σ2

and µ2 extends µ1 . For g ∈ E , f ∈ F , and presentation as above, we say that
g = E[f |Σ1] if

∫
A g =

∫
A f for all A ∈ Σ1 of finite measure. Uniqueness of g is clear,

and existence is fairly standard (at least under some mild hypotheses on the measure
spaces in question). It is shown in [6] that, moreover, E[f |Σ1] does not depend on the
choice of presentation (i.e., of measure spaces), and is therefore denoted g = E[f |E],
the conditional expectation of f with respect to E , which will be an essential tool
for this section. We shall see below (Lemma 3.6) that for p > 1, the Krivine calculus
provides us with a more elementary argument showing that the conditional expectation
depends only on tp(f/E) (and not on the presentation), and moreover definably so (an
even more elementary argument shows independence of the presentation when p = 1,
see Remark 3.7).

Let us recall from [6] a few facts regarding types in ALpL . Recall first that f , g in a
Banach lattice are called orthogonal, in symbols f ⊥ g, if |f | ∧ |g| = 0, and if E ⊆ F
are two Banach lattices then E⊥ = {f ∈ F : f ⊥ E} = {f ∈ F : f ⊥ g for all g ∈ E}
is a sub-lattice of F . Recall also that if E ⊆ F are Lp lattices then F = E⊥⊥ ⊕ E⊥ ,
so each f ∈ F can be written uniquely as f = f �E + f �E⊥ , where f �E⊥ ⊥ E and
f �E ⊥ E⊥ .

Fact 3.4 By [6, Lemma 3.8], tp(f/E) is determined by tp(f �E/E) together with
‖f �±E⊥‖, or equivalently, together with ‖f±‖. If E = Lp(Ω1,Σ1, µ1) ⊆ F =
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On uniform canonical bases in Lp lattices and other metric structures 13

Lp(Ω2,Σ2, µ2) is a concrete representation as above then f �E = f 1Ω1 and f �E⊥ =

f 1Ω2rΩ1 , and by [6, Proposition 3.7], tp(f �E/E) is determined by the Σ1 -conditional
distribution of f �E , namely by the map t 7→ P[f > t|Σ1].

We say that F is atomless over E if for every g ∈ E , g ≥ 0, there is f ∈ F , 0 ≤ f ≤ g,
such that f ⊥ g− f and ‖f‖ = ‖g‖/2, or equivalently, if for any concrete presentation
as above, µ2 is atomless over Σ1 . If this is the case then, by virtue of the above,
together with [6, Fact 2.15], for any f in an extension of E , tp(f �E/E) is realised in F .
If, in addition, E⊥ ⊆ F is non trivial, then any 1-type (or indeed, n-type, but we shall
not require this) over E is realised in F .

Let Ω be a measure space, and let A (Ω) be the algebra (or more precisely, the rel-
atively complemented distributive lattice) of finite measure sets modulo null measure
sets, which, with some abuse of terminology, we shall call the measure algebra of
Ω. Let Ω′ be the Stone space of A (Ω), an extremally disconnected locally compact
space, equipped with the unique regular Borel measure which associates to each com-
pact open set the (finite) measure of the corresponding measurable subset of Ω, which
exists by Carathéodory’s Theorem.

Fact 3.5 With Ω and Ω′ as above, A (Ω′) is canonically isomorphic to A (Ω), yield-
ing a canonical identification Lp(Ω) ∼= Lp(Ω′), so we may assume that Ω = Ω′ . Such
a space has the particular property that every g ∈ Lp(Ω) has a unique continuous rep-
resentative, so it makes sense to speak of the value g(ω) ∈ [−∞,∞] at some ω ∈ Ω,
which is finite for almost all ω .

Algebraic and lattice operations, and therefore the lattice order, are reflected in these
continuous representatives. If A ⊆ Lp(Ω) is countable (or separable) then A is bounded
in Lp(Ω) if and only if the point-wise supremum g(ω) = supf∈A f (ω) is in Lp , in which
case it is equal almost everywhere to the continuous representative of sup A.

Proof The construction is straightforward. To see that it has the desired properties,
it is enough to consider restrictions to finite measure sub-spaces, in which case this is
shown in [3, Theorem 1.9 and Proposition 1.14]. For a more elaborate discussion, see
[9, Chapter 32]. �3.5

This spares us the headache of choosing representatives: for example, given a convex
function x 7→ Ψf (x) ∈ Lp(Ω), it is automatically true that x 7→ Ψf (x)(ω) is convex for
each ω .
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14 Itaï Ben Yaacov

Let us fix E � ALpL and a type q = tp(f/E) for some f in an extension of E . Let
us also fix a concrete representation E = Lp(Ω), with Ω as in Fact 3.5, and define
E′ = Lp

(
(Ω ∪ {+,−})× [0, 1]

)
, where the interval is taken with the Lebesgue meas-

ure, and each of ± has measure one. Let π0 : Ω × [0, 1] → Ω denote the projection,
and identify a function g : Ω → R with g ◦ π0 : Ω × [0, 1] → R, as well as with its
extension by zeroes to (Ω ∪ {±}) × [0, 1], yielding a canonical embedding E ⊆ E′ ,
which, by quantifier elimination for ALpL , is elementary. By the previous paragraph,
we may assume that f ∈ E′ . The conditional expectation of f with respect to Ω

(namely, to its Borel algebra) is

E[f |Ω](ω) =

∫ 1

0
f (ω, t) dt,

and ‖E[f |Ω]‖ ≤ ‖f‖ by Jensen’s inequality and convexity of x 7→ xp (for f ≥ 0 the
integral is finite almost everywhere, by Fubini’s Thoerem and Jensen’s inequality, so
it is defined almost everywhere for all f ).

Lemma 3.6 Assume that p > 1, and let E � ALpL , q ∈ S1(E), and f � q in E′ as
above. Then the conditional expectation E[f |Ω] defined above depends only on q, that
is to say that for any presentation E = Lp(Ω′) ⊆ Lp(Ω′′) = F , and any f ′ ∈ F , if f ′ � q
then E[f ′|Ω′] = E[f |Ω]. Moreover, for any uniform canonical base map Cb, the map
Cb(f/E) 7→ E[f |E] (where E[f |E] now denotes E[f |Ω]) is definable in ALpL . More
generally, if t(x, ȳ) is any lattice term, then the map

(
Cb(f/E), ḡ

)
7→ E

[
t(f , ḡ)|E

]
,

where ḡ ∈ E , is definable.

Proof Clearly, if g ∈ E satisfies that 〈f , h〉 = 〈g, h〉 for all h ∈ E∗ = Lp′(Ω), where
p′ = p

p−1 then g = E[f |Ω], and it is fairly standard to check that the converse holds
as well. It follows that g = E[f |Ω] if and only if

∫
fhp−1 =

∫
ghp−1 for all h ∈ E ,

or equivalently, for all h in the unit ball of E . The map (x, y) 7→ x
1
p y

p−1
p is uniformly

definable by the Krivine calculus, so (x, y) 7→ ‖x
1
p y

p−1
p ‖p =

∫
|x||y|p−1 is a definable

predicate. Separating into positive and negative parts we see that ϕ(x, y) =
∫

xyp−1

is a definable predicate as well. Together with our characterisation of E[f |Ω], this
implies that it indeed only depends on tp(f/E) (in fact, all of this holds even when E
is a mere model of LpL , not necessarily atomless, in which case E[f |Ω] only depends
on the quantifier-free type of f over E).

From now on we write E[f |E] for E[f |Ω]. With ϕ as above, in E we have x = E[f |E]
if and only if

sup
z

∣∣ϕ(x, z)− dϕ
(
z,Cb(f/E)

)∣∣ = 0,
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On uniform canonical bases in Lp lattices and other metric structures 15

and this remains true if we restrict z to the unit ball. Therefore the graph of
Cb(f/E) 7→ E[f |E] is type-definable, and moreover, given a bound on ‖f‖ we have a
bound on ‖E[f |E]‖ (so, in a sense, we know in which “sort” E[f |E] lives), so the map
is definable. The case of a lattice term follows by Lemma 1.6. �3.6

Remark 3.7 This argument does not work for p = 1, and we shall see below that for
p = 1 the definability of Cb(f/E) 7→ E[f |E] fails. However, when p = 1 we have∫

f = ‖f +‖−‖f−‖, and if h ∈ E is positive, say with support A in some presentation,
then

∫
f �A = limN→∞(f ∧ Nh) ∨ (−Nh), so again E[f |E] only depends on tp(f/E).

Given f in some extension of E , let f0 = E
[
|f ||E

]
∈ E , and consider the function

Ψf : R → E , Ψf (x) = E[xf0 −. f |E]. It is convex, and therefore admits one-sided
derivatives

D+
x Ψf = lim

ε↘0

Ψf (x + ε)−Ψf (x)
ε

= inf
ε>0

Ψf (x + ε)−Ψf (x)
ε

,

and similarly

D−x Ψf = sup
ε>0

Ψf (x− ε)−Ψf (x)
−ε

.

The function Ψf is determined by tp(f/E), and by Lemma 3.6, for p > 1 it is even
uniformly definable from the canonical base. Conversely,

Convention 3.8 Given f in an extension of E and f0 = E
[
|f ||E

]
as above, one can

always choose a concrete representation E = Lp(Ω) such that f0 = 1A is an indicator
function. We may moreover assume that Ω is as in Fact 3.5, in which case A is a
compact open set. We fix such a presentation for the rest of the section.

We may still assume that f ∈ E′ = Lp
(
(Ω ∪ {+,−})× [0, 1]

)
, as in the discussion

preceding Lemma 3.6.

Lemma 3.9 Under Convention 3.8, the conditional distribution of f �E with respect
to Ω is determined by

P[f �E ≤ x|Ω] · 1A = P[f ≤ xf0|Ω] · f0 = D+
x Ψf , f �E · (1− 1A) = 0,

In particular, the triplet (Ψf , ‖f±‖), determines tp(f/E).

Proof Indeed, for ω ∈ A we have

Ψf (x)(ω) = µ[0,1]×R

{
(t, s) : f (ω, t) ≤ s ≤ x

}
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16 Itaï Ben Yaacov

and

D+
x Ψf (ω) = inf

ε

1
ε
µ[0,1]×R

{
(t, s) : f (ω, t) ∨ x ≤ s ≤ x + ε

}
= µ[0,1]

{
t : f (ω, t) ≤ x

}
= P[f �E ≤ x|Ω](ω).

The second assertion now follows from Fact 3.4. �3.9

A useful tool in the study of convex functions is the Legendre transform, which allows
to pass between the spaces of points and of slopes. For a function ϕ : R→ R ∪ {∞},
not identically ∞, we define

ϕ∗(t) = sup
x∈Cϕ

tx− ϕ(x) ∈ R ∪ {∞}, where Cϕ = {x ∈ R : ϕ(x) <∞}.

The function ϕ∗ is always convex and continuous on Cϕ∗ (namely at the boundary,
since, being convex, it is automatically continuous in the interior). If ϕ∗ is not identic-
ally∞, which is always the case when ϕ is convex, we can define the double Legendre
transform ϕ∗∗ , which is the greatest function below ϕ which is convex and continuous
on Cϕ , . If ϕ is convex and continuous on Cϕ then ϕ = ϕ∗∗ . In this case, we have
for every x ∈ Cϕ and t ∈ Cϕ∗ :

ϕ(x) + ϕ∗(t) = tx ⇐⇒ D−t ϕ
∗ ≤ x ≤ D+

t ϕ
∗ ⇐⇒ D−x ϕ ≤ t ≤ D+

x ϕ.(1)

(At the boundary of the domain, the derivatives may be ±∞, and are always finite in
the interior.) This can be generalised to functions on spaces of higher dimension, with
tx replaced with a duality pairing, see for example in Rockafellar [16].

Working with a presentation E = Lp(Ω) as per Convention 3.8, we can deduce similar
properties for the lattice-valued Ψf .

Lemma 3.10 Let f ∈ F ⊇ E , f0 = E
[
|f ||E

]
and Ψf (x) = E[xf0 −. f ] be as above,

and define

Ψ∗f (t) = sup
x

txf0 −Ψf (x), Ψ∗∗f (x) = sup
t∈[0,1]

txf0 −Ψ∗f (t).

Then Ψ∗f is finite, convex and continuous on [0, 1], with Ψ∗f (0) = 0 and Ψ∗f (1) =

E[f |E], it is infinite for t /∈ [0, 1], and Ψf = Ψ∗∗f .

Proof We have ‖Ψf (x)‖∞ ≤ |x|+1 for x ∈ R, so for ω ∈ Ω we may define a convex
function ψω : R → R by ψω(x) = Ψf (x)(ω). For x ≤ y we have Ψf (x) ≤ Ψf (y) ≤
Ψf (x) + (y − x)f0 , and it follows that ψω(x) ≤ ψω(y) ≤ ψω(x) + (y − x). Passing to
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the Legendre transform, this means that Ψ∗f (t) = ∞ and ψ∗ω(t) = ∞ for all ω and
t /∈ [0, 1]. For t = 0, 1 we have

Ψ∗f (0) = lim
x→−∞

−E[xf0 −. f |E] = 0, Ψ∗f (1) = lim
x→∞

E[xf0 ∧ f |E] = E[f |E].

By convexity, Ψ∗f (t) ∈ E (i.e., is finite) for each t ∈ [0, 1], and by Fact 3.5, ψ∗ω(t) =

Ψ∗f (t)(ω) for almost all ω . Using the continuity of convex functions, we can exchange
the quantifiers: for almost all ω , ψ∗ω = Ψ∗f (·)(ω). It follows that for each x , for almost
all ω : ψ∗∗ω (x) = Ψ∗∗f (x)(ω). Thus Ψf (x) = Ψ∗∗f (x), as desired.

Let us show that Ψ∗f (t) → 0 as t ↘ 0 in Lp (point-wise convergence almost every-
where is already known). For the positive part this just follows from convexity. For
the negative part, for every ε > 0 there exists s > 0 such that ‖(−sf0) −. f‖ < ε‖f0‖,
so for 0 < δ < ε/s we have

Ψ∗f (δ) ≥ −δsf0 − E[(−sf0)−. f |E] =⇒ ‖Ψ∗f (δ)−‖ ≤ 2ε‖f0‖.

A similar argument works for t↗ 1. �3.10

Remark 3.11 If one is bothered with the presence of f0 in the definition, one can also
prove that

Ψ∗f (t) = sup
g∈E

tg− E[g−. f |E], E[g−. f |E] = sup
t∈[0,1]

tg−Ψ∗f (t),

which looks formally closer to the (double) scalar Legendre transform. By the reason-
ing of Lemma 3.10, one can also prove a version of (1), namely

Ψ∗(t) = tg− E[g−. f ] ⇐⇒ D−t Ψ∗f ≤ g ≤ D+
t Ψ∗f .

This was indeed the path followed in an earlier version of this article, but the present
seems more direct.

For 0 < t < 1, let us define ft = D−t Ψ∗ , which determines an increasing se-
quence (ft) ⊆ E . Following Convention 3.8, we may then define (measurably)
f̂ : (Ω ∪ {+,−}) × [0, 1] → R by f̂ (ω, t) = ft(ω), f̂ (+, ·) = ‖f +�E⊥‖, f̂ (−, ·) =

−‖f−�E⊥‖ (ignoring t = 0, 1).

Lemma 3.12 With E ⊆ E′ , ft and f̂ as above, we have f̂ ∈ E′ , tp(f/E) = tp(f̂/E),
and ‖ft‖ ≤ ‖f‖

(t−t2)1/p for all 0 < t < 1.

Proof Let us show that the conditional distribution of f̂ �E = f̂ · 1Ω with respect to
the Borel algebra of Ω, call it Σ, is the same as that of f �E . Indeed, let f0 = 1A . Then
f̂ 1ΩrA = 0 = f 1ΩrA , while for (almost all) ω ∈ A we have by Lemma 3.9 and (1):

P[f̂ ≤ x|Ω](ω) = sup{t : D−t Ψ∗f (ω) ≤ x} = sup{t : t ≤ D+
x Ψf (ω)} = P[f ≤ x|Ω](ω).
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It follows that ‖f̂ �E‖p = ‖f �E‖p < ∞, so f̂ ∈ E′ , and as in Lemma 3.9 we conclude
that the types are the same. It follows that

‖f‖p ≥ ‖f̂ �E‖p =

∫ 1

0
‖ft‖p dt =

∫ 1

0
‖f +

t ‖p + ‖f−t ‖p dt.

Since ‖f +
t ‖ (respectively, ‖f−t ‖) is increasing (respectively, decreasing) in t we get

‖f +
t ‖p ≤ ‖f‖

p

1− t
, ‖f−t ‖p ≤ ‖f‖

p

t
,

whence the stated inequality. �3.12

A comparison with [6, Section 5] yields that ft agrees with the conditional slice
S1−t(f/E), as defined there, for all t at which Ψ∗f is differentiable (namely, at which
D+

t Ψ∗f = D−t Ψ∗f = ft ), and in particular for almost all t . The realisation construc-
ted above is called there an “increasing realisation”, and is shown to be unique when
f = f �E . It follows that each 1-type over E has a unique realisation in f ∈ E′ such
that f (ω, t) is increasing in t on Ω× [0, 1], is a non negative constant on {+}× [0, 1],
and is a non positive constant on {−} × [0, 1]. In other words, the map Ψ∗f (together
with ‖f±‖) not only determines tp(f/E), but also provides the means for a fairly direct
construction of a canonical realisation of the type.

The continuity of Ψ∗f implies that Ψ∗f (t) =
∫ t

0 fs ds. Since Ψ∗f (1) =
∫ 1

0 fs ds = E[f |E],
we may think of Ψ∗f (t) as a “part” of the conditional expectation, (with complement

E[f |E] − Ψ∗f (t) =
∫ 1

t fs ds), calling it a partial conditional expectation, denoted ac-
cordingly Et[f |E] = Ψ∗f (t). In particular, E0[f |E] = 0 and E1[f |E] = E[f |E].

Lemma 3.13 Assume that p > 1. Then Cb(f/E) 7→ Et[f |E] is definable in ALpL for
all t ∈ [0, 1].

Proof For t = 0, 1 this is already known by Lemma 3.6. Since Cb(f/E) 7→ Cb(|f |/E)
is also definable, f0 = E

[
|f ||E

]
is uniformly definable from the canonical base. We

may therefore assume that 0 < t < 1, and use f0 as a parameter. Similarly, for each x
the map Cb(f/E) 7→ Ψf (x) is definable.

First of all, let us fix N > 0, and let

gN,n =
∨
|k|≤n

tNkf0/n−Ψf (Nk/n), hN = sup
−N≤x≤N

txf0 −Ψf (x).

Then the map Cb(f/E) 7→ gN,n is definable (for each n), and 0 ≤ hN − gN,n ≤
2Nf0/n, so gN,n → hN at a rate which depends on ‖f‖ and on N alone. It follows that
Cb(f/E) 7→ hN is definable.
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By (1) we have hN(ω) = Et[f |E](ω) when |ft(ω)| ≤ N , and otherwise |hN(ω) −
Et[f |E](ω)| ≤ 2, since

−f0 ≤ −E[f−|E] ≤ hN ≤ Et[f |E] ≤ tE[f |E] ≤ f0.

The measure of {ω : |ft(ω)| > N} vanishes as N → ∞, and at a rate which depends
only on ‖ft‖, which we already bounded in terms of t and ‖f‖. We conclude that
hN → Et[f |E] at a rate which depends only on ‖f‖ and t , which is enough. �3.13

Theorem 3.14 For every p ∈ (1,∞) and every dense subset D ⊆ (0, 1) (e.g., D =

Q∩(0, 1)), the tuple
(
‖f +‖, ‖f−‖,Et[f |E]

)
t∈D is a uniform canonical base for tp(f/E),

and
(
Et[f |E]

)
t∈D , is a weakly uniform canonical base in the home sort.

Proof By Proposition 1.12 it is enough to prove the first assertion. We have already
seen that Cb(f/E) 7→ Et[f |E] is definable, and clearly Cb(f/E) 7→ ‖f±‖ are. On the
other hand, by Lemma 3.10 the tuple

(
‖f +‖, ‖f−‖,Et[f |E]

)
t∈D determines Ψf and

therefore, by Lemma 3.9, it determines tp(f/E). �3.14

We have already observed that Et[f |E] → 0 as t → 0 and Et[f |E] → E[f |E] as
t→ 1. Moreover, for p > 1 (fixed) the rate of convergence depends uniformly on ‖f‖.
Indeed, otherwise Lemma 3.13 together with a compactness argument would yield a
type (or a canonical base of a type, which is the same thing) for which convergence
fails altogether. On the other hand, for p = 1, consider for some ε the case where
µ(Ω) = 1 and fε(x, t) = −ε−11Ω×[0,ε] . Then ‖fε‖ = 1 and Eε[fε|E] = −1Ω , also of
norm one, so the rate of convergence is not uniform. Thus Lemma 3.13, and therefore
Lemma 3.6, fail for p = 1. This is essentially the only obstacle, and by keeping away
from the endpoints of [0, 1] we do manage to get an analogue of Theorem 3.14 for
p = 1. For 0 ≤ t < s ≤ 1 let us define

E[t,s][f |E] = Es[f |E]− Et[f |E] =

∫ s

t
fr dr.

Lemma 3.15 Let p ∈ [1,∞). Then for every 0 < s < t < 1, the map Cb(f/E) 7→
E[t,s][f |E] is definable.

Proof For p > 1 this is already known, so we only need to deal with the case of
p = 1. For each q > 1 we may apply the bidefinability of AL1L and ALqL , and
calculate E[t,s][f |E]Lq = E[t,s][f 1/q|E]q uniformly from Cb(f/E) (as in the proof of
Lemma 3.3, by E[t,s][f |E]Lq we mean E[t,s][f |E] as calculated in the Lq lattice defined
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in the L1 lattice). It will be enough to show that as q→ 1, E[t,s][f 1/q|E]q → E[t,s][f |E]
at a rate which only depends on ‖f‖.

Concentrating on what happens over a single ω ∈ Ω, all functions in E become con-
stants, and we may identify f with the function f (t) = ft , which is increasing on [0, 1].
If f0 = 0 then everything is zero, so we may assume that f0 =

∫ 1
0 |f (t)| dt = 1. Since f

is increasing, we must have f (r) ∈ [−1
t ,

1
1−s ] for all r ∈ [t, s], and by, say, dominated

convergence, (∫ s

t
f (r)

1
q dr
)q

→q→1

∫ s

t
f (r) dr.

The space of all increasing functions [t, s]→ [− 1
t ,

1
1−s ] is compact in the topology of

convergence in measure, which means that the convergence above is uniform in f , that
is to say that for any desired ε > 0 there exists q0 = q0(t, s, ε) > 1 such that for all
1 < q < q0 : ∣∣∣∣(∫ s

t
f (r)

1
q dr
)q

−
∫ s

t
f (r) dr

∣∣∣∣ < ε.

Integrating we obtain

|E[t,s][f 1/q|E]q − E[t,s][f |E]| < ε‖f‖,

as desired. �3.15

Theorem 3.16 For every p ∈ [1,∞) and every dense subset D ⊆ (0, 1) (e.g., D =

Q ∩ (0, 1)), the tuple
(
‖f +‖, ‖f−‖,E[t,s][f |E]

)
t,s∈D,t<s is a uniform canonical base for

tp(f/E), and
(
E[t,s][f |E]

)
t,s∈D,t<s is a weakly uniform canonical base in the home sort.

Proof As for Theorem 3.14, since Es[f |E] = limt→0 E[t,s][f |E]. �3.16

We have thus produced (weakly) uniform canonical bases in the home sort for 1-types
in ALpL . For n-types, we use the following general fact.

Fact 3.17 The n-type tp(f̄ �E/E) is determined by the 1-types tp(k̄ · f̄/E), where
k̄ · f̄ =

∑
i kifi and k̄ varies over Zn .

Proof Indeed, this information determines tp(t̄ · f̄/E), and in particular tp(t̄ · f̄ �E/E)
for all t̄ ∈ Qn and therefore for all t̄ ∈ Rn . Now apply [6, Proposition 3.7]. �3.17
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Theorem 3.18 Let Cb be a uniform canonical base map for 1-types. Then

tp(f̄/E) 7→
(
Cb(k̄ · f̄/E), tp(f̄ )

)
k̄∈Zn

is a uniform canonical base map for n-types. (We may view tp(f̄ ) as a sequence in
[0, 1] via any embedding of Sn(ALpL) in [0, 1]ℵ0 .)

If Cb is a weakly uniform canonical base map for 1-types then

tp(f̄/E) 7→
(
Cb(k̄ · f̄/E)

)
k̄∈Zn

is a weakly uniform canonical base map for n-types.

Proof For the first assertion, it is enough to show that tp(f̄/E) is determined by these
data. Indeed, tp(f̄ �E/E) is already known to be determined. Let h =

∑
i |fi|. Then

tp(f̄ �E/E) determines tp(h�E/E), and in particular ‖h�E‖, while ‖h‖ is determined by
tp(f̄ ), so ‖h�E⊥‖ is determined as well. Alongside the facts that h�E⊥ is positive and
orthogonal to E , this is enough to determine tp(h�E⊥/E), so tp(h/E) is determined.
We may choose any realisation of this type, in a sufficiently saturated extension of E ,
and without changing tp(f̄/E), we may assume this realisation is indeed h.

We may further assume that h�E = 1A and h�E⊥ = 1B in some concrete presentation
of the ambient model. Now tp(f̄ ) determines tp(f̄/h), which, again by [6, Proposi-
tion 3.7], can be identified with the joint conditional distribution of f̄ with respect to
{∅,A ∪ B} (which is essentially the same thing as the distribution of f̄ restricted to
A ∪ B, with the caveat that A ∪ B has finite measure which is not necessarily one,
i.e., is not necessarily a probability space). Similarly, tp(f̄ �E/E) determines tp(f̄ �E)
and thus tp(f̄ �E/h�E), which can be identified with the joint conditional distribution
of f̄ �E with respect to {∅,A}. Subtracting, we obtain the joint conditional distribu-
tion of f̄ �E⊥ with respect to {∅,B}, namely tp(f̄ �E⊥/h�E⊥), and thus tp(f̄ �E⊥) and
finally tp(f̄ �E⊥/E, f̄ �E). Thus tp(f̄/E) is known and the proof of the first assertion is
complete. The second assertion follows. �3.18

Corollary 3.19 For every p ∈ [1,∞) and every dense subset D ⊆ (0, 1) the tuples(
tp(f̄ ),E[t,s][k̄ · f̄ |E]

)
t,s∈D,t<s,k̄∈Zn

is a uniform canonical base for tp(f̄/E), and(
E[t,s][k̄ · f̄ |E]

)
t,s∈D,t<s,k̄∈Zn

is a weakly uniform canonical base in the home sort. When p > 1 we may replace
E[t,s] with Et .
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Remark 3.20 At least for p = 1 this cannot be improved, in the sense that the types
of every k̄ · f̄ need not determine tp(f̄ ). Indeed, let f1 , f2 and f3 be disjoint positive
functions of norm one, and let

g = f1 − f2, h = f1 + f2 − 2f3.

Then tp(kg + `h) = tp(kg− `h) for all k, `, but tp(g, h) 6= tp(g,−h).

4 On uniform canonical bases and beautiful pairs

It is implicitly shown by Poizat [15], based on Shelah’s f.c.p. Theorem [17], that a
stable classical theory does not have the finite cover property if and only if the set of
uniform canonical bases (for all types in any one given sort) is definable, rather than
merely type-definable (here, a definable set in an infinite sort means a set which is
closed under coordinate-wise convergence, and such that the projection to each finite
sub-sort is definable in the ordinary sense). A similar result should hold for continu-
ous logic, where the finite cover property (and in particular Shelah’s f.c.p. Theorem)
have not yet been properly studied. Here we concentrate on the relation between the
existence of a good first order theory for beautiful pairs and the definability of the sets
of uniform canonical bases.

We fix a stable theory T in a language L admitting quantifier elimination as well as a
uniform canonical base map Cb. We may write the latter as (Cbn)n , since it consists
of a map for the sort of n-tuples for each n (we shall assume that L is single sorted,
otherwise even more complex notation is required). We define LP = L ∪ {P}, where
P is a new unary predicate symbol (1-Lipschitz, in the continuous setting). We also
define LCb to consist of L along with, for each n, n-ary function symbols to the target
sorts of Cbn . We denote the (possibly infinite) tuple of these new function symbols
fCb(x̄), where n = |x̄|. In the continuous setting, uniform continuity moduli for the fCb

are as per Lemma 1.7. We let LP,Cb = LP ∪ LCb .

By a pair of models of T we mean any elementary extension N � M � T . We
shall identify such a pair with the structures (M,P), (M, fCb) or (M,P, fCb), as will
be convenient, where P(x) = d(x,N) and fCb(x̄) = Cb(x̄/N). The property that the
predicate P defines an elementary sub-structure is elementary, so the class of all pairs
of models of T is elementary as well, and we shall denote its theory by TP,0 . Similarly,
TP,Cb,0 will be the LP,Cb -theory of pairs, which consists in addition of the axioms
saying that fCb(x̄) = Cb(x̄/P).
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It is easy to check that all these axioms are indeed expressible by an inductive LP -
theory and an inductive LP,Cb -theory, respectively. Clearly, TP,Cb,0 is a definitional
expansion of TP,0 , so we may unambiguously refer to a model of TP,Cb,0 as (M,P).
On the other hand, the predicate P is also superfluous in TP,Cb,0 , since it can be re-
covered in the classical and continuous cases, respectively, as

P(x) = ∃y d[x = y]
(
y,Cb(x/P)

)
, P(x) = inf

y
d[d(x, y)]

(
y,Cb(x/P)

)
.

Since T admits quantifier elimination, the formulae on the right hand side can be taken
to be quantifier-free. We may therefore express the same properties as above in an
inductive LCb -theory TCb,0 , for which TP,Cb,0 is merely a quantifier-free definitional
expansion. We may therefore work quite interchangeably in one setting or the other,
i.e., with or without the predicate P.

Lemma 4.1 The theory TCb,0 admits amalgamation over arbitrary sets (which gen-
erate isomorphic substructures). If T is complete, then TCb,0 also admits the joint
embedding property.

Proof Let (Mi,P) � TCb,0 for i = 0, 1 and let A be a common sub-structure. Since,
for every sentence ϕ, we have ϕMi = dϕ

(
∅,Cb(∅/P)

)
and Cb(∅/P) ∈ A, we have

M0 ≡ M1 even if T is incomplete. Let N be a sufficiently saturated model of the
common complete theory.

We first choose an embedding θ : A → N . Then, we may choose two extensions,
θi : P(Mi) ∪ A → N , such that in addition θ0P(M0) |̂

θA
θ1P(M1). Since A is a sub-

structure in LCb , we know that A |̂
P(A)

P(Mi), and the same holds for the images
under θi . It follows that θA |̂

θP(A)
θ0P(M0), θ1P(M1), and we may choose a sub-model

P(N ) � N such that P(N) ⊇ θiP(Mi) and θA |̂
θP(A)

P(N). We may now extend each
θi to all of Mi , such that θiMi |̂ θA,θiP(Mi)

P(N). Then in particular θiMi |̂ θiP(Mi)
P(N).

Then θi : (Mi,P)→ (N ,P) respects LCb , and we are done.

If T is complete then we can amalgamate models over the (unique) ∅-generated sub-
structure. �4.1

(This argument already appears, in essence, in [7], the only novelty is that we use
the language LCb to ensure that every sub-structure is P-independent, i.e., verifies
A |̂

P(A)
P.)

It follows that a model companion of TCb,0 (or of TP,Cb,0 , this is the same thing), if it
exists, eliminates quantifiers, i.e., it is a model completion. Even if it does not exist we
may still consider it as a Robinson theory in the sense of Hrushovski [12].
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Lemma 4.2 Modulo TCb,0 , the restriction of every quantifier-free LCb -formula to P
is L-definable there.

Proof This follows immediately from the facts that, first, for ā ∈ P we have
Cb(ā/P) = Cb(ā/ā), and second, the map ā 7→ Cb(ā/ā) is definable in L. �4.2

Definition 4.3 Following Poizat [15], we say that a pair (M,P) of models of T is
beautiful if P is approximately ℵ0 -saturated and N is approximately ℵ0 -saturated
over M (namely, the L(M)-structure (N , a)a∈M is approximately ℵ0 -saturated). We
define Tb

Cb to be the LCb -theory of all beautiful pairs of models of T .

Theorem 4.4 Let T be a stable theory with quantifier elimination and a uniform
canonical base map, as above. Then the following are equivalent.

(i) The image set img Cbn is definable for each n (i.e., its projection to every finite
sort is a definable set in that sort).

(ii) If (M,P) � Tb
Cb is κ-saturated for some κ > |T| then M is κ-saturated over

P(M). In particular, every sufficiently saturated model of Tb
Cb is itself a beautiful

pair.

(iii) The theory TCb,0 admits a companion TCb such that for some κ > |T|, if
(M,P) � TCb is κ-saturated then M is κ-saturated over P(M). Moreover,
such a companion is necessarily the model companion of TCb,0 .

(iv) The theory TCb,0 admits a model completion TCb (i.e., its model companion
exists and eliminates quantifiers).

If T is complete, this is further equivalent to:

(v) Let (M,P) � TCb,0 , where P(M) is |T|+ -saturated and M is |T|+ -saturated
over P(M). Then (M,P) is ℵ0 -saturated (and is, moreover, a model of the
model companion).

(vi) There exists an approximately ℵ0 -saturated beautiful pair (M,P).

Proof (i) =⇒ (ii). Let TCb consist of TCb,0 along with the axioms saying that for
every canonical base Z ∈ img Cb and every tuple w̄, the type defined by Z on the
domain P ∪ w̄ is finitely realised (or, in the continuous setting, approximately finitely
realised). Since the set img Cb is definable, this axiom can indeed be expressed, and
clearly TCb ⊆ Tb

Cb .
Now let (M,P) � TCb be κ-saturated, in which case P(M) is κ-saturated as well.
Let also ā be a tuple in some elementary extension ofM, C = Cb(ā/M) ∈ M , and let
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A ⊆ M , |A| < κ. Let π(x̄) be the partial LCb -type saying that x̄ realises tp(ā/A ∪ P),
i.e., that

sup
ȳ∈P
|ϕ(x̄, ȳb̄)− dϕ(ȳb̄,C)| = 0

for each formula ϕ(x̄, ȳz̄) and b̄ ∈ A. By TCb , this partial type is approximately finitely
realised in (M,P), and since |A ∪ C| < κ, it is realised there.

(ii) =⇒ (iii). It is easy to check that TCb,0 and Tb
Cb are companions, whence the

main assertion. For the moreover part, let TCb be any companion with the stated
property, and we shall show that all its models are existentially closed. Indeed,
let us consider an extension (M,P) ⊆ (N ,P) of models of TCb , and we need to
show that (M,P) is existentially closed in (N ,P). Since the latter is an elementary
property of an extension, we may replace the extension with any elementary exten-
sion thereof (technically speaking, we represent the extension by (N ,P,Q), where
Q(x) = d(x,M), and take an elementary extension of this). We may therefore assume
that (M,P) is κ-saturated, so in particular P(M) is κ-saturated, and by assumption
M is κ-saturated over P(M).
Now let b̄ ⊆ Mm , ā ∈ Nn , and let p(x̄, ȳ) = tp

(
ā, b̄/P(N)

)
, q(ȳ) = tp

(
b̄/P(N)

)
,

C = Cb(p), D = Cb(q), observing that then D ⊆ P(M). By saturation of P(M)
we may find C′ ⊆ P(M) such that C′ ≡D C , and define p′(x̄, ȳ) to be the type over
P(N) defined by C′ . Now, C ≡D C′ along with q ⊆ p yields q ⊆ p′ , so p′(x̄, b̄) is
consistent. Therefore, its restriction to P(M), b̄ is realised in M , say by ā′ . Then ā
and ā′ have the same quantifier-free LCb -type over b̄, which concludes the proof.

(iii) =⇒ (iv). By Lemma 4.1, the model companion eliminates quantifiers.

(iv) =⇒ (i). For (M,P) � TCb , let (img Cbn)P denote the set of all Cb(p) as
p ∈ Sn

(
P(M)

)
(namely, the type-definable set img Cbn as interpreted in the struc-

ture P(M)). In a sufficiently saturated model of TCb , (img Cbn)P is exactly fCb(Mn),
which is definable as a definable image of a definable set. It follows that it is uniformly
definable in models of TCb (and the image of fCb is always dense there). By quantifier
elimination, it is quantifier-free definable. It follows that (img Cbn)P is L-definable in
P, which means exactly that img Cbn is definable.

(iv) =⇒ (v). A close inspection of the argument for (ii) =⇒ (iii) reveals that it
proves the following intermediary result: if (M,P) � TCb,0 , P(M) is κ-saturated,
and M is κ-saturated over P(M), then (M,P) is ℵ0 -saturated. In addition, such a
pair is clearly a model of TCb as given there.

(v) =⇒ (vi). Clear.
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(vi) =⇒ (i). Here we also assume that T is complete. For a formula ϕ(x̄, ȳ), with
|x̄| = n, let fϕ be the definable function sending Z in the target sort of Cbn to the
canonical parameter of dϕ(ȳ,Z). The target sort of fϕ is equipped with a canonical
definable distance d(z,w) = supȳ |dϕ(ȳ, z)−dϕ(ȳ,w)|. We may define Cbϕ = fϕ◦Cbn ,
and Cbϕ(p) is a (uniform) ϕ-canonical base for p. Through the coding of several
formulae in one, we see that img Cbn is definable if and only if img Cbϕ is for every
such ϕ. We may therefore assume that img Cbϕ is not definable for some ϕ, keeping
in mind that it is always type-definable – we may in fact identify it with a closed set in
Sz(T).
Non definability then implies that for some ε > 0, the set of types q(z) such that
d(q, img Cbϕ) ≥ ε (namely, such that q(z)∪r(z) ` d(z,w) ≥ ε for every r ∈ img Cbϕ )
has an accumulation point r ∈ img Cbϕ ⊆ Sz(T). The partial type asserting that
z ∈ P, r(z), and inf x̄ g

(
z, fϕ ◦ fCb(x̄)

)
≥ ε is then approximately finitely realised

in (M,P), and therefore, by the saturation assumption, realised there, say by c. Then
dϕ(ȳ, c) defines a complete ϕ-type p over P, which is realised inM, by the saturation
assumption for M over P, so d

(
c, fϕ ◦ fCb(Mn)

)
= 0, a contradiction. �4.4

Corollary 4.5 The image sets img Cbn are definable if and only if TCb,0 admits a
model companion, if and only if this model companion is Tb

Cb (and is in fact a model
completion).

In case these equivalent conditions hold we shall simply denote the model companion
by TCb , or, in the language LP , by TP (although it is not usually a model companion
in the language LP ). In this case we say that the class of beautiful pairs of models of
T is weakly elementary, in the sense that any sufficiently saturated model of the theory
of this class, TP , also belongs to it. By results of Poizat [15], for a classical theory T
this is further equivalent to T not having the finite cover property.

Corollary 4.6 If T is ℵ0 -categorical then Tb
Cb is the model completion of TCb,0 .

Proof In an ℵ0 -categorical theory every type-definable set is definable. �4.6

Since the theories discussed in previous sections (IHS , APr and ALpL) are ℵ0 -
categorical, they satisfy the equivalent conditions of Theorem 4.4 in a somewhat unin-
teresting fashion. In the next section we consider a more interesting example of a non
ℵ0 -categorical theory.

Just as we remarked in Section 1, these results can be extended to simple theories,
where beautiful pairs are replaced with lovely pairs (see [7]). The price to be paid is
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either to work with hyper-imaginary sorts (which can be done relatively smoothly in
continuous logic) or to assume that uniform canonical bases exist in real or imaginary
sorts (which is a strong form of elimination of hyper-imaginaries).

5 The case of ACMVF

A convenient feature of condition (iii) of Theorem 4.4 is that it remains invariant under
the addition (or removal) of imaginary sorts. It may therefore serve as a criterion for
the definability of the sets of uniform canonical bases even when these do not exist in
any of the named sorts. As an example of this, let us consider the theory ACMVF of
algebraically closed metric valued fields, as defined in [1].

Theorem 5.1 The equivalent conditions of Theorem 4.4 hold for T = ACMVF .

Proof We recall that a model of ACMVF is not a valued field but rather a projective
line KP1 over one, equipped with a modified distance function d(x, y) = ‖x − y‖ =

|x−y|
max |x|,1·max |y|,1 when x, y 6=∞ and d(x,∞) = 1

max |x|,1 .

Given a polynomial Q(Z, W̄, V̄) over Z and a tuple ē, let
√

Q(X, ē,P) denote the
collection of all roots of instances Q(X, ē, f̄ ) where f̄ ∈ P (or more exactly, of the ho-
mogeneisation thereof, so ∞ can also be obtained a root). Let us define TCb to consist
of TCb,0 along with the axioms saying that every r ∈ [0, 1], b ∈ P and Q(X, ē, V̄) as
above there is a such that d(a, b) = d

(
a,
√

Q(X, ē,P)
)

= r , or at least approximately
so. One checks that

√
Q(X, ē,P) is a definable set, so this is expressible in continuous

logic.

In order to check that TCb is indeed a companion, let us consider an instance of the
axioms. Since the map x 7→ x−1 is an isometric bijection of KP1 , and for every Q
there is Q′ such that {x−1 : x ∈

√
Q(X, ē,P)} =

√
Q′(X, ē,P), we may assume that

|b| ≤ 1. We may then add a such that |a−c| = max r, |b−c| for all c ∈
√

Q(X, ē,P)r
{∞}, so in particular |a| = max |b|, r ≤ 1. It follows that d

(
a,
√

Q(X, ē,P)
)

=

d(a, b) = r .

Now, let (KP1,P) be an ℵ1 -saturated model of TCb , and we claim that the opposite
holds, namely, that for all b ∈ P r {∞}, countable set ∞ /∈ A and r ∈ (0,∞),
if B denotes the algebraic closure of P ∪ A then there exists a such that |x − c| =

max r, |b − c| for all c ∈ B. We notice that if |b| < r then replacing b with some
b′ ∈ P such that |b′| = r , which exists by saturation, does not change the conditions of
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the problem. We may therefore assume that |b| ≥ r . If |b|, r ≤ 1 then (by saturation
of (KP1,P)) there exists x such that d(a,B) = d(a, b) = r , and as in the previous
paragraph this x is as desired. Otherwise, |b| > 1. Again by saturation, we find a
such that for all c ∈ B r {∞}, |a − c| = max r′, |z − b−1| with r′ = r

|b|2 (since

|b−1|, r′ ≤ 1). We observe that |a| = max |b−1|, r|b−2| = |b−1|, i.e., |ab| = 1. A
direct calculation yields that for c ∈ Br{∞}, |a−1−c| = max r

∣∣ c
b

∣∣ , |b−c| (the case
c = 0 may have to be considered separately). We now consider three cases (keeping
in mind that |b| ≥ r):

max r
∣∣∣ c
b

∣∣∣ , |b− c| =


max r

∣∣ c
b

∣∣ , |b| = |b| = max r, |c− b|, |c| < |b|,
max r, |c− b|, |c| = |b|,
max r

∣∣ c
b

∣∣ , |c| = |c| = max r, |c− b|, |c| > |b|.

Our claim is thus proved.

Now let p(x) ∈ S1(PA), and let q be any global extension of p to KP1 . Since KP1 is
ℵ1 -saturated, there exists b ∈ KP1 such that r = d(x, b)q(x) = d

[
d(x, y)

](
b,Cb(q)

)
is

minimal. Replacing p with q�PAb , we may assume that b ∈ A. By our previous claim,
there exists a ∈ KP1 such that d(a, b) = d(a,B) = r , so this x must realise p.

We have thus shown that for every ℵ1 -saturated model (KP1,P) of the companion
TCb , KP1 is ℵ1 -saturated over P, so by Theorem 4.4 TCb is the model completion of
TCb,0 , and every uniform canonical base map has a definable image. �5.1

On the other hand, there are no canonical bases, so in particular no uniform ones, in
the home sort of ACMVF . Indeed, we observed in [1] that 1-types over models are
parametrised by spheres, and it is not difficult to see that if S is a sphere of non zero
radius then in the home sort dcl(S) = dcl(∅). In the case of 1-types it is relatively
easy to construct an imaginary sort in which uniform canonical bases exist. Indeed, let
us consider the set of all pairs (a, r) with a ∈ KP1 and r ∈ [0, 1], more conveniently
written as ar , and let [ar] denote the closed ball of radius r around a. We define

d(ar, bs) = |r − s| ∨ d(a, b)−. (r ∧ s).

Let us show that

d(ar, ct) ≤ d(ar, bs) + d(bs, ct).

If d(ar, ct) = |r− t| then the inequality is clear. Otherwise, may assume that d(a, c) ≤
d(a, b), so

d(ar, ct) = d(a, c)−. (r ∧ t) ≤ d(a, b)−. (r ∧ s) + |s− t| ≤ d(ar, bs) + d(bs, ct).
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(A somewhat less direct way of observing the same would consist of defin-
ing ϕ(x, a, r) = d(x, a) −. r (namely d(x, [ar])), and observe that d(ar, bs) =

supx |ϕ(x, a, r) − ϕ(x, b, s)|. Clearly d(ar, bs) = 0 if and only if [ar] = [bs].) The
set of all such quotients is incomplete, and the set of completions consists, in addition
to all closed balls, of all spheres over the structure (this construction can be carried out
in any bounded ultra-metric structure). In this imaginary sort, 1-types admit a uniform
canonical base map. The case of canonical bases for n-types and general elimination
of imaginaries for ACMVF are far more complex, compare with [11] as well as with
more recent results of Hrushovski and Loeser with respect to uniform canonical bases
of generically stable types in ACVF .
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