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A correspondence principle for the Gowers norms

HENRY TOWSNER

Abstract: The Furstenberg Correspondence shows that certain “local behavior” of
dynamical system is equivalent to the behavior of sufficiently large finite systems.
The Gowers uniformity norms, however, are not local in the relevant sense. We give
a modified correspondence in which the Gowers norm is preserved. This extends
to the integers a similar result by Tao and Zielger on finite fields.
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1 Introduction

Informally speaking, the Furstenberg Correspondence [4, 5] shows that the “local
behavior” of a dynamical system is controlled by the behavior of sufficiently large
finite systems. By the local behavior of a dynamical system (X, B, u, G), we mean the
properties which can be stated using finitely many actions of G and the integral given
by 11'. By a finite system, we just mean (S, P(S), ¢, G) where G is a infinite group, S

is a finite quotient of G, and c is the counting measure c(A) := %.

The most well known example of such a property is the ergodic form of Szemerédi’s
Theorem:

For every k, every € > 0, and every L™ function f, if [ fdu > € then
there is some 7 such that | HJI.‘:_OI T "fdu > 0.

The Furstenberg Correspondence shows that this is equivalent to the following statement
of Szemerédi’s Theorem:

For every k and every € > 0, thereisan N and a § > O such thatif m > N
and f : [0,m — 1] — [—1, 1] is such that ffdc > ¢ then there is some n
such that [ [Ti=g f(x + jn)dc(x) > 6.

' A more precise version of this notion would be to say that the local behavior consists of the
II, formulas in an appropriate extension of the language of arithmetic.
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2 H Towsner

In general, the Furstenberg Correspondence states that, given a sequence of functions
on increasingly large finite systems, a single function on a single infinite system can be
given with the property that suitable calculations are controlled by the limit of the value
of analogous calculations in the finite systems.

Recent work by Austin and Tao [1], Elek and Szegedy [3], Elek [2], Tao [9], and the
author [12, 11] has extended this correspondence both to other specific properties and
to more general formulations. These methods are not adequate, however, for the study
of the uniformity norms introduced for finite systems by Gowers in [6] and for infinite
systems by Host and Kra in [7]. While there are strong reasons for believing that
functions on finite systems with small Gowers norm should correspond to functions
on infinite systems with small Gowers-Host-Kra norm, these norms are not local. In
particular, the ordinary correspondence may place a sequence of highly k-uniform
functions (that is, functions with |- ||« going to zero) in correspondence with a function
with large U* norm.

In [10], Tao and Ziegler give a variant of the correspondence principle which preserves
the U* norms when the group G is vector space over a finite field, 7. Their argument,
however, takes advantage of group theoretic properties of I, and does not immediately
extend to other groups.

In this paper we give a similar correspondence for arbitrary countable Abelian groups.
While there is no theoretical obstacle to giving the construction explicitly in a style
similar to [10], the resulting argument would be quite unwieldy. Roughly speaking,
where Tao and Ziegler can choose representative transformations randomly and expect
that almost all choices suffice, here we have to choose particular transformations. It
is much more convenient to do the work of choosing the correct transformations in
an infinitary ergodic setting; the price is that we use an argument from nonstandard
analysis to give a highly infinitary system acted on by a very large group, and then use
ergodic methods to reduce the group down to something more manageable. For the sake
of readers unfamiliar with nonstandard analysis, we isolate its use in a single lemma.

In Section 2 we lay the ergodic-theoretic groundwork for the correspondence, and in
Section 3 we give the correspondence argument itself.

The author is grateful to the Mathematical Sciences Research Institute’s semester

program in Ergodic Theory and Additive Combinatorics, during which the ideas in this
paper were developed.
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A correspondence principle for the Gowers norms 3
2 Choosing a Good Subgroup

Because of the nature of the intermediate object which will be produced by the
nonstandard argument in Section 3, we want to work with a fairly general notion of a
dynamical system.

Definition 2.1 A dynamical system consists of a probability measure space (X, B, j1)
together with an Abelian group G, an action of G on X such that for each g € G,
the action Ty : X — X is measurable, and a finitely additive G -invariant probability
measure space (G,C, ).

We do not require that the action of G on X be a measurable function from G x X to
X, since we need actions where this is not true. Instead we only ask for the weaker
condition that Fubini’s Theorem holds.

The most common case is where G is countable and C is the powerset of G (which is
possible since A is only required to be finitely additive).

Definition 2.2 By a discrete group, we mean a countable group G together with its
power set, viewed as a measure space.

This case is common enough that when G is countable, we will write (as we did in the in-
troduction) (X, B, i, G) to mean the dynamical system (X, B, 1), (G, P(G), A), {Tg} e
where A and {7,} are implicit or given by the context.

Definition 2.3 Given a bounded function f and a group G, define F(f, G) to be the
collection of functions containing f and the function constantly equal to 1, and closed

under pairwise sums, pairwise multiplication, scalar multiplication by a rational, and
shifts from G.

Clearly F(f, G) is countable as long as G is.

Definition 2.4 When (X, B, 1) is a probability measure space and f : X — R is
bounded and measurable, we say f is weakly Fubini for (G, C, \) if for every x € X, the
function g — f(T,x) is measurable with respect to C and x f f(Tyx)d\ is measurable
with respect to B.

We say f is Fubini if every function in F(f, G) is weakly Fubini.
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4 H Towsner

The requirement that the condition hold for every x could be weakened to almost every
x without much trouble.

In this context, the Mean Ergodic Theorem can be taken to be the following:

Lemma 2.1 If f is Fubini for (G,C, \) and Z(G) is the collection of sets invariant
under T, for every g € G then

2
/ {E(f | Z(G))(x) — / f(Tgx)d)\] dp =0,

Lemma 2.2 If G is countable, every measurable function f on X is weakly Fubini for
(G, P(G), N).

Proof Measurability of g — f(T,x) follows because every subset of G is measurable.
The standard construction of a Fglner sequence [8] gives a sequence of subsets Iy of
G so that f f(Tex)d\ = limy_.o0 NeU ﬁ > g€ly f(Tyx) for some infinite set U. Since

. 1 . . . .
each of the functions x — v > ecly f(T,x) is measurable, so is the limit. O

Similarly, we may extend a group by a single element (or more precisely, by the discrete
group generated by that element) while preserving the Fubini property.

Definition 2.5 Let H be a subgroup of G and suppose f is Fubini for (G,C, \). For
g € G, define Hg, to be the subgroup of G generated by HU{g}. Taking 7 : HXZ — H;,
to be the homomorphism given by ww(h,n) := h - g", any finitely-additive H -invariant
measure (H,D,v) may be extended to a measure on H;, by taking the m-image of
(HxZ,D xP(Z),v x o) where o is an arbitrary finitely-additive 7 -invariant measure.

Note that the choice of measure on H g, is not canonical, but the Mean Ergodic Theorem
tells us that the choice will not matter.

Lemma 2.3 Suppose H C G, f is bounded and Fubini for (G,C, \) and (H,D,v),
and the inclusion map of H in G is measurable as a function from (H, D) to (G,C).
Then for any g € G, f is Fubini for Hg,.

Proof For any f' € F(f,H), any measurable set S and any n, {h | f'(Ty(Tyx)) €
S} = {h | f'(T}.g»x) € S} is measurable (in D). Therefore {(h,n) | f'(Tp.gx) € S} =
U, {n | f/(Th.gox € S)} x {n} is measurable as well.
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A correspondence principle for the Gowers norms 5

By the same argument as above, there is a set U such that

1
/ f(Tdw x o)hy = lim WZ / F (T Tox)du(h)
iel,

—o00,NeU

and since f’ o Tn is weakly Fubini, each ﬁ > onel, [ f(ThTgnx)dv(h) is measurable,
and therefore the limit is as well. O

The following definition and the basic properties of such norms are taken from [7].

Definition 2.6 (Gowers-Host-Kra Norms) Define XX := x2*, BK := B2, and for
any transformation T on (X, B, i), define Tk = ®w€{071}k T.

If G is an Abelian group acting on (X, B, i), define M[O](G) =pu, ZM(G) to be the
collection of sets in BI*! invariant under T} for each g € G, and p!**11(G) to be the
relative joining of p® with itself over TM(G).

For any L™ function f : X — R, define

1/2%

Fllor) = / &) fuG)

we{0,1}*

Note that this definition depends on G, and the action of G on X, but not on a particular
measure space on G. Despite the name, || - |[ (g is generally only a semi-norm. (There
is a similar norm for complex valued functions, the only difference being replacing f
by the complex conjugate of f in some cases; the arguments in this paper go through
unchanged for complex valued functions, so we only discuss the notationally simpler
real valued version.)

Lemma 2.4 If f is Fubini for (G,C, \) then

112Gy = / / I 7wgaX®@du.

we{0,1}+

Proof We show by induction on & that

/ R fodu = / / [[ 7odudund@.

we{0,1} wef{0,1}*
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6 H Towsner

For k = 0, this is immediate. Assume the claim holds for k. Then

/ Q) fuduttH = / EC Q) fo ) | THG)):

we{0,1},+1 we{0,1}k

EC Q) fi~ww | THGHAM(G)

we{0,1}+
:// Q) fo ) Tehi~ (@A (G)
we{0,1}+
:// ® f0“<w>Tgf1A<w>du[k](G)d)\
we{0,1}+
- / / / [T 7Toslom o Tefim()drdN@dg)
we{0,1}+
[ T nsaate
we{0,1}4+1

The following property is easily seen by induction:
Lemma 2.5 If H is a subgroup of G then ||f|| ) < |If || ux)-

It will be convenient to use a slight generalization of the U* norm, in which a different
group is used at the top-most level.

Definition 2.7 Let H, G be groups. Then NG, H) := p, ZW(G, H) is the space of
sets B € B such that i™1(G)(B A (TI)~'B) = 0 foreach h € H, and p*+'(G, H)
is the relative joining of *\(G) with itself over ZM(G, H).

.. 1/2k
Similarly, ||f||y«G.my = (f ®w€{071}kfd,u[k](G, H)) .

Lemma 2.6 If H and H' are subgroups of G and H is a subgroup of H' then
W llorG,mry < vk my-

Theorem 2.1 Let (X, B, 1), (G,C, \) be a dynamical system, let H be a subgroup
of G, and let (H,C', ') be given so the inclusion of H in G is measurable. Let

f be everywhere bounded by 1, let f be Fubini for both G and H, and suppose
that HfH%]kkJ:](G’H) = HfH%]k;](G) + € with € > 0. Then there is a g € G such that,

k+1 k+1
‘V"%]k"'l(G,Hé) S HfH%]/H-l(G) + 36/4
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A correspondence principle for the Gowers norms 7

Proof Note that a similar claim for the U° norm would be trivial, since the premise
could never hold (the U° norm is independent of G). Observe that

11201 = / B R f1TMG) duHG).

we{0,1}*

Setting ' := E(Qf | ZM(G, H)), this quantity is equal to
[ 61 79GP a6 = 1E | 7O gy

Suppose that for every g € G, || — limy o0 Zign(Tg[k])ifﬂ]Lz(“[k](c)) < +/€/2. Then
also ||f' — E(f" | Z¥(G))| |i2(u[” () < €/2, which implies that

k+1 k+1
A ) = WA | = NEG 1 THGI 2z = 117 1122] < €2,
contradicting the assumption.

So choose g such that |[f — lim, a0 3 <, (TH)|| > \/€/2. It follows that ||f'||* —
[EG" | ZW@HY||* = ||f — E(f' | ZM(H)))||* > €/4, and therefore that

k+1 b1 3
|V||%]k+l(GvH£y) = HE(f, | ng)Hz < |lf||%]k+l(G) + Zﬁ.

O

Lemma 2.7 Let (X, B, 1), (G,C, \) be a dynamical system and, let I' be a discrete
subgroup of G, let f be bounded and Fubini for (G,C, ). Then there is a discrete
subgroup H of G containing T" such that ||F ||y« my = ||F||yx) forevery F € F(f,H).

Proof We will construct H so that there is a natural map 7 : Z“ — H (by Z* we
mean the product of countably many copies of Z, itself a countable set). Then we
may choose a sequence of pairs (¢,, F,,) where ¢, is a rational in (0,1) and F), is a
code for an element of F(f, H) so that each such pair appears at some point in this
sequence. We set Hy := I, and for each n, set H,4 := (Hn);, where g is chosen so that
EalloxG, 1) < IFnllu) + €n- Take H :=J, ., Hy. Then for every F € F(f, H)
and every € > 0, for sufficiently large n, ||F|| kG u,) < ||F|lyxG) + €. H is a subgroup
of G, so ||F||yxy < |IF|lur(G.m» and therefore ||F||yx) = [|F||yxc.m)- O

Theorem 2.2 Let (X,B, 1), (G,C,\) be a dynamical system, let I" be a discrete

subgroup of G, and let f be bounded and Fubini for (G,C, \). Then there is a discrete
subgroup H of G containing T' such that ||F|| ) = ||F||yx) forevery F € F(f,H).
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8 H Towsner
Proof Let H be as given in the preceeding lemma and proceed by induction on k. For
k = 0, this is trivial. Assume the result holds for k. Then
k+1
1FI3 = [ EQF | T8y,
For any € > 0, we may choose i so that this is within € of
/ E(QF | ZW(H) duI(H) = / Q) FTuFdp ().

For every h € H;,
k
/®F~ Ty Fdp (H) = ||FTF [,

and since FT,F € F(f,H), by IH ||FT;,FH%;(H) = |]FThF||%]kk(G). It follows that

2k+1 2k+1

’HFHUkH(H,H,-) - HFHUkJrl(G,H,-) <€
But for sufficiently large i, ||F H%;,:l (6.1, 18 arbitrarily close to [|F H%/k,:rll (G- So, taking
the limit as i — oo, we have
k+1 k+1
||F||%]k+1(H) = HFH%]/<+1(G)‘
O

3 A Correspondence Principle

To set up the appropriate analogy between different dynamical systems, we need the
notion of a representative of an element of F(-, G).

Definition 3.1 Let F(G) be a set of symbols defined inductively by:

e c€ F(G)

1€ F(G)

Iff,g € F(G) then f+ g and § - g belong to F(G)
If h € G and | € F(G) then Tpf € F(G)

If f € F(G) and q is a rational then gf € F(G)

If f € F(G) and f is a bounded Fubini function in a dynamical system, we define f(f)
recursively by:

o «(N)i=f
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A correspondence principle for the Gowers norms 9

e 1(f) := 1 (the function constantly equal to 1)
o F+9¢) =)+ 9(f)

o (F-)() =70 9()

o (L) = Tu(F(H))

o (@) =q-(F()

It is easy to see that g € F(f, G) iff there is a f € F(G) such that g = f(f).

Lemma 3.1 Let I be a countable Abelian group, let N be an infinite set of integers,
and for each N € N, let Sy be a finite quotient of T', my : T' — Sy, with |Sy| — oo.
Let fy : Sy — [—1,1] be given. There is a dynamical system (X, B, 1), (G,C, )
with A o -additive, a homomorphism w : I' — G, and a measurable Fubini function
f: X — [—1,1] such that for any | € F(I'),

h]{]fg\l}f||f(fN)||Uk(sN) < [FOlx) < liglej\l/’lp [T s

for each k.

Additionally, if for every g,h € T", g # h, wn(g) # mn(h) except for finitely many
N € N then 7(g) # m(h).

Proof Fix anon-principal ultrafilter U and form the nonstandard extension of a universe
containing the sequences NV, (fy), (Sy). The sequence N codes a nonstandard integer
a and G = §, is a hyperfinite Abelian group. By the Loeb measure construction, the
internal subsets of G may be extended to a o-algebra C on G, the internal counting
measure on G may be extended to a o-additive measure A, and the sequence (fy)
represents an internal function F : I' — [—1, 1]*. The function f = st o F' is then a
measurable function from G to [—1, 1].

This same measure space is also (G, C, \), with G acting on itself by the group action.
Since F is internal, for any x € S, the functions g — f(T,x) and x — f f(Tgx)d\ are
the result of applying the standard part operation to internal functions, and are therefore
measurable, and the same applies to any element of F(f,G). So f is Fubini. The
embedding 7 : ' — G is simply the embedding represented by the sequence (my).

The final clause follows from transfer. For instance, if liminfyep ||fiv|]px(sy) > o then
for each € > 0 and all but finitely many N in N,

WZZ [[ e+ w>a—e

xSy gesk we{0,1}¢
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10 H Towsner

and therefore

st ‘S‘IHIZZ H Fx+g-w | >a—c¢

XES, g’eSﬁ‘, wE{O,l}k
and therefore
// H Tg,mfd,ud)\k > a—e.
we{0,1}*

Applying this argument for arbitrary §f € F(I'), and the analogous argument for the
upper bound, gives the claim. m]

As shown in the previous section, there is a discrete subgroup H of G containing I'
such that for each F € F(f, H), ||F||ytry = ||F||yx(c)- Putting this together, we obtain
the following theorem:

Theorem 3.1 Let I' be a countable Abelian group, let N be an infinite set of integers,
and for each N € N, let Sy be a finite quotient of T', my : T' — Sy, with |Sy| — oo.
Let fy : Sy — [—1, 1] be given. Then there is a dynamical system (X, B, yi, H) and an
L™ function f : X — C such that for any § € F(I'),

lil{,fé}\f}fo(fN)HUk(sN) < |FON e < hfvnej\‘/lp T sy

for each k.
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