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More reverse mathematics of the Heine-Borel Theorem
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Abstract: Using the techniques of reverse mathematics, we characterize subsets
X ⊆ [0, 1] in terms of the strength of HB(X), the Heine-Borel Theorem for
the subset. We introduce W(X), formalizing the notion that the Heine-Borel
Theorem for X is weak, and S(X), formalizing the notion that the theorem is strong.
Using these, we can prove the following three results: RCA0 `W(X)→ HB(X),
RCA0 ` S(X)→ (HB(X)→WKL0), and ATR0 ` X exists→ (W(X) ∨ S(X)).
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One of the earliest results involving WKL0 is Friedman’s theorem showing the equiva-
lence of WKL0 and the Heine-Borel Theorem for [0, 1]. (See Friedman’s abstracts [2].)
In response to a question of Friedman, Hirst [4] shows that the Heine-Borel Theorem
for closed subsets of Q ∩ [0, 1] is also equivalent to WKL0 . This paper extends this
work, giving a characterization of those subsets of [0, 1] for which the Heine-Borel
Theorem is equivalent to WKL0 and those for which it is not.

Our results make use of four of the “big five” axiom systems of reverse mathematics:
RCA0 , WKL0 , ACA0 , and ATR0 . Extensive material related to the axiomatization and
application of these subsystems to the study of complete separable metric spaces can be
found in Simpson’s book [5]. (See especially sections II.4 and II.5.) For example, open
subsets of [0, 1] can be encoded as unions of sequences of open intervals with rational
endpoints. Closed subsets can be encoded as the complements of open sets. The codes
for open sets and closed sets are sets of natural numbers, and thus elements of models
of second order arithmetic. We can also consider subsets of [0, 1] defined by formulas
of second order arithmetic. Such sets may have countable encodings (e.g. as closed sets
or analytic sets do) or they may lack specified encodings. Due to the structure of our
results, they hold for definable subsets of [0, 1]. For example, consider the following
scheme formalizing the Heine-Borel Theorem for subsets of [0, 1].
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HB(X): X is a subset of [0, 1] and for every closed (in the topology on R) subset
A ⊆ X , every open cover of A contains a finite subcover.

In the preceding statement, X is an arbitrary definable subset of [0, 1] with no specified
encoding, while the closed set A has the usual countable code. A full formalization of
HB(X) would depend on the defining formula of Xas in the following: If A is a closed
subset of the reals and every real α ∈ A satisfies the defining formula of X , then every
open cover of A contains a finite subcover.

We will present two properties of subsets, W(X) and S(X), such that RCA0 `W(X)→
HB(X), RCA0 ` S(X)→ (HB(X)→WKL0), and ATR0 ` X exists→ (W(X) ∨ S(X)).
We can think of W(X) as affirming that the Heine-Borel Theorem for X is weak; HB(X)
can be proved in RCA0 . S(X) indicates that the Heine-Borel Theorem for X is stronger;
WKL0 can be deduced from HB(X).

One might be tempted to use the formulas HB(X)→WKL0 for S(X) and ¬(HB(X)→
WKL0) for W(X), but these formulations are poor characterizations. For example, when
X is a finite collection of standard rational numbers, HB(X) is true in every model of
RCA0 , but ¬(HB(X)→WKL0) fails in all of those models of RCA0 in which WKL0

holds. Our choices for W(X) and S(X) address this issue, as shown by Theorem 5.

Empirically, the deduction of WKL0 from a version of the Heine-Borel Theorem is
generally carried out via some construction paralleling that of the Cantor middle third
set. Consequently, it seems reasonable that S(X) should assert that the closure of X
contains a perfect set. A perfect set is closed and dense in itself. A set is dense in itself
if every element is an accumulation point, that is, if every neighborhood of a point x
contains a point of the set that is distinct from x . Since Brown [1] showed that ACA0 is
required to prove the existence of separable closures of sets, we will use the following
formulation to sidestep reference to closures.

S(X): X is a subset of [0, 1] and there is a countable dense in itself set Y which is
contained in every closed superset of X .

In strong enough subsystems, if the closure of X contains no perfect set, then it is
countable and its derived sequence can be used to construct a homeomorphism between
the closure of X and a well-ordered space. In RCA0 we can capture that situation as
follows.

W(X): X is contained in a countable closed subset of F ⊆ [0, 1] and there are functions
f and g and a well ordering Y satisfying:

• The function f : F → Y is one to one.
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• For any b1, b2 ∈ (Q ∩ [0, 1]) ∪ {−.1, 1.1} with b1 < b2 , if F − (b1, b2) is
nonempty, then the value of g(b1, b2) is an element of F − (b1, b2) such
that

∀x ∈ F − (b1, b2) f (x) ≤ f (g(b1, b2)).

Naı̈vely, W(X) says that F can be well ordered in such a way that many closed subsets of
F (and hence of X ) have a maximum element. For closed sets that are complements of
open intervals with rational endpoints, the function g selects that maximum. Appending
−.1 and 1.1 to the list of possible endpoints allows us to consider open intervals
containing 0 and 1.

With our conditions formalized, we can prove the first two theorems verifying that our
characterization of the strength of HB(X) is successful.

Theorem 1 (RCA0) If W(X) holds, then the Heine-Borel Theorem holds for X . That
is, W(X) implies HB(X).

Proof Suppose W(X) holds and fix a closed A ⊆ X . Let F , Y , f , and g be provided as
in the statement of W(X). (Note that this proof makes no further mention of X . All the
remaining sets are encoded by subsets of N.) Let U = 〈Un〉n∈N be an open cover of A.
Since A is closed, we may append the complement of A to U , extending U to a cover of
F . Since each open set is encoded as a union of open intervals with rational endpoints
(see section II.4 of Simpson’s book [5]), without loss of generality we may assume that
each Un is an open interval with endpoints in (Q ∩ [0, 1]) ∪ {−.1, 1.1}. We will define
a sequence of open intervals and a sequence of elements of A simultaneously. Let V0

be the empty interval (1.1, 1.1). Suppose that Vn has been defined. If ∪j≤nVj ⊇ A,
then stop. Otherwise, let an = min{g(Vj) | j ≤ n}. Let Vn+1 be the first occurring
element of U that contains an . This process must halt, since otherwise 〈f (an)〉n∈N is an
infinite descending sequence in Y . Thus for some n, ∪j≤nVj ⊇ A, so A is covered by n
elements of U .

Theorem 2 (RCA0) If S(X) holds, then the Heine Borel theorem for X implies WKL0 .
That is, S(X) implies HB(X)→WKL0 .

Proof Suppose S(X) holds and the Heine-Borel theorem holds for every closed subset
of X . Let Y be as described in S(X). (Note that this proof makes no further mention of
X . All the remaining sets are encoded by subsets of N.) First we will construct several
sequences indexed by elements of 2<N . Roughly, the following is a generalized form of
the Cantor middle third construction. Each Mσ is analogous to a middle third interval
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and each Aσ corresponds to a left or right interval. Let A〈 〉 be the open interval (0, 1),
P〈 〉 = (−0.1, 1.1), and pick y〈 〉 ∈ Y ∩A〈 〉 . Suppose that we have constructed Aσ, Pσ,
and yσ such that Aσ and Pσ are both open intervals with rational endpoints, Aσ ⊆ Pσ ,
yσ ∈ Aσ ∩ Y , and |Aσ| ≤ 2−lh(σ) . (Note that since Aσ is an open interval with rational
endpoints, RCA0 proves that Aσ exists. We use similar closures throughout the proof
as notational conveniences.) Since Y is dense in itself, we may choose distinct points
yσa0 and yσa1 in Aσ ∩ (Y − {yσ}). Let a and b denote the endpoints of Aσ . Let d
be the minimum of 2−lh(σ) and the distances between every distinct pair of points in
{a, b, yσ, yσa0, yσa1}. For i ∈ {0, 1}, let Aσai be an open interval centered at yσai
with a radius of at most d/3 and let Pσai be an open interval around yσai with a radius
of 0.4d . Set Mσ = Pσ − (Aσa0 ∪ Aσa1), and note that Mσ is a union of three open
intervals with rational endpoints. Finally, since Y is a subset of every closed superset of
X , we may choose xσ ∈ X such that |xσ − yσ| < d/3.

Intuitively, the reals {xσ | σ ∈ 2N} behave like the midpoints of the middle third
intervals used to build the Cantor set. Consider the following claim.

Claim Let x ∈ [0, 1]. The real x is an accumulation point of {xσ | σ ∈ 2N} if and
only if for every σ , if x ∈ Aσ then x ∈ Aσa0 or x ∈ Aσa1 .

Proof of the claim: To prove the reverse implication, suppose that for every σ , if
x ∈ Aσ then x ∈ Aσa0 or x ∈ Aσa1 . Thus we have a sequence of rapidly shrinking
neighborhoods Aσi , each of which contain x . The associated sequence of distinct reals
〈xσi〉i∈N converges to x .

To prove the forward implication, we will prove the contrapositive. Suppose there is
a σ such that x ∈ Aσ but x /∈ (Aσa0 ∪ Aσa1). Either x = xσ or x 6= xσ . Then either
Aσ − (Aσa0 ∪ Aσa1) or Pσ − (Aσa0 ∪ Aσa1), respectively, is an open set containing
x and no other element of {xσ | σ ∈ 2N}. So x is not an accumulation point of
{xσ | σ ∈ 2N}, completing the proof of the claim.

Finally, we turn to the actual deduction of WKL0 from the Heine-Borel Theorem. Let T
be a 0−1 tree with no infinite paths. We will show that T is finite. Let C = {xσ | σ ∈ T}
and let U be the open set consisting of the union of {Mσ − {xσ} | σ ∈ 2N} and
{Pσai | σ ∈ T ∧ i ∈ {0, 1} ∧ σai /∈ T}. We want to show that C is closed by showing
that C is the complement of U. For each x ∈ [0, 1], we need to show x ∈ C or x ∈ U
but not both. We consider two cases.

Case I: The real x is not an accumulation point of {xσ | σ ∈ 2N}. In this case, by the
claim there is some σ such that x ∈ Aσ but x /∈ (Aσa0 ∪ Aσa1). Note that x ∈ Pσ since
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x ∈ Aσ . So x ∈ Mσ = Pσ − (Aσa0 ∪ Aσa1). So x = xσ ∈ C or x ∈ Mσ − {xσ} ⊆ U .
Note that Mσ ∩ C = {xσ}, so x is in exactly one of C and U .

Case II: The real x is an accumulation point of {xσ | σ ∈ 2N}. In this case, note that
x /∈ C , since when x ∈ C , the open set Aσ − (Aσa0 ∪ Aσa1) contains no other element
of {xσ | σ ∈ 2N}. We need to show that x ∈ U . So by the claim, if x ∈ Aσ then
x ∈ Aσa0 or x ∈ Aσa1 . Note that x ∈ A〈 〉 . So we can build a sequence of 〈Aσi〉i∈N
where x is in each Aσi . This sequence of 〈σi〉i∈N represents a path. Our tree T has no
infinite paths, so there is some σj such that σj ∈ T but σj

ai /∈ T for i ∈ {0, 1}. Note
that for some i, Aσjai is in our sequence, so x ∈ Aσjai . Thus x ∈ Pσjai . Consequently,
x ∈ {Pσai | σ ∈ T ∧ i ∈ {0, 1} ∧ σai /∈ T} ⊆ U .

So in each of our cases, x ∈ C or x ∈ U but not both. We may conclude that C is closed.
Consider the open cover of C given by V = {Mσ | σ ∈ T}. Since the Heine-Borel
Theorem holds for C, then C is covered by a finite subset V0 of V . Each element of V0

contains exactly one element of C , so C is finite. Each sequence in T corresponds to
exactly one element of C , so T is finite. This completes the proof of the contrapositive
of WKL0 .

Our next goal is to prove that exactly one of W(X) and S(X) holds for each reasonable
choice of X . This proof will require ATR0 , and we prepare with some technical
discussions of perfect sets and derived sequences.

Lemma 3 (ACA0). Every perfect subset of [0, 1] contains a countable dense in itself
set.

Proof Suppose C is a perfect subset of [0, 1]. Since C is a closed set, we may assume
that it is the complement of an open set of the form ∪i∈N(ui, vi) where each (ui, vi) is
an open interval with rational endpoints.

Given any rational open interval I containing an element of C and any n ∈ N, we can
canonically arithmetically define two disjoint rational subintervals of I , each of which
meets C and has length less than 2−n . To see this, first note that if C meets I , then since
every point of C is an accumulation point, there must be distinct elements c0 and c1 of
C which are also in I . Each of these is contained in arbitrarily small rational subintervals
of I . Since we know such subintervals exist, we can make their selection canonical
by fixing an enumeration of the rational subintervals of I and selecting the first two
sufficiently small disjoint intervals (a0, b0) and (a1, b1) such that no finite collection of
the open intervals defining the complement of C covers [(3a0 + b0)/4, (a0 + 3b0)/4]
or [(3a1 + b1)/4, (a1 + 3b1)/4]. This last condition is arithmetical and insures that
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(a0, b0) and (a1, b1) meet C . (We are allowed to apply the Heine-Borel theorem here,
since we are working in ACA0 .)

Using our subintervals, we can define a full binary tree T with rational number node
labels such that each infinite path corresponds to a distinct element of C . To do this,
let I〈 〉 = (−.1, 1.1) and r〈 〉 = 1/2. Given Iσ that meets C , choose Iσa0 = (a0, b0)
and Iσa1 = (a1, b1) as in the preceding paragraph, using lh(σ) + 1 for n. Let
rσai = (ai + bi)/2 for i ∈ {0, 1}. Define the tree T by T = {rσ | σ ∈ 2<N}. Note that
each infinite path through T defines a rapidly converging Cauchy sequence. No real
defined in this fashion is covered by any finite collection of the open intervals defining
the complement of C . Thus, by another application of the Heine-Borel theorem, each
path through T defines a distinct element of C .

Finally, we can select a countable subset of C by restricting our attention to those paths
through T whose corresponding 0− 1 sequences are eventually constantly 0. For any
n and any such sequence, we can find a distinct sequence which agrees on the first n
entries. The corresponding reals will differ by no more than 2−n . Consequently, this
countable subset of C is dense in itself.

Our formalization of derived sequences (call characteristic systems in [3]) appears
below. In practice, the linear ordering A is actually a well ordering, and the pre-image
of an element α ∈ A is the set of isolated points ejected at stage α in the transfinite
construction of the usual derived sequence for the set.

Definition (RCA0) Let X be a countable subset of R. A derived sequence for X
consists of a pair 〈A, h〉, where A is a countable linear ordering and h : X → A is a
surjection such that for all x ∈ X and a ∈ A, h(x) = a implies

(1) ∃ε > 0 ∀y ∈ X (0 < |x− y| < ε→ h(y) < a), and

(2) ∀b < a ∀ε > 0 ∃y ∈ X (0 < |x− y| < ε ∧ h(y) ≥ b).

If X is a definable subset of [0, 1], we can define X to be the set of all open intervals
with rational endpoints that contain no points of X . Depending on the defining formula
of X , proving the existence of (the countable code) for X may require very strong
comprehension axioms. Subject to the restriction that X exists, we can prove that
exactly one of W(X) and S(X) holds. The reversal in the following theorem shows that
the use of ATR0 is unavoidable.
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Theorem 4 (ACA0) The following are equivalent:

1. ATR0 .

2. If X is a subset of [0, 1] and X exists, then exactly one of W(X) and S(X)
holds.

3. For every closed subset of [0, 1], exactly one of W(X) and S(X) holds.

Proof To prove that (1) implies (2), assume ATR0 and suppose X ⊆ [0, 1] and X
exists. Either X is countable or X is uncountable.

First, suppose X is uncountable. Clearly, X is not contained in any countable closed
set, so W(X) fails. By Theorem V.4.3 of [5], from ATR0 we may deduce the perfect
set theorem. Consequently, X contains a perfect set. By Lemma 3, we have that S(X)
holds.

Now suppose that X is countable. Let X = {x0, x1, . . . }. Suppose, by way of
contradiction, that X contains a countable dense in itself set. We can successively
choose points yi in the dense in itself set and rationals ri > 0 so that for every i < j,
|yi − yj| < 2−i and |yj − xi| > ri . The sequence 〈yi〉i∈N converges to an element of X ,
but that element cannot be equal to any xi , yielding the desired contradiction. Thus S(X)
fails in this case. It remains to show that W(X) holds. Since X is a countable closed
subset of R, by Friedman and Hirst’s [3] Lemma 4.4, X has a derived sequence; call it
〈A, h〉. By Lemma 4.2 of [3] we can assume A is a well ordering. Note that h maps X
onto A. Define f : X → A×N by f (xi) = (h(xi), i). Let Y denote the range of f . We say
that (a1, i) < (a2, j) if a1 < a2 or both a1 = a2 and i < j. Since f is a bijection between
X and Y , it defines a well-ordering of X . It remains to show that if C ⊆ X is closed then
f (C) has a maximum element. Fix C and let I = {(a, i) ∈ Y | ∀x ∈ C f (x) ≤ (a, i)}.
By way of contradiction, suppose that I = ∅. Define a sequence 〈xji〉i∈N such that f (xji)
is unbounded in Y . By the Bolzano Weierstraß theorem (which is provable in ACA0 ),
we know that 〈xji〉i∈N contains a subsequence that converges to an element xi of X . By
the definition of derived sequence, f (xi) must exceed every element of Y , yielding a
contradiction. Thus I is not empty. Since I is a nonempty subset of the well-ordering Y ,
I has a minimum element; call it µ. If µ /∈ f (C) then we can define another sequence
〈xki〉i∈N such that f (xki) is unbounded in the initial segment of Y below µ. As above,
this leads to a contradiction. Thus, µ is the maximum element of f (C). Since µ is
arithmetically definable from the code for C , ACA0 proves the existence of the function
g required for W(X).

Since (3) is a special case of (2), we can complete the proof by showing that (3) implies
(1). Assume ACA0 and (3). We will use Theorem V.5.5 of Simpson’s book [5], which
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says that ATR0 can be derived from the statement that every 0−1 tree with uncountably
many infinite paths must contain an infinite perfect subtree. Let T be a 0− 1 tree with
uncountably many infinite paths. We will define C , a closed subset of the Cantor middle
third set corresponding to the infinite paths of T . Emulating the proof of Theorem
IV.1.2 of [5], for each σ ∈ 2N , define:

aσ =
∑

i<lh(σ)

2σ(i)
3i+1 bσ = aσ +

1
3lh(σ) a′σ = aσ −

1
3lh(σ)+1 b′σ = bσ +

1
3lh(σ)+1

Let C be the complement of the middle third intervals ∪σ∈2N(bσa0, aσa1) together with
the “leaf” intervals (a′

σaε
, b′
σaε

) where ε ∈ {0, 1} and σ ∈ T but no extension of σ
lies in T . Clearly C is closed. Since T has uncountably many infinite paths, C is
uncountable. Thus W(C) must fail. By (3), S(C) must hold. Let D = {d0, d1, . . . }
be a countable dense in itself subset of C . The set D can be used to define a perfect
subtree of T as follows. Choose σ〈 〉 ∈ T such that d0 ∈ [aσ〈 〉 , bσ〈 〉]. Given στ with
di ∈ στ , let στa0 and στa1 be the first incompatible extensions of στ such that there
are integers i0 and i1 such that di0 ∈ [aσ

τa0
, bσ

τa0
] and di1 ∈ [aσ

τa1
, bσ

τa1
]. Such

extensions must exist because D is a dense in itself subset of C . The set of nodes
{στ | τ ∈ 2<N} form a perfect subtree of T .

We now present the model theoretic result mentioned in the introduction. This theorem
can be viewed as a partial converse for Theorem 1 and Theorem 2.

Theorem 5 Suppose X is a computable subset of [0, 1]. If every ω -model of
RCA0 models HB(X), then 〈ω,P(ω)〉 |= W(X). If every ω -model of RCA0 models
HB(X)→WKL0 , then 〈ω,P(ω)〉 |= S(X).

Proof Suppose X is computable. To prove the first implication, suppose that every
ω -model of RCA0 models HB(X) and, by way of contradiction, that 〈ω,P(ω)〉 6|= W(X).
Since 〈ω,P(ω)〉 is a model of ATR0 , by Theorem 4 we must have 〈ω,P(ω)〉 |= S(X).
Suppose Y is a (code for a) countable dense in itself set that is contained in every
closed superset of X . Let UY = {Z ⊆ ω | Z ≤T Y}. Then 〈ω,UY〉 is an ω -model of
RCA0 and consequently, a model of HB(X). Since Y is in UY , 〈ω,UY〉 |= S(X). By
Theorem 2, 〈ω,UY〉 |= S(X)→WKL0 , so 〈ω,UY〉 |= WKL0 . However, there is a tree
computable from Y with no Y -computable paths, so 〈ω,UY〉 is not a model of WKL0 .

We will prove the contrapositive of the second implication. Suppose that 〈ω,P(ω)〉 6|=
S(X). Since 〈ω,P(ω)〉 |= ATR0 , by Theorem 4 we have 〈ω,P(ω)〉 |= W(X). By
W(X), the closure of X is a countable closed set. Consequently, 〈ω,P(ω)〉 |= W(X).
Let Y be (a code for) the associated well ordering and function. Define UY as in the
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preceding paragraph. Then 〈ω,UY〉 |= W(X), and by Theorem 1, 〈ω,UY〉 |= HB(X).
Since every closed subset of X is a closed subset of X , 〈ω,UY〉 |= HB(X). As
above, 〈ω,UY〉 6|= WKL0 , so 〈ω,UY〉 is an ω -model of RCA0 that does not model
HB(X)→WKL0 , as desired.

Over RCA0 , the statement HB([0, 1]), which addresses open covers of arbitrary closed
subsets of [0, 1], is easily deduced from the restriction of the statement to covers of
the entire interval [0, 1]. Thus, WKL0 can be deduced from the Heine-Borel Theorem
restricted to a single closed set. Although WKL0 can be deduced from HB([0, 1] ∩Q),
there is no countable closed set for which the Heine-Borel Theorem implies WKL0 .
This can be proved as follows by utilizing the constructions from the proofs of Theorems
4 and 5.

Theorem 6 Suppose X is a countable closed subset of [0, 1]. Then there is a model
M containing X such that M |= RCA0 , M |= HB(X), and M |= ¬WKL0 .

Proof Let X be a countable closed subset of [0, 1]. Since X is (encoded) in 〈ω,P(ω)〉,
〈ω,P(ω)〉 |= ATR0 , and X = X is countable, we can emulate the third paragraph of the
proof of Theorem 4 to find F , f , g, and Y witnessing W(X). Choose a set B such that
X , F , f , g, and Y are all computable from B, and let UB = {Z ⊆ ω | Z ≤T B}. As in
the proof of Theorem 5, 〈ω,UB〉 is a model of RCA0 , HB(X), and ¬WKL0 .

The formulations of W(X) and S(X) are certainly not unique. It would be interesting to
find other formulations that would satisfy Theorem 1, Theorem 2, and Theorem 5, but
for which Theorem 4 could be carried out in a weaker system. On the other hand, the
current formulations seem to have some applicability. For example, Hirst’s [4] result
showing that the Heine-Borel Theorem for Q ∩ [0, 1] implies WKL0 is an immediate
consequence of Theorem 2. Also, Friedman and Hirst [3] define a canonical embedding
of a well ordered set into [0, 1]. Working in RCA0 , if we can show that X ⊆ [0, 1] is
a countable closed set and is the range of this sort of canonical embedding of a well
ordering, then Theorem 1 shows that the Heine-Borel Theorem holds for X .
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