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Abstract: We verify that the best-known nonstandard set theories: IST, BST, and
HST, with the Axiom of Choice deleted, are conservative extensions of ZF +
Boolean Prime Ideal Theorem.
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Nonstandard set theories typically postulate validity of the axioms of ZFC, including
the Axiom of Choice, in the standard (or internal) universe. They also postulate
some versions of Transfer, Standardization and Idealization. An easy argument shows
that the last three principles, together with ZF alone, imply the Boolean Prime Ideal
Theorem (BPI):

Let F be a standard filter over a standard set S =
⋃
F . By Idealization, there is an

(internal) element x ∈ S such that x ∈ X for all standard X ∈ F . By Standardization,
there is a standard U ⊆ P(S) such that X ∈ U ↔ x ∈ X , for all standard X ∈ P(S).
Trivially, U is a standard ultrafilter and F ⊆ U . By Transfer, for every filter F there
is an ultrafilter U such that F ⊆ U . This statement (“Ultrafilter Theorem”) is one of
the forms equivalent to BPI; see Jech [5, Theorem 2.2].

The purpose of this note is to point out that this is the strongest possible result. We use
the monograph of Kanovei and Reeken [7] as a general reference to nonstandard set
theories. The best known among these is Nelson’s IST, so we begin our considerations
with IST.

Let IST− be IST with the Axiom of Choice deleted. The argument above shows that
IST− ` BPI.

Theorem 1 IST− is a conservative extension of ZF + BPI.

The analogous result for IST, to wit, that IST is a conservative extension of ZFC, is
proved using ultrapowers. While BPI guarantees existence of many ultrafilters, it does
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not guarantee validity of Łos̀ Theorem for the corresponding ultrapowers, a property
needed to obtain Transfer. In fact, “BPI + Łos̀ Theorem for all ultrapowers” implies
the Axiom of Choice (in ZF); see Howard and Rubin [2]. However, we can replace the
ultrapower construction by one based on the Compactness Theorem.

The proof of Theorem 1 is a result of a series of easy observations. We work in ZF,
unless stated otherwise.

The Compactness Theorem is one of the equivalents of BPI given in [5, Theorem 2.2].
Another equivalent stated there is the Consistency Theorem:

For every binary mess M on a set S, there exists a function f on S which is consistent
with M.

We recall that a binary mess M on S is a set of functions defined on finite subsets of S
and with values in {0, 1}, closed under restrictions, and such that for each finite P ⊆ S
there is t ∈ M with dom t = P.

A function f : S→ {0, 1} is consistent with M if f | P ∈ M for every finite P ⊆ S .

We need the following simple observation.

Proposition 2 BPI implies the Uniform Consistency Principle:

Let 〈Mi : i ∈ I 〉 be a system of binary messes, with I an arbitrary set. Then there is a
system of functions 〈 fi : i ∈ I 〉 such that fi is consistent with Mi , for each i ∈ I .

Proof Each Mi is a binary mess on Si =
⋃
{dom t : t ∈ Mi}. Wlog we can assume

that the sets Si are mutually disjoint. Let S =
⋃

i∈I Si and let t ∈ M iff dom t ⊆ S is
finite and t | Si ∈ Mi for all i ∈ I . Trivially, M is a mess. If f is consistent with M ,
then 〈 f | Si : i ∈ I 〉 is a system of functions, and each f | Si is consistent with Mi .

An examination of the proof of [5, Theorem 2.2] shows that the Uniform Consistency
Principle [hence, BPI] implies uniform versions of the other forms given there. For
example, BPI implies

Uniform BPI: Let 〈 Bi : i ∈ I 〉 be a system of Boolean algebras. Then there is a
system 〈 Ji : i ∈ I 〉 such that each Ji is a prime ideal on Bi .

Importantly for our purposes, it also implies

Uniform Compactness Theorem: Let 〈Σ i : i ∈ I 〉 be a system of consistent theories.
Then there is a system of structures 〈Mi : i ∈ I 〉 such that Mi � Σ i , for all i ∈ I .
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Definition Let ∗ : V → ∗V be an elementary ∈-embedding of an ∈-structure v =

〈V, ε〉 into an ∈-structure ∗v = 〈∗V, ∗ε〉, with V, ∗V sets; see [7, page 138]. We
say that ∗v is an enlargement of v via ∗ if for every ∈-formula Φ(x, y, z1, . . . , zk),
all p1, . . . , pk ∈ V , and all S ⊆ V : If for all finite {a1, . . . , an} ⊆ S there is b ∈ V
such that v �

∧n
i=1 Φ(ai, b, p1, . . . , pk), then there is b ∈ ∗V such that, for all a ∈ S ,

∗v � Φ(∗a, b, ∗p1, . . . ,
∗pk).

Proposition 3 (ZF + BPI) Every ∈-structure v has an enlargement.

Proof Start with the elementary diagram T0 of v (Chang and Keisler [1, Chapter
3]). For every ∈-formula Φ, every p1, . . . , pk ∈ V , and every S ⊆ V for which the
finite satisfiability condition above holds, add to the language of T0 a new constant
c, and add to T0 the formulas Φ(a, c, p1, . . . , pk), for all a ∈ S . The resulting theory
T1 is consistent, and by the Compactness Theorem it has a model M. Let ∗v be the
reduct of M to the ∈-language, and ∗ : a 7→ aM for a ∈ V ; then ∗ is an elementary
∈-embedding and ∗v is an enlargement of v via ∗.

From Uniform Compactness Theorem and the proof of Proposition 3 one obtains:

Corollary 4 (ZF + BPI) Let 〈 vi : i ∈ I 〉 be a system of ∈-structures. Then there
are systems 〈 ∗vi : i ∈ I 〉 and 〈 ∗i : i ∈ I 〉 such that each ∗vi is an enlargement of vi

via ∗i .

Observation If an ∈-structure v has von Neumann rank ξ , then the enlargement ∗v
constructed in the proof of Proposition 3 has rank only a few levels above ξ ; certainly
v ∈ Vξ+1 implies ∗v ∈ Vξ+10 . [We can use something like 〈a, v〉 as the name a
for a ∈ V , and 〈Φ, p1, . . . , pk, S, v〉 as the new constant c; ∗V is constructed from
equivalence classes of names; ∗ε is a collection of ordered pairs of elements of ∗V ;
∗v = 〈∗V, ∗ε〉.] Hence if θ > ω is a limit ordinal, then v ∈ Vθ implies ∗v ∈ Vθ .

Let ZF` denote the fragment of ZF where only the first ` instances of Replacement are
postulated; similarly for IST−` . (Note that Collection is not considered part of ZF.)

Proof of Theorem 1

Let ϕ be a sentence in the ∈-language. We assume that ZF + BPI + ϕ is consistent
and show that IST−+ ϕ is consistent. It suffices to show that IST−` + ϕ is consistent,
for every fixed `.

We work in ZF + BPI + ϕ. The Reflection Principle [7, Theorem 1.5.4(i)] is provable
in ZF. Hence there is an ordinal γ such that v = 〈Vγ ,∈� Vγ〉 � ZF` + BPI + ϕ. We
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fix a limit ordinal θ such that v ∈ Vθ . Let 〈vi : i ∈ I〉 be a system that enumerates all
∈-structures in Vθ in a one-one way (we can use the structures themselves as indices).
Using Corollary 4 and Observation, we define:

v0 = v, vn+1 = ∗vi , ∗n,n+1 = ∗i where vi = vn , ∗m,n+1 = ∗n,n+1 ◦ ∗m,n for m < n
(below, we omit the subscripts when they should be clear from the context).

Let ?v = 〈?V, ?ε〉 be the direct limit of this system, with ?n : vn → ?v the canonical
embeddings. As ? = ?0 : Vγ → ?V is elementary, ?v � ZF` + BPI + ϕ. Let
? st = {?X : X ∈ Vγ}, so 〈? st, ?ε � ? st〉 is isomorphic to 〈Vγ ,∈� Vγ〉. We consider
the structure M = 〈?V, ?ε, ? st〉 and show that it satisfies IST−` + ϕ.

As noted above, M satisfies ZF` + BPI + ϕ. The elementarity of the embedding ?

also implies that M satisfies Transfer. If Φ(x) is a formula of the st-∈-language (with
parameters from ?V ) and ?X ∈ ? st, let Y = {x ∈ X : M � Φ(?x)}. As Y ∈ Vγ , we
have M � st(?Y) ∧ (∀sty)(y ∈ ?Y ↔ y ∈ ?X ∧ Φ(y)), so Standardization holds in M.

Finally, we note that standard finite sets in M are precisely the sets of the form ?A
where A ∈ Vγ is finite. Let an ∈-formula Φ(x, y, z1, . . . , zk) and p1, . . . , pk ∈ ?V
be such that, for every finite A ∈ Vγ , M � (∃b)(∀a ∈ ?A)Φ(a, b, p1, . . . , pk). Then
there exist vn = 〈Vn, εn〉 and q1, . . . , qk ∈ Vn such that ?qi = pi for i ≤ k . By
elementarity of ?n , for every finite A = {a1, . . . , am} ⊆ Vγ there is b ∈ Vn such that
vn �

∧m
i=1 ϕ(∗ai, b, q1, . . . , qk). As vn+1 = 〈Vn+1, εn+1〉 is an enlargement of vn (via

∗n,n+1 ), there is b ∈ Vn+1 such that vn+1 � Φ(∗a, b, ∗q1, . . . ,
∗qk) for all a ∈ Vγ . By

elementarity of the embedding ?n+1 then M � Φ(?a, ?b, p1, . . . , pk) for all a ∈Vγ .
This establishes Idealization in M, and completes the proof of Theorem 1.

Kanovei [6] formulated BST, a modification of IST with better metamathematical
behavior. In particular, BST is precisely the “internal part” of the nonstandard set
theories HST and NST, introduced essentially in [3]. It is well known that BST has an
interpretation in IST [7, Theorem 3.4.5(i)]; the sets of BST are interpreted as bounded
sets of IST [where x is bounded iff x ∈ X for some standard X ]. The proof goes
through even in the absence of the Axiom of Choice, and thus establishes that BST−

(ie, BST with the Axiom of Choice deleted) is interpretable in IST− . As the standard
sets of BST− in this interpretation are precisely the standard sets of IST− , we have
the following consequence of Theorem 1.

Corollary 5 BST− is a conservative extension of ZF + BPI.

However, BST has a much stronger property: It has a standard core interpretation in
ZFC [7, Definition 4.1.3 and Theorem 4.3.17]. It is an open question whether BST−
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has a standard core interpretation in ZF + BPI, or even just whether every model of ZF
+ BPI can be extended to a model of BST− .

Among nonstandard set theories that allow external sets, HST is distinguished—among
other properties—by having an internal core interpretation in BST; see [7, Definition
5.1.2 and Corollary 5.1.5]. We next consider the role of the Axiom of Choice in HST.

The Axiom of Choice (AC) appears in HST in three places. It is postulated to hold
in the standard universe (ACst ; [7, 1.1c]), and Standard Size Choice (which implies
ACst ) and Dependent Choice (DC) are postulated as axioms about sets in the external
universe [7, 1.1f]. We let HST− be HST with these three axioms deleted.

Theorem 6 HST− is a conservative extension of ZF + BPI.

For the proof, we verify that the argument of [7], showing that HST has an internal
core interpretation in BST, can be carried out in BST− , with the exception of the three
deleted choice axioms. This argument is structured roughly into three steps.

Step 1 In Chapter 3 of [7], the authors deduce some important consequences of BST.
We list below those results whose proof in [7] uses AC, and discuss their status in
BST− .

[7, Lemma 3.1.14]: (BIST) Let Φ(x) be an ∈-formula with standard parameters and
a parameter w ∈ W , where W is standard. If there is a unique set x with Φ(x) then
this x belongs to S[w]. If w is standard then so is x.

This lemma remains valid in BST− (even BIST− ).

Proof Let Φ(x,w) be an ∈-formula with standard parameters and a parameter w ∈ W ,
where W is standard, such that there is a unique x with the property Φ(x,w). Using
Regularity of ZF and Inner Transfer, we define a standard function F for w′ ∈ W by
F(w′) = {x : Φ(x,w′) ∧ (∀x′)(Φ(x′,w′)→ rank x ≤ rank x′)} [where rank x is the rank
of x in the von Neumann cumulative hierarchy 〈Vξ : ξ ∈ Ord〉]. By [7, Definition
3.1.13], F(w) ∈ S[w]. But F(w) = {x} for the unique x with the property Φ(x,w); so
also x ∈ S[w].

We remark that in BST− the class S[w] = { f (w) : f is a standard function and w ∈
dom f} need not be an ∈-elementary substructure of the internal universe I (compare
[7, Theorem 6.1.3(i)]). Indeed, every ultrapower of the standard universe modulo a
standard ultrafilter is canonically isomorphic to some 〈S[w],∈〉 (essentially [7, Propo-
sition 6.1.9], which remains valid in BST− ), so if S[w] ≺ I for all w, then S ≺ S[w]
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for all w, and Łos̀ Theorem holds for all ultrapowers. As noted above, this implies the
full Axiom of Choice.

[7, Lemma 3.1.16]: (BIST) Let Φ(x, y) be a st-∈-formula with any parameters. Then,
for any standard sets A, B, we have:

∀sta ∈ A ∃stb ∈ B Φ(a, b) ⇐⇒ ∃stf ∈ BA ∀sta ∈ A Φ(a, f (a)).

AC is essential for the validity of this lemma. However, this lemma is used only
in the chain of arguments leading to the proof that Standard Size Choice holds in
the interpretation of HST in BST [proof of Map-Standardization and Inner S. S.
Choice in Theorem 3.2.11, Standard Size Choice for EEST in Theorem 5.2.14, and
the verification of Standard Size Choice for HST on page 207].

We remark that the step of replacing the quantifier combination ∀sta ∃stb with ∃stf ∀sta
in Nelson’s original version of the Reduction Algorithm [8] is based on this lemma,
and hence is unavailable in BST− . However, the version of the Reduction Algorithm
in [7, Theorem 3.2.3], due to Andreev, replaces ∀sta ∃stb with ∃stU ∀stx ∈ U (where
U ranges over ultrafilters) and is valid in BST− .

[7, Lemma 3.2.7]: (BST) Assume that ϕ(a, b, x) is a parameter–free ∈-formula. For
any standard set X there exist standard sets A and B of cardinality resp. ≤ 2κ and
≤ 22κ , where κ = card X, such that for all x ∈ X:

∃sta ∀stb ϕ(a, b, x) ⇐⇒ ∃sta ∈ A ∀stb ϕ(a, b, x) ⇐⇒ ∃sta ∈ A ∀stb ∈ B ϕ(a, b, x).

The lemma remains valid in BST− if the cardinality estimates (|A| ≤ 2κ, |B| ≤ 22κ )
are omitted. The estimates are not needed to carry out the argument; in particular,
Inner Collection holds in BST− (Theorem 3.2.8).

[7, Theorem 3.2.11]: (BST) Map-Standardization, Uniqueness, Inner S. S. Choice
(hence Inner Extension), and Inner Dependent Choice hold.

The proofs of Map-Standardization and Inner S. S. Choice use AC, and Inner Dependent
Choice uses DC; these principles cannot be proved in BST− . But, as pointed out above,
they are used in the argument only to establish Standard Size Choice and Dependent
Choice, respectively. The proof of Uniqueness goes through in BST− . Inner Extension
is crucial to establishing Saturation in the final interpretation. In Theorem 3.2.11 it is
a consequence of Inner S. S. Choice. We give below a derivation in BST− .

Proof of Inner Extension:

For any standard set X there is a function f defined on X such that

(∀stx ∈ X)((∃!y)Φ(x, y)→ Φ(x, f (x)).
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By [7, Theorem 3.2.8 and Exercise 3.1.7(iii)], there is a standard set Y such that (∀stx ∈
X)((∃y)Φ(x, y)→ (∃y ∈ Y)Φ(x, y)). Let ỹ(x) denote this unique y ∈ Y , if it exists ( ỹ of
course need not be a function—it is external). We may assume Φ has a single internal
parameter p, where p belongs to a standard set P. By Uniqueness, for each standard
x ∈ X we have ỹ(x) ∈ S[〈x, p〉] = S[p]. Hence (∀stx)(∃stg) [g is a function with p ∈
dom g and g(p) = 〈x, ỹ(x)〉]; wlog dom g = P and ran g ⊆ X × Y . We now let
G = s{g ∈ S : g ∈ (X × Y)P ∧ (∃stx ∈ X)(∃y ∈ Y)[g(p) = 〈x, y〉 ∧ Φ(x, y)]}. Thus
G is a standard set that “indexes” the graph of the “external function” ỹ. We have
(∀st finG0 ⊆ G)(∃f )(∀g ∈ G0)[dom f ⊆ X ∧ (∀x, y)(g(p) = 〈x, y〉 → f (x) = y)]. We
can define such f by the condition f (x) = y iff (∃g ∈ G0)(g(p) = 〈x, y〉). Note that,
for g1, g2 ∈ G0 , g1(p) = 〈x, y〉, g2(p) = 〈x, y′〉 imply (because g1 , g2 are standard
elements of G) that x is standard ∧ Φ(x, y) ∧ Φ(x, y′), hence y = y′ , so f is a well-
defined (finite) function.
By Idealization, there exists f , a function defined on a subset of X , such that (∀stg ∈
G)(∀x, y)(g(p) = 〈x, y〉 → f (x) = y). For every standard x ∈ X , 〈x, ỹ(x)〉 = g(p) for
some standard g ∈ G, so we get f (x) = ỹ(x), for all standard x . We extend f to a
function defined on X by letting f (x) = 0 where previously undefined.

The key Theorem 3.2.16, establishing a parametrization of st-∈-definable “external
sets,” is now seen to hold in BST− .

Step 2 EEST− and its interpretation in BST− .

Let EEST− be the theory EEST [7, Definition 5.1.3] with ACst deleted. [7, Theorem
5.2.6] then provides an internal core interpretation of EEST− in BST− . The properties
of EEST from Section 5.2 carry over to EEST− , with the exception of the Standard
Size Choice in Theorem 5.2.14, and Exercise 5.2.19 (the latter uses Inner Dependent
Choice). However, Theorem 5.2.14 for a weaker version of Standard Size Choice does
hold:

Extension For any set X there exists an internal function F such that

(∀stx ∈ X)[(∃!inty)Φ(x, y)→ Φ(x,F(x))]

[because the Inner Extension case in Theorem 3.2.11 holds], and this is all that is
needed to prove Theorem 5.2.18 [Saturation].

Step 3 Assembling of external sets in HST− and an interpretation of HST− in
EEST− .

The only issue in Section 5.3 is the use of DC in the proof of Lemma 5.3.6, but this can
be eliminated by arguing directly from Regularity over I: Given X ⊆ T∗x , X 6= ∅, let

Journal of Logic & Analysis 4:8 (2012)



8 Karel Hrbacek

S = {y : y = yi for some 〈y0, . . . , yi, . . . , yn〉 = t ∈ X}. By Regularity over I there is
y ∈ S such that y ∩ S ⊆ I. If y = yi as above, then either yi is internal and i = n, or
yi+1 is internal and i + 1 = n. In either case, t ∈ Max T∗x .

The construction of an interpretation of HST in EEST and the verification of the HST
axioms in [7, Section 5.4] can be carried out in EEST− without changes, except for
Standard Size Choice and Dependent Choice. The latter follows if one has Exercise
5.2.19, ie, if one works in BST−+ DC. This concludes the proof of Theorem 6, and
also establishes the following corollary.

Corollary 7 HST−+ Dependent Choice is a conservative extension of ZF + BPI +
DC.

We note that ZF + BPI + DC does not imply AC; see [5].

Other nonstandard set theories of external sets have been proposed; in particular NST
and KST [7, Chapter 8]. Models of these theories are constructed, roughly speaking,
as some kind of cumulative hierarchy over a suitable model of BST or IST. It is easy
to start instead with a suitable model of BST− or IST− , and construct a cumulative
hierarchy that satisfies all the axioms of NST or KST except Standardization and
Saturation (and of course the (internal) Axiom of Choice). It is an open question
whether the appropriate versions of Standardization and Saturation can simultaneously
be satisfied.

There are also internal theories with many levels of standardness, such as RIST of
Péraire [9] and GRIST proposed by the author in [4]. It is likely that these theories,
without Choice, are conservative extensions of ZF + BPI, but the verification of this
conjecture would require an inordinate amount of technical work.
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