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Abstract: The dominated convergence theorem implies that if (fn) is a sequence
of functions on a probability space taking values in the interval [0, 1], and (fn)
converges pointwise a.e., then (

∫
fn) converges to the integral of the pointwise

limit. Tao [26] has proved a quantitative version of this theorem: given a uniform
bound on the rates of metastable convergence in the hypothesis, there is a bound
on the rate of metastable convergence in the conclusion that is independent of the
sequence (fn) and the underlying space. We prove a slight strengthening of Tao’s
theorem which, moreover, provides an explicit description of the second bound in
terms of the first. Specifically, we show that when the first bound is given by a
continuous functional, the bound in the conclusion can be computed by a recursion
along the tree of unsecured sequences. We also establish a quantitative version
of Egorov’s theorem, and introduce a new mode of convergence related to these
notions.
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1 Introduction

If (an) is a nondecreasing sequence of real numbers in the interval [0, 1], then (an)
converges, and hence is Cauchy. Say that r(ε) is a bound on the rate of convergence
of (an) if for every ε > 0, |an − an′ | < ε whenever n and n′ are greater than or
equal to r(ε). In general, one cannot compute a bound on the rate of convergence
from the sequence itself: such a bound is not even continuous in the data, since the
sequence (an) can start out looking like a constant sequence of 0’s and then increase
to 1 unpredictably.

But suppose that instead of a bound on the rate of convergence, we fix a function
F : N→ N and ask for an m such that |an− an′ | < ε for every n and n′ in the interval
[m,F(m)]. Since the sequence (an) cannot increase by ε more than b1/εc times,
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at least one element of the sequence 0,F(0),F(F(0)), . . . ,Fb1/εc(0) has the desired
property. Hence there is always such a value of m less than or equal to Fb1/εc(0).

Now notice that not only is this bound on m easily computable from F and a rational
ε > 0, but it is, moreover, entirely independent of the sequence (an). What has
happened is that we have replaced the assertion

∀ε > 0 ∃m ∀n, n′ ≥ m |an − an′ | < ε

by a “metastable” version,

∀ε > 0,F ∃m ∀n, n′ ∈ [m,F(m)] |an − an′ | < ε.

The two statements are logically equivalent: an m as in the first statement is sufficient
for any F in the second, and, conversely, if the first statement were false for some
ε > 0 then for every m we could define F(m) to return a value large enough so that
[m,F(m)] includes a rogue pair n, n′ . But whereas one cannot compute a bound on
the m in the first statement from ε and (an), one can easily compute a bound on the
second m that depends only on ε and F .

If (an) is any sequence, say that M(F) is a bound on the ε-metastable convergence of
(an) if the following holds:

For every function F : N→ N there is an m ≤ M(F) such that for every
n, n′ ∈ [m,F(m)], |an − an′ | < ε.

Then what we have observed amounts to the following:

• There is a bound on the ε-metastable convergence of (an) if and only if there
is an m such that |an − an′ | < ε for all n, n′ ≥ m. Hence, a sequence (an) is
Cauchy if and only if there is a bound on the ε-metastable convergence of (an)
for every ε > 0.

• For every ε > 0 the function M(F) = Fb1/εc(0) is a bound on the ε-metastable
convergence of any nondecreasing sequence (an) of elements of the real interval
[0, 1].

Thus there is a sense in which the second statement provides a quantitative, uniform
version of the original convergence theorem.

This transformation is an instance of Kreisel’s “no-counterexample” interpretation
[18, 20], which is, in turn, a special case of Gödel’s Dialectica interpretation [2, 8, 14].
The particular example above is discussed by Kreisel [19, page 49]. Variations on
this idea have played a role in the Green-Tao proof [9] that there are arbitrarily long
arithmetic progressions in the primes, and in Tao’s proof [26] of the convergence of
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certain diagonal averages in ergodic theory. In these instances the Kreiselian trick
takes the form of an “energy incrementation argument”; see also [25] and [27, Sections
1.3–1.4]. The Birkhoff and von Neumann ergodic theorems and generalizations have
also been analyzed in these terms [3, 15, 16, 17].

Here we are concerned with measure-theoretic facts such as the dominated convergence
theorem, which relate one mode of convergence to another. Inspired by Tao [26],
our goal will be to show that from a suitable metastable bound on the first type of
convergence, one can obtain a suitable metastable bound on the second; and that,
moreover, the passage from the first to the second is uniform in the remaining data.

For example, if (fn) is a sequence of measurable functions on a measure space X =

(X,B, µ), then (fn) is said to converge almost uniformly if for every λ > 0, there
is a set A with measure at most λ such that (fn(x)) converges uniformly for x 6∈ A.
This is equivalent to saying that for every λ > 0 and ε > 0 there is an m such that
µ({x : ∃n, n′ ≥ m |fn(x)− fn′(x)| ≥ ε}) < λ, since for a fixed λ′ > 0 we can choose
a sequence (εi) decreasing to 0 and then, for each εi , apply this last statement with
λ = λ′/2i+1 . Thus the fact that fn converges almost uniformly can be expressed as
follows:

(AU) ∀λ > 0, ε > 0 ∃m µ({x : ∃n, n′ ≥ m |fn(x)− fn′(x)| ≥ ε}) < λ.

By manipulations similar to the ones above, (AU) has the following metastable equiv-
alent:

(AU∗) ∀λ > 0, ε > 0,F ∃m µ({x : ∃n, n′ ∈ [m,F(m)] |fn(x)− fn′(x)| ≥ ε}) < λ.

As above, say that M(F) is a bound on the λ-uniform ε-metastable convergence of (fn)
if the following holds:

For every F , there is an m ≤ M(F) such that

µ({x : ∃n, n′ ∈ [m,F(m)] |fn(x)− fn′(x)| ≥ ε}) < λ.

In other words, fixing λ and ε, M(F) provides a bound on a value of m asserted to
exist by (AU∗ ).

Egorov’s theorem asserts that if X is a probability space and (fn) converges pointwise
almost everywhere, then it converges almost uniformly. In Section 3, we obtain
the following quantitative version. Say that M(F) is a λ-uniform bound for the ε-
metastable pointwise convergence of (fn) if the following holds:

For every F : N→ N,

µ({x : ∀m ≤ M(F) ∃n, n′ ∈ [m,F(m)] |fn(x)− fn′(x)| ≥ ε}) < λ.
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In other words, for every F , M(F) provides a uniform ε-metastable bound for the
convergence of each sequence (fn(x)) outside a set of measure at most λ. Compare
this to the previous definition: if M(F) is a bound on the λ-uniform ε-metastable
convergence of (fn), then M(F) provides a bound on a single m that works outside a
set of measure at most λ. With this terminology in place, we can state our quantitative
version of Egorov’s theorem: given ε > 0, λ > λ′ > 0, and a λ′ -uniform bound
M1(F) on the ε-metastable pointwise convergence of (fn), there is a bound M2(F) on
the λ-uniform ε-metastable convergence of (fn); and moreover M2(F) depends only
on ε, λ, λ′ , and M1(F), and not on the underlying probability space or the sequence
(fn). In fact, we provide an explicit description of M2(F) in terms of this data, and
explicit bounds on the complexity of M2 when M1 is a computable functional that can
be defined using Gödel’s schema of primitive recursion in the finite types. The proof
relies on a combinatorial lemma, presented in Section 2, whose proof can be viewed
as an energy incrementation argument that is iterated along a well-founded tree.

It is easy to show that if (fn) is a sequence of functions taking values in [0, 1] and (fn)
converges almost uniformly, then the sequence (

∫
fn) converges. Thus the dominated

convergence theorem follows easily from Egorov’s theorem in the case where X is a
probability space and the sequence (fn) is dominated by a constant function. In a similar
way, we show in Section 3 that our quantitative version of Egorov’s theorem implies
a quantitative version of the dominated convergence theorem, a mild strengthening of
Theorem A.2 of Tao [26], again with an explicit description of the computation of one
metastable bound from the other.

The notion of a λ-uniform bound on the ε-metastable pointwise convergence of a
sequence gives rise to a new mode of convergence that sits properly between point-
wise convergence and almost uniform convergence. In Section 4, we explore the
relationships between these notions.

We are grateful to Ulrich Kohlenbach and Paulo Oliva for advice and suggestions. Work
by the first and third authors has been partially supported by NSF grant DMS-1068829.

2 A combinatorial fact

This section is devoted to establishing a key combinatorial fact that underlies our
quantitative convergence theorems. As a warmup, consider the following:

Proposition 2.1 Let (An) be a sequence of measurable subsets of a probability space
X = (X,B, µ), and let λ > 0. Then the following are equivalent:
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(1) There is an M such that µ(
⋃

n≥M An) < λ.

(2) There is an M such that for every function F(m),

µ

 ⋂
m≤M

⋃
n∈[m,F(m)]

An

 < λ.

(3) There is a λ′ < λ such that for every F there is an M such that

µ

 ⋂
m≤M

⋃
n∈[m,F(m)]

An

 < λ′.

Proof (1) clearly implies (2) because⋂
m≤M

⋃
n∈[m,F(m)]

An ⊆
⋂

m≤M

⋃
n≥m

An =
⋃

n≥M

An,

and (2) clearly implies (3). To show (3) implies (1), fix λ > λ′ > 0 and for each m,
let F(m) be large enough so that

µ

⋃
n≥m

An \
⋃

n∈[m,F(m)]

An

 < (λ− λ′)/2m+1.

By hypothesis, for this F , there is an M such that µ(
⋂

m≤M
⋃

n∈[m,F(m)] An) < λ′ . Then⋃
n≥M

An =
⋂

m≤M

⋃
n≥m

An ⊆  ⋂
m≤M

⋃
n∈[m,F(m)]

An

 ∪ ⋃
m≤M

⋃
n≥m

An \
⋃

n∈[m,F(m)]

An

 ,

whose measure is at most λ′ +
∑

m≤M(λ− λ′)/2m+1 < λ. Hence µ(
⋃

n≥M An) < λ,
as required.

In particular, if (3) holds, there is an n such that µ(An) < λ. Now suppose we are
given a functional M(F) witnessing (3). The main result of this section, Theorem 2.2,
shows that there is a bound on n that depends only on M(F), λ, and λ′ . In particular,
the bound is independent of X and the sequence (An).

Theorem 2.2 For every functional M(F) and λ > λ′ > 0, there is a value M′ with the
following property. Suppose (An) is a sequence of measurable subsets of a probability
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space X with the property that for every function F ,

µ

 ⋂
m≤M(F)

⋃
n∈[m,F(m)]

An

 < λ′.

Then there is an n ≤ M′ such that µ(An) < λ.

A functional M is said to be continuous if the value of M(F) depends on only finitely
many values of F . Say that two functions F and F′ agree up to k if F(j) = F′(j) for
every j ≤ k . If M is continuous, a functional k(F) with the property that M(F) = M(F′)
whenever F and F′ agree up to k(F) is said to be a modulus of continuity for M .

The next lemma shows that, without loss of generality, we can assume the functional
M in the hypothesis of Theorem 2.2 is continuous, because one can always replace it
by a suitable continuous version, M .

Lemma 2.3 Given any functional M , there is a continuous functional M with the
following property: for every F , there is an F′ such that M(F) = M(F′) and F and F′

agree up to M(F).

Proof Given M , define

M(F) = min{M(F′) : F and F′ agree up to M(F′)}.

The last set is nonempty since it contains M(F) itself. Clearly M(F) satisfies the stated
condition, so we only need to show that M is continuous.

In fact, we claim that M is its own modulus of continuity. To see this, suppose F and
F′′ agree up to M(F). We need to show M(F) = M(F′′). By the definition of M , there
is an F′ such that M(F) = M(F′) and F and F′ agree up to M(F′). But then F′′ and
F agree up to M(F′), and so M(F′′) ≤ M(F′) = M(F).

Since F and F′′ agree up to M(F), a fortiori, they agree up to M(F′′). But now the
symmetric argument shows that M(F) ≤ M(F′′). So M(F) = M(F′′).

The condition on M imposed by Lemma 2.3 ensures that any sequence (An) of a
measure space X satisfying

∀F µ

 ⋂
m≤M(F)

⋃
n∈[m,F(m)]

An

 < λ′
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also satisfies

∀F µ

 ⋂
m≤M(F)

⋃
n∈[m,F(m)]

An

 < λ′

and so it suffices to prove Theorem 2.2 for M in place of M . By similar machinations,
we could arrange that M(F) ≤ M(G) whenever F is pointwise less than or equal to G,
and that M is determined by the values it takes on nondecreasing F ’s. However, we
will not need these additional conveniences below.

Notice that the passage from M to M is noneffective; in general it will not be possible
to “compute” M(F) from descriptions of M and F . We will show, however, that in the
case where M is continuous, the M′ in the conclusion of Theorem 2.2 can be computed
from a suitable description of M .

To explain our algorithm, we need to establish some background involving computation
on well-founded trees. If σ is a finite sequence of natural numbers, we index the
elements starting with 0 so that σ = (σ0, . . . , σlength(σ)−1), and write σˆn to denote the
sequence extending σ with an additional element n. If τ is another finite sequence of
natural numbers, write σ ⊆ τ to indicate that σ is an initial segment of τ . By a tree on
N, we mean a set T of finite sequences of natural numbers that is closed under initial
segments. Think of the empty sequence, (), as denoting the root, and the elements σˆn
as being the children of σ in the tree.

Identify functions F from N to N with infinite sequences, and write σ ⊂ F if σ is
an initial segment of F . A tree T on N is said to be well-founded if it has no infinite
branch, which is to say, for every function F there is a σ ⊂ F such that σ is not in the
tree. One can always carry out a proof by induction on a well-founded tree: if Pσ is
any property that holds everywhere outside a tree T and, moreover, Pσ holds whenever
Pσˆn holds for every n, then Pσ holds for every σ ; otherwise, one could successively
extend a counterexample σ to build an infinite branch F that never leaves the tree. By
the same token, one can define a function on finite sequences of natural numbers by a
schema of recursion:

G(σ) =
{

H(σ) if σ is not in T
K(σ, λn. G(σˆn)) otherwise

where λn. G(σˆn) denotes the function which maps n to G(σˆn). Using induction
on T , one can show that G is well-defined. Moreover, if T and the functions H and
K are computable, so is G. For example, the computation of G on the empty string
requires recursive calls to G((n)), for various n; these, in turn, require recursive calls
to G((n, n′)), for various n′ , and so on. The well-foundedness of T guarantees that
every branch of the computation terminates.
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Now suppose M(F) is a continuous functional. Say that a finite sequence σ is unsecured
if there are F1,F2 extending σ such that M(F1) 6= M(F2). In words, σ is unsecured if
it does not provide sufficient information about a function F to determine the value of
M . Let T = {σ : σ is unsecured}. Then it is not hard to see that T is a tree, and the
continuity of M implies it is well-founded.

Suppose moreover that k(F) is a modulus of continuity for M . For any finite sequence
σ of natural numbers, use σ̂ to denote the function

σ̂(n) =
{
σn if n < length(σ)
0 otherwise.

One can check that the set T ′ = {σ : ∀τ ⊆ σ k(τ̂ ) ≥ length(τ )} is again a well-
founded tree that includes T . In the next proof, given a continuous functional M , we
will define a function N(σ) by recursion on any well-founded tree that includes the
tree of sequences that are unsecured for M . When this tree is given by a modulus
of continuity, k(F), as above, this amounts to the principle of bar recursion, due to
Spector [24] (see also [2, 5, 14]).

We now turn to the proof of Theorem 2.2.

Proof By Lemma 2.3, we can assume without loss of generality that M is continuous.
Fix λ > λ′ > 0, and let T be any well-founded tree that includes all the sequences
that are unsecured for M . We will define a function N(σ) by recursion on T , and
simultaneously show, by induction on T , that N(σ) satisfies the following property,
Pσ , for every σ : whenever X and (An) satisfy

(Qσ) ∀F ⊃ σ µ

 ⋂
m≤M(F)

⋃
n∈[m,F(m)]

An

 < λ′

and

(Rσ) ∀m < length(σ) µ

 ⋃
n∈[m,N(σ)]

An \
⋃

n∈[m,σm]

An

 ≤ (λ− λ′)/2m+1,

there is an n ≤ N(σ) such that µ(An) < λ. In that case, N(()) is the desired bound,
since Q() is the desired hypothesis, and R() is vacuously true.

In the base case, suppose σ is not in T , and hence secured for M . Define N(σ) = M(σ̂).
To see that N(σ) satisfies Pσ , suppose X and (An) satisfy Qσ and Rσ . Define σ̃ to be
the function

σ̃(n) =
{
σn if n < length(σ)
N(σ) otherwise.
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Since σ is secured and σ̃ ⊃ σ , M(σ̃) = M(σ̂) = N(σ), and Qσ implies

µ

 ⋂
m≤N(σ)

⋃
n∈[m,σ̃(m)]

An

 < λ′.

Similarly, Rσ implies

∀m ≤ N(σ) µ

 ⋃
n∈[m,N(σ)]

An \
⋃

n∈[m,σ̃(m)]

An

 ≤ (λ− λ′)/2m+1,

since for m ≥ length(σ), σ̃(m) = N(σ). We use a calculation similar to that of
Proposition 2.1, with N(σ) now playing the role of infinity.

AN(σ) =
⋂

m≤N(σ)

⋃
n∈[m,N(σ)]

An ⊆ ⋂
m≤N(σ)

⋃
n∈[m,σ̃(m)]

An

 ∪ ⋃
m≤N(σ)

 ⋃
n∈[m,N(σ)]

An \
⋃

n∈[m,σ̃(m)]

An

 .

As before, the measure of this set is at most λ′ +
∑

m≤M(λ − λ′)/2m+1 < λ, and so
N(σ) itself satisfies the conclusion of Pσ .

In the inductive case where σ is not in T , we can assume that we have already defined
N(σˆn) for every n so that Pσˆn is satisfied. Define the sequence ni by setting n0 = 0
and ni+1 = N(σˆni), set m̄ = length(σ), and set N(σ) = maxi≤d2m̄+1/(λ−λ′)e ni .

To show that N(σ) satisfies Pσ , fix X and (An) satisfying Qσ and Rσ . We need to
show that there is an n ≤ N(σ) satisfying µ(An) < λ. By the definition of N(σ), this
is the same as showing that for some i ≤ d2m̄+1/(λ− λ′)e, there is an n ≤ ni with this
property.

Start by trying i = 1. Suppose the conclusion fails, that is, there is no n ≤ n1 satisfying
µ(An) < λ. Since n1 = N(σˆn0) satisfies Pσˆn0 , this implies that either Qσˆn0 or Rσˆn0

fails. But we are assuming Qσ , and that implies Qσˆn0 , so Rσˆn0 fails. This means that
there is an m < length(σˆn0) = length(σ) + 1 such that

µ

 ⋃
n∈[m,N(σˆn0)]

An \
⋃

n∈[m,(σˆn0)m]

An

 > (λ− λ′)/2m+1.

But our assumption of Rσ implies that this does not hold for m < length(σ), since
N(σˆn0) = n1 ≤ N(σ). So the only possibility is that it holds for m = m̄ = length(σ);
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in other words, we have

µ

 ⋃
n∈[m̄,n1]

An \
⋃

n∈[m̄,n0]

An

 > (λ− λ′)/2m̄+1.

Now repeat this argument for i = 2, 3, . . . , d2m̄+1/(λ − λ′)e. If the conclusion fails
each time, then for each i we have

µ

 ⋃
n∈[m̄,ni]

An \
⋃

n∈[m̄,ni−1]

An

 > (λ− λ′)/2m̄+1.

This implies µ(
⋃

n∈[m̄,N(σ)] An) > 1, a contradiction.

The argument just employed is reminiscent of “energy incrementation” arguments used
by Green and Tao [9, 25, 26], wherein the success of an algorithm is guaranteed by the
fact that a bounded nondecreasing sequence can increase by more than a fixed ε > 0
only finitely many times. What is novel here is that we employ a transfinite iteration
of that strategy.

Notice that the value of M′ in the theorem depends on the values of λ, λ′ , and the
functional M . It is therefore somewhat difficult to make sense of the question as to
whether the bound computed in the proof is, in some sense, asymptotically sharp.
Given M , λ, λ′ , one can effectively determine whether or not a putative value of M′

works; so given any bound, one can also compute the least value of M′ that satisfies the
conclusion. So at issue is not whether we can compute the precise bound, but, rather,
come up with a perspicuous characterization of the rate of growth.

One can easily use recursion along fairly simple trees to define functions that grow
astronomically fast. Nonetheless, there are some things we can say about the com-
plexity of M′ in terms of M . It is well known that Gödel’s system T of primitive
recursive functionals of finite type can be stratified into levels Tn . At the bottom level,
T0 , primitive recursion is restricted in such a way that the only functions from natural
numbers to natural numbers that are definable in the system are primitive recursive.
The functionals of T0 are said to be primitive recursive functionals in the sense of
Kleene, in contrast to the functionals of T , which are are said to be primitive recursive
functionals in the sense of Gödel (see [13, 2, 15]). The results of Howard [12] show
the following:

Theorem 2.4 In the previous theorem, if M is definable in Gödel’s Tn for some
n ≥ 0, then, as a function of λ and λ′ , M′ is definable in Tn+1 .
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(See also [22, Section 10], which relates Howard’s results explicitly to the fragments
Tn .) Theorem 2.4 implies that if M is a primitive recursive functional in the sense
of Kleene, then M′ is in T1 (which is to say, roughly Ackermannian). The results of
Kreuzer [21] provide even more information:

Theorem 2.5 In Theorem 2.2, if M is definable in the calculus G∞Aω (see, for
example, [14, Section 3]), then M′ is primitive recursive.

It would be interesting to know whether these results can be improved. Alternatively,
one can consider Theorem 2.2 for particular functionals M(F). One can show, for
example, that with M(F) = F(0) + n, the smallest value of M′ that works is roughly
n/(λ − λ′). Using the algorithm given in the proof of Theorem 2.2 yields the bound
M′ = n·d2/(λ− λ′)e, but this can be improved to n·d1/(λ− λ′)e by tinkering with the
values (λ− λ′)/2m+1 in the right hand side of condition Rσ . An explicit construction
gives a lower bound of n ·

(⌈
1−λ′
λ−λ′

⌉
− 1
)

.

However, even for simple functionals like M(F) = F(F(0)) + n, the combinatorial
details quickly become knotty. In this particular case our algorithm gives an M′ =
md2/(λ−λ′)e , where m0 = n and mi+1 = n · d2mi+1/(λ − λ′)e. This is an iterated
exponential in n, where the depth of the stack depends on λ− λ′ ; but we do not know
whether such a rate of growth is necessary.

3 Metastable convergence theorems

We can now prove our metastable version of Egorov’s theorem.

Theorem 3.1 For every ε > 0, λ > λ′ > 0, and functional M1(F), there is a
functional M2(F) with the following property: for any probability space X = (X,B, µ)
and sequence (fn) of measurable functions, if M1(F) is a λ′ -uniform bound on the ε-
metastable pointwise convergence of (fn), then M2(F) is a bound on the λ-uniform
ε-metastable convergence of (fn). In other words, if for every F1

µ({x : ∃m ≤ M1(F1) ∀n, n′ ∈ [m,F1(m)] |fn(x)− fn′(x)| < ε}) > 1− λ′,

then for every F2 there is an m ≤ M2(F2) such that

µ({x : ∀n, n′ ∈ [m,F2(m)] |fn(x)− fn′(x)| < ε}) > 1− λ.
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12 J. Avigad, E. T. Dean and J. Rute

Proof Fix ε > 0, λ > λ′ > 0, and M1 . Given F2 , define

M(F) = M1

(
λm. max

n∈[m,F(m)]
F2(n)

)
,

and let M2(F2) be the value M′ given by Theorem 2.2. Let

An =
{

x : ∃k, k′ ∈ [n,F2(n)] |fk(x)− fk′(x)| ≥ ε
}
.

We wish to show µ(An) < λ for some m ≤ M2(F2). By the definition of M2(F2), it is
enough to show that for every function F(m),

µ

 ⋂
m≤M(F)

⋃
n∈[m,F(m)]

An

 < λ′.

For each m ≤ M(F), we have⋃
n∈[m,F(m)]

An =
⋃

n∈[m,F(m)]

⋃
k,k′∈[n,F2(n)]

{x : |fk(x)− fk′(x)| ≥ ε}

⊆
⋃

k,k′∈[m,maxn∈[m,F(m)] F2(n)]

{x : |fk(x)− fk′(x)| ≥ ε}

Taking F1(m) = maxn∈[m,F(m)] F2(n) in the hypothesis of the theorem gives the desired
conclusion.

This straightforwardly yields our quantitative version of the dominated convergence
theorem.

Theorem 3.2 For every ε > 0, λ > λ′ > 0, and M1(F), there is an M2(F) such that,
for any probability space X and sequence (fn) of nonnegative measurable functions
dominated by the constant function 1, if M1(F) is a λ′ -uniform bound on the ε-
metastable pointwise convergence of (fn), then M2(F) is a bound on the (ε + λ)-
metastable convergence of (

∫
fn). In other words, if for every F

µ({x : ∃m ≤ M1(F) ∀n, n′ ∈ [m,F(m)] |fn(x)− fn′(x)| < ε}) > 1− λ′,

then for every F there is an m ≤ M2(F) such that

∀n, n′ ∈ [m,F(m)]
∣∣∣∣∫ fn −

∫
fn′
∣∣∣∣ < ε+ λ.

Proof From the hypotheses, Theorem 3.1 yields an M2(F) that is a bound on the
λ-uniform ε-metastable convergence of (fn). Thus, for all F , there is m ≤ M2(F) such
that

µ
(
{x | ∀n, n′ ∈ [m,F(m)] |fn(x)− fn′(x)| < ε}

)
> 1− λ.
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Call the set just indicated A. From our choice of λ and the definition of A, it follows
that for all n, n′ ∈ [m,F(m)],∣∣∣∣∫ fn −

∫
fn′
∣∣∣∣ ≤ ∫

|fn − fn′ |

=

∫
A
|fn − fn′ |+

∫
X\A
|fn − fn′ |

< ε+ λ.

That is, M2(F) provides a bound on the (ε + λ)-metastable convergence of (
∫

fn) as
desired.

Theorem 3.2 strengthens Tao’s Theorem A.2 [26] in three ways. First, we formulate
convergence in terms of the Cauchy criterion, rather than referring to a fixed limit, as
Tao does. This is more natural in the context of metastability, and our result implies
Tao’s, since one can always consider a sequence f0, f , f1, f , f2, f , . . . in which a fixed
limit f has been interleaved. Second, Tao used the stronger hypothesis that M1(F)
provides a bound that works almost everywhere, rather than outside a set of measure at
most λ′ . Finally, and most importantly, our proof of Theorem 2.2 provides an explicit
description of the bound, M2(F).

Tao also stated his theorem for the convergence of nets indexed by the directed set
N × N, as was needed in his application. But as he himself noted, the extension to
arbitrary countable nets is straightforward. Given any countable net (fi)i∈I , one can
define an increasing cofinal sequence (ai)i∈N of elements of the directed set I . To adapt
Theorem 2.2, for example, suppose we are given a net (Ai)i∈I of measurable subsets of
a probability space X with the property that for every function F ,

µ

 ⋂
m≤M(F)

⋃
i∈[am,aF(m)]

Ai

 < λ′,

where the notation [a, b] denotes {i : a ≤ i ≤ b}. Define the sequence (A′n)n∈N by
A′n =

⋃
i∈[an,an+1] Ai . Then (A′n) satisfies the requirements of Theorem 2.2, and hence

there is an i ≤ aM′ such that µ(Ai) < λ.

Notice that the expression
∫
|fn − fn′ | in the proof of Theorem 3.2 is the L1 norm of

fn − fn′ . In fact, the same argument shows the following:

Theorem 3.3 For every ε > 0, λ > λ′ > 0, and M1(F), there is an M2(F) such that,
for any probability space X and sequence (fn) of nonnegative measurable functions
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14 J. Avigad, E. T. Dean and J. Rute

dominated by the constant function 1, if M1(F) is a λ′ -uniform bound on the ε-
metastable pointwise convergence of (fn), then for every F2 there is an m ≤ M2(F2)
such that for every p ≥ 1,

∀n, n′ ∈ [m,F(m)] ‖fn − fn′‖p
p < εp + λ.

We have considered a metastable version of the dominated convergence theorem where
X is a probability space and the sequence (fn) is uniformly dominated by the constant
function 1. The dominated convergence theorem itself is usually stated more generally
where X is an arbitrary measure space, and the sequence (fn) is dominated by an
arbitrary integrable function g. The general case can be reduced to the one we have
considered, taking into account that given an integrable function g and any δ1, δ2

greater than 0, there is a set A with finite measure such that
∫

X\A g < δ1 , and a K
sufficiently large so that

∫
A(g − min(g,K)) < δ2 . The bound M2 in the conclusion,

however, now depends on bounds on K and the size of A, for certain δ1 and δ2

depending on ε.

4 A new mode of convergence

Recall that a sequence (fn) of measurable functions converges pointwise a.e. if for
almost every x ,

(AE) ∀ε > 0 ∃m ∀n, n′ ≥ m |fn(x)− fn′(x)| < ε,

and we noted in Section 1 it converges almost uniformly if

(AU) ∀λ > 0, ε > 0 ∃m µ({x : ∃n, n′ ≥ m |fn(x)− fn′(x)| ≥ ε}) < λ.

Each of these has an equivalent expression in terms of metastable convergence. Our
formulation of Egorov’s theorem provides yet another mode of convergence, which we
will call almost uniform metastable pointwise convergence:

(AUM) ∀λ > 0, ε > 0,F ∃M
µ({x : ∀m ≤ M ∃n, n′ ∈ [m,F(m)] |fn(x)− fn′(x)| ≥ ε}) < λ.

In other words, M , as a function of F , provides a bound on the ε-metastable conver-
gence of the sequences (fn(x)) that is uniform in x , and valid outside a set of measure
at most λ.

Recall that if X is a probability space, or if the sequence (fn) is dominated by an Lp

function, then a.e. convergence and almost uniform convergence coincide. More gen-
erally, we have the following relationships between these three modes of convergence:
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A metastable dominated convergence theorem 15

Proposition 4.1 Let (fn) be a sequence of measurable functions on a measure space
X = (X,B, µ).

(1) AU→ AUM→ AE. (Hence, if X is a probability space or the sequence (fn) is
dominated, the three notions coincide.)

(2) If µ({x : |fn(x) − fn′(x)| ≥ ε}) < ∞ for all ε > 0, n, and n′ , then AE implies
AUM. (In particular, the conclusion holds if for some p ≥ 1, fn ∈ Lp for every
n.)

(3) In general, the implications in (1) do not reverse.

Proof For (1), note that AU is equivalent to its metastable version, AU∗ , which
clearly implies AUM. Similarly, AUM implies, in particular, that for almost every x
the sequence (fn(x)) is metastably convergent, and hence convergent.

For (2), prove the contrapositive. Suppose AUM fails. Then there are ε, λ,F such that
for all M ,

µ

 ⋂
m≤M

⋃
n,n′∈[m,F(m)]

{x : |fn(x)− fn′(x)| ≥ ε}

 ≥ λ.
By the assumption that each {x : |fn(x)− fn′(x)| ≥ ε} has finite measure, we can take
the limit as M →∞ to get

µ

⋂
m

⋃
n∈[m,F(m)]

{x : |fn(x)− fn′(x)| ≥ ε}

 ≥ λ.
Further, removing F gives,

µ

⋂
m

⋃
n≥m

{x : |fn(x)− fn′(x)| ≥ ε}

 ≥ λ.
Hence, (fn) is not a.e. Cauchy.

For (3), fn = χ[n,n+1] converges AUM by part (2), but it is easily shown that fn does
not converge AU. Finally, gn = (−1)nχ[n,∞) converges only AE.

There is also a non-Cauchy version of AUM, which refers to a limit function f :

(AUM′) ∃f ∀λ > 0, ε > 0,F ∃M
µ({x : ∀m ≤ M ∃n ∈ [m,F(m)] |fn(x)− f (x)| ≥ ε}) < λ.
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16 J. Avigad, E. T. Dean and J. Rute

It is easy to see that AUM′ implies AUM, but the converse need not hold; for example,
hn = χ[n,∞) converges AUM, but not AUM′ . Moreover, the analogue of Proposition 4.1
holds when AUM is replaced by AUM′ . Thus we have the implications

AU→ AUM′ → AUM→ AE,

none of which can be reversed in general.

5 Final comments

As noted in Section 2, it would be interesting to know the extent to which the bounds
we obtain are sharp. For example, can one show that there are functionals M that
are primitive recursive in the sense of Kleene for which the M′ in Theorem 2.2 is not
primitive recursive?

When Tao [26] presented his quantitative version of the dominated convergence theo-
rem, he observed that the bound M′ can be computed in principle.

In practice, though, it seems remarkably hard to do; the proof of the
Lebesgue dominated convergence theorem, if inspected carefully, relies
implicitly on the infinite pigeonhole principle, which is notoriously hard
to finitize.

He went on to note that since the Lebesgue dominated convergence theorem is equiv-
alent, in the sense of reverse mathematics, to the arithmetic comprehension axiom
(ACA) (see Yu [28]), the dependence of M′ on the parameters is likely to be “fantasti-
cally poor.” The dependence we have obtained is, indeed, rather poor, but it is at least
explicit and comprehensible.

In fact, the axiomatic strength of the dominated convergence theorem is sensitive to the
way in which it is formulated. Elsewhere [1] we have shown that the formulation of
the dominated convergence theorem that corresponds to Tao’s quantitative version is
strictly weaker than (ACA). It is possible, however, that the quantitative version, which
quantifies over continuous functionals, is axiomatically stronger than the original. We
suspect that each of Theorems 2.2, 3.1, and 3.2 is equivalent to (ACA). Hirst [10]
has shown that the kind of transfinite induction used in the proof of Theorem 2.2 is
equivalent to (ACA), so at issue is whether the full strength of this principle is needed.
The situation is reminiscent of Gaspar and Kohlenbach [7], which provides a sense
in which a quantitative version of the infinitary pigeonhole principle is axiomatically
stronger than the non-quantitative version.
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A metastable dominated convergence theorem 17

The results here can be viewed as instances of “proof mining,” which aims to extract
quantitative and computationally meaningful information from nonconstructive results;
see [14] and [3, 15, 16, 17]. Specifically, the instance of arithmetic comprehension used
in the implication from (3) to (1) of Proposition 2.1 can be cast as a choice principle,
and Spector [24] has shown how that can be eliminated in favor of bar recursion; see
also [14, Section 11.3]. Paulo Oliva has, moreover, shown [23] that for a fixed space
X and sequence of sets (An), one can straightforwardly compute a witness to the
implication using a particular form of bar recursion (the “explicitly controlled product
of selection functions” of [5]; see also Definition 18 of [6]). One can then obtain a
bound that is uniform in X and (An) using hereditary majorizability in the sense of
either Howard [11] or Bezem [4].

References

[1] J Avigad, E Dean, J Rute, Algorithmic randomness, reverse mathematics, and the
dominated convergence theorem, submitted.
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