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Constructive reverse investigations into differential equations
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Abstract: We study Picard’s Theorem and Peano’s Theorem from a constructive
reverse perspective. This means that we have to change our focus from global
properties to local properties. We also extend the theory of pointwise continuously
differentiable functions to include Rolle’s Theorem, the Mean Value Theorem, and
the full Fundamental Theorem of Calculus.
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1 Introduction

Under the program of constructive reverse mathematics, many theorems have been
proven equivalent over Bishop’s constructive mathematics (BISH) to the Uniform
Continuity Theorem [12, 14]:

UCT Every pointwise continuous mapping of a compact1 metric space
into a metric space is uniformly continuous.

By building UCT into his definition of continuity, Bishop elegantly circumvented the
decision of whether to accept it as a principle or not. In his own words he deemed “the
concept of a [pointwise] continuous function [. . .] not relevant” [9, p. 3]. In the same
fashion, Bishop focused on functions that are differentiable in a uniform way, and was
not interested in pointwise differentiability. We believe that the contrast of pointwise
versus uniform properties for continuity and differentiability is interesting.

In the tradition of Bishop we make free use of the axiom of countable and dependent
choice. We will, however, explicitly mention this in these occasions

1Following common practice in constructive mathematics, we take totally boundedness
together with completeness as our definition of compactness.
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2 H Diener and I Loeb

This paper has three goals. The first being to contribute to the program of constructive
reverse mathematics. The second, related goal, is to highlight and understand the
difference between local and uniform definitions of continuity and differentiability.
The third goal is to, within BISH, prove theorems using pointwise definitions of
differentiability; thus continuing work begun in [18]. Although we are thus working in
Bishop-style informal mathematics, we believe that this research could be carried out in
a suitable formal framework like IZF [15, 4], CZF [3], or HAω [25, 26].

Section 2 studies two varieties of UCT. They both turn out to be equivalent and will
play a role in the rest of the paper. In Section 3 we investigate pointwise differentiability.
A constructive proof of Rolle’s Theorem without additional assumptions, commonly
made in the constructive literature, is presented.

In Section 4 and 5 we prove that versions of Picard’s Theorem and Peano’s Theorem
are equivalent to UCT. As far as we know, these are the first results on differential
equations in constructive reverse mathematics. For some other results on constructive
existence of solutions of differential equations see e.g. [16], which deals amongst other
things with Euler’s method.

Being equivalent to UCT, there is no hope to prove these theorems in the framework of
Russian Recursive Mathematics. In the last section we will strengthen this result and
produce strong counterexamples. That means we will actually give an example of a
recursive function for which these theorems fail to hold.

2 Uniform Continuity Theorems

Since there are many different notions of continuity commonly in use, we will specify
the definitions we have in mind when talking about continuity throughout this paper.

Definition 1 Consider two metric spaces (X, dX) and (Y, dY ). A function f : X → Y
is called continuous, if for all x ∈ X and for all ε > 0 there exists δ > 0 such that for
all x′ ∈ X

dX
(
x′, x

)
< δ =⇒ dY

(
f (x), f (x′)

)
< ε.

Furthermore, it is called uniformly continuous, if δ does not depend on x .

First, we prove an extension result for pointwise continuous functions that is needed
later, but is also of interest by itself.

Journal of Logic & Analysis 3:8 (2011)



Constructive reverse investigations into differential equations 3

Lemma 2 Consider an arbitrary metric space (X, dX) and a complete metric space
(Y, dy). Furthermore assume that D ⊂ X is a dense subset and f : D→ Y a function
such that for every x ∈ X and ε > 0 there exists δ > 0 with

(1) ∀y, z ∈ D ((dX(x, y) < δ ∧ dX(x, z) < δ) =⇒ dY (f (y), f (z)) < ε) .

Then there exists a unique continuous function f̃ : X → Y such that f̃ (x) = f (x) for all
x ∈ D.

Proof Since D is dense, for every x ∈ X we can find a sequence (xn)n>1 in D that
converges to x . Property (1) now ensures that (f (xn))n>1 is Cauchy and hence converges.
Furthermore, the limit is not dependent on the choice of the sequence (xn)n>1 , and thus
it makes sense to denote this limit by f̃ (x).2 Using unique choice we get a function f̃ ,
which is continuous: for let x ∈ X and ε > 0 be arbitrary. Choose δ > 0 such that (1)
is satisfied. Now consider y ∈ X such that dX(x, y) < δ . By the construction of f̃ we
can find x′ ∈ D and y′ ∈ D with d(x′, x) < δ and d(y′, y) < δ . By (1) we therefore
have dY (f̃ (x), f (x′)) < ε, dY (f̃ (y), f (y′)) < ε and d(f (x′), f (y′)) < ε. It follows that

dY (f̃ (x), f̃ (y)) 6 dY (f̃ (x), f (x′)) + dY (f (x′), f (y′)) + dY (f (y′), f̃ (y)) 6 3ε,

whence f̃ is continuous. Since for any x ∈ D the constant sequence (x)n>1 converges
to x, also f̃ (x) = f (x). To see that f̃ is unique, consider another continuous function
g : X → Y such that f (x) = g(x) for all x ∈ D. Now assume that d(f̃ (x0), g(x0)) > 0
for some x0 ∈ X . Then, because we are dealing with continuous functions, there exists
a neighbourhood U of x0 such that d(f̃ (x), g(x)) > 0 for all x ∈ U . Since D is dense,
the intersection D ∩ U is inhabited and we get a contradiction; so f̃ = g.

Working within BISH, we are interested in the following three principles, where a, b
are real numbers with a < b:

UCT [a,b] Every continuous function f : [a, b] → R is uniformly
continuous.

2Here countable choice is used in choosing a sequence (xn)n>1 . This is, however, for
convenience only. Countable choice is avoidable here, if one used Dedekind reals (more details
can be found in [17]). One could then define

f̃ (x) =
⋂
n∈N

{
y ∈ Y | ∃z ∈ X

(
|x− z| < 1

n
∧ y < f (z)

)}
.

Property (1) ensures that this set is order located, which is an additional requirement on a
Dedekind real in the constructive treatment.
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4 H Diener and I Loeb

BUCT [a,b] Every bounded, continuous function f : [a, b] → R is
uniformly continuous.

LUCT [a,b] Every continuous function f : [a, b]→ R is locally uniformly
continuous.

Where locally uniformly continuous is defined as follows:

Definition 3 A continuous function f : [a, b]→ R is locally uniformly continuous,
if for every x ∈ [a, b] there exists h > 0 such that f is uniformly continuous on
[x− h, x + h] ∩ [a, b].

From [12] we know that UCT[0,1] is equivalent to UCT. Since every continuous
function is locally bounded, the following implications hold

UCT =⇒ BUCT [a,b] =⇒ LUCT [a,b] .

We prove the reverse implications for functions defined on the unit interval. The general
cases easily follow by scaling. In order to prove the next implication we first introduce
the following principle:

AS [0,1] If (xn)n>1 is a sequence of real numbers that is bounded away
from every point in [0, 1] then (xn)n>1 is eventually bounded away from
the entire interval.

In [6], this principle has been shown to be equivalent to a version of Brouwer’s Fan
theorem, which itself is weaker than UCT [5], but stronger than the Fan theorem for
decidable bars.3 This means, in particular, that together with Corollary 3.4 in [13,
Chapter 2] AS[0,1] implies:

POS Every positively valued, uniformly continuous function f : [0, 1]→
R has a positive infimum.

We will show that BUCT [0,1] is enough to show that AS[0,1] holds.

Lemma 4 If (xn)n>1 is a sequence in R that is bounded away from every point in
[0, 1], then there exists a subsequence (xkn)n>1 such that for all n ∈ N one can decide
whether

xkn ∈ [0, 1] ∨ xkn /∈ [0, 1],

3It is an open question in constructive reverse mathematics, whether any of these implications
are actually strict.

Journal of Logic & Analysis 3:8 (2011)
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and there exist positive numbers (εn)n>1 such that for all n,m ∈ N with m > n

(2)
(
xkn ∈ [0, 1] ∧ xkm ∈ [0, 1]

)
=⇒ |xkn − xkm | > εn.

Furthermore (xkn)n>1 is bounded away from [0, 1] if and only if (xn)n>1 is.

Proof Let (xn)n>1 be a sequence in R that is bounded away from every point in [0, 1].
Since (xn)n>1 is bounded away from 0 and 1, there exists N such that for all i > N we
can decide

xi ∈ [0, 1] ∨ xi /∈ [0, 1].

Now, with the help of dependent choice, define a subsequence the following way: start
by setting k1 = N . Assume we have constructed kn for some n. If xkn /∈ [0, 1] let
kn+1 = kn + 1. If xkn ∈ [0, 1] there exists εn > 0 and kn+1 such that for all i > kn+1

|xkn − xi| > εn.

Clearly, the so defined subsequence satisfies (2). Now assume that there exists M such
that

(3) xki /∈ [0, 1] for all i > M.

Then there cannot be a j > kM with xj ∈ [0, 1]: for assume such a j exists. Then find

j′ = min{i : kM < i 6 j ∧ xi ∈ [0, 1]}.

The construction therefore ensures that

xkM+(j′−kM )
= xj′ ∈ [0, 1];

a contradiction to (3), and thus xj /∈ [0, 1] for all j > kM . Since (xn)n>1 is also bounded
away from 0 and 1, the sequence is bounded away from the entire interval.

Lemma 5 BUCT [0,1] implies AS [0,1] (and therefore POS).

Proof Given a sequence (xn)n>1 that is bounded away from every point in [0, 1],
construct a subsequence and (εn)n>1 as in Lemma 4. Furthermore, we may, perforce,
assume that εn is decreasing. Since (xn)n>1 is bounded away from every point in [0, 1]
we may also assume that if xkn ∈ [0, 1] then 0 < xkn − εn < xkn + εn < 1. This ensures
that for any given x ∈ [0, 1] at most one term of the sum∑

n:xkn∈[0,1]

max
{

0,
∣∣∣∣1− 2(xkn − x)

εn

∣∣∣∣}
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6 H Diener and I Loeb

is nonzero. The so defined function f : [0, 1]→ R is easily seen to be well-defined and
continuous, and, furthermore, satisfies 0 6 f 6 1. We can therefore apply BUCT [0,1] to
ensure that f is uniformly continuous. So there exists N ∈ N such that for x, y ∈ [0, 1]

(4) |x− y| < 2−N =⇒ |f (x)− f (y)| < 1
2
.

Now assume that there exists n > N such that xn ∈ [0, 1]. Then f (xn) = 1 and
f (xn + εn/2) = 0 a contradiction to (4). Hence xn /∈ [0, 1] for all n > N , and since
(xn)n>1 is also eventually bounded away from 0 and 1, it is eventually bounded away
from the entire interval [0, 1].

Proposition 6 BUCT [0,1] =⇒ UCT [a,b]

Proof Consider a continuous function f : [a, b]→ R. With the work in [12], it suffices
to show that f is bounded. Since f is continuous, so is the function g : [a, b] → R
defined by

g(x) =
1

max{1, |f (x)|}
.

By virtue of the construction of g, the following inequalities hold:

∀x ∈ [a, b](0 < g(x) 6 1).

As we assume BUCT [0,1] , g is uniformly continuous. Also, using Lemma 5, we can
find an ε > 0 such that

∀x ∈ [0, 1](ε < g(x) 6 1).

So |f | is bounded by max{ε−1, 1}.

The more interesting implication is

Proposition 7 LUCT [0,1] =⇒ BUCT [0,1]

Proof Let f : [0, 1] → R bounded and continuous. Furthermore, without loss of
generality, we assume that f (0) = f (1) = 0 and that 0 6 f 6 1. Let In denote the open
interval (1− 1

2n , 1− 1
2n+1 ). For any x ∈ In , we define g(x) to be

1
2n+1 f (2n+1x− 2(2n − 1)).

Lemma 2 yields the existence of a continuous map g̃ : [0, 1]→ R, such that g̃(x) = g(x)
for all x ∈ In and, furthermore, g̃ 6 1− x . Figure 1 is an illustration of the idea behind
the construction of the function g̃. Now because we assume LUCT [0,1] , there exists
N such that g̃ is uniformly continuous on [1 − 2N−1, 1]. Since f = h ◦ g̃ ◦ h′ for
some linear, and therefore uniformly continuous, functions h, h′ , we conclude that f is
uniformly continuous.
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Figure 1: Construction of the function g̃ .

We have now proved that LUCT [a,b] is equivalent to UCT. We can easily generalise
this result to arbitrary (compact) metric spaces and LUCT as follows.

Let (X, ρ) be a compact metric space and Y be a metric space.

Definition 8 A continuous function f : X → Y is locally uniformly continuous,
if for every x ∈ X there exists h > 0 such that f is uniformly continuous on
{y ∈ X|ρ(x, y) 6 h} ∩ X .

LUCT is the following principle:

LUCT Every continuous function of a compact metric space into a
metric space is locally uniformly continuous.

The following implications can now be seen to hold:

UCT =⇒ LUCT =⇒ LUCT [0,1] =⇒ UCT.

So UCT and LUCT are equivalent. We will use this in the Sections 4 and 5.

3 Differentiation

Just like we do not restrict our view to functions that are uniformly continuous (on
compacts), we will not presuppose that every differentiable function on a compact
interval is uniformly differentiable either.

Definition 9 Let f be a continuous function on [0, 1]. We say that f is differentiable
if there exists a continuous function g on [0, 1] such that for each x in [0, 1] and ε > 0,
there exists δ > 0 such that if y in [0, 1] and |x− y| < δ , then

|f (y)− f (x)− g(x)(y− x)| 6 ε|y− x|.

The function g is called the derivative of f .

Journal of Logic & Analysis 3:8 (2011)



8 H Diener and I Loeb

If f is a differentiable function, we will often write its derivative as f ′ . Note that every
function has at most one derivative.

To contrast this version of differentiability with the two uniform ones that we will see
later, we will also call it continuous differentiability to emphasise that the derivative is
(pointwise) continuous, or pointwise differentiability, to stress that δ depends on x .

Rolle’s theorem is vital for the development of Analysis. The classical version states
that if f : [a, b] → R is continuously differentiable and f (a) = f (b) = 0, then there
exists a point ξ ∈ [a, b] such that f ′(ξ) = 0. It is not surprising that one cannot hope to
find a constructive proof of this theorem. In fact, a Brouwerian counterexample can be
found in [24]. Nevertheless, there is hope to prove the following approximate version.

Theorem 10 If f : [a, b] → R is continuously differentiable and f (a) = f (b) = 0,
then for every ε > 0 there exists x ∈ [a, b] with |f ′(x)| < ε.

Unfortunately the proof in [9] assumes that the function is differentiable in a uniform
way. Recursive proofs, such as the one found in [2], make use of an unbounded search
to find a point that satisfies the conclusion. Using dependent choice we can give a proof
without any of these additional assumptions. To our knowledge this is the first such
proof. First, though, we need to establish some lemmas.

Lemma 11 If f : [a, b]→ R is continuously differentiable such that f ′(x) > ε for all
x ∈ [a, b] then it is impossible that f (a) > 0 and f (b) < 0.

Proof Aberth’s proof applies [2, Theorem 8.1].

Lemma 12 If f : [a, b]→ R is continuously differentiable and x ∈ [a, b] such that
|f ′(x)| > 0, then for each δ > 0 there exists y ∈ [a, b] such that |x − y| < δ and
|f (x)− f (y)| > 0.

Proof We first look at the case that f ′(x) > 0. Let δ > 0. By the continuity of f ′ , we
can find δ′ > 0 such that if |z− x| 6 δ′ , then f ′(z) > 0. Take

y := x + min{δ, δ′}.

We now apply Corollary 3 of [18] on the interval [x, y]. This gives us that f (y) > f (x).
The proof of the case that f ′(x) < 0 is analogous and thus omitted.

Corollary 13 If f : [a, b] → R is continuously differentiable and x ∈ [a, b] such
that f ′(x) > 0, then for each δ > 0 there exists y ∈ [a, b] such that |x − y| < δ and
f (y) > f (x).
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Constructive reverse investigations into differential equations 9

Proof Follows from Lemmas 11 and 12.

We now are in a position to prove Theorem 10.

Proof Let ε > 0. We may assume that |f ′(a)| > ε/2 and |f ′(b)| > ε/2, since
otherwise we are done. In the cases that f ′(a) > ε/2 and f ′(b) < ε/2 or f ′(a) < ε/2
and f ′(b) > ε/2 we can apply an approximate version of the intermediate value theorem
[13] to the continuous function f ′ to find an x ∈ [a, b] such that |f ′(x)| < ε. So let us,
without loosing generality, assume that both f ′(a) > ε/2 and f ′(b) > ε/2.

The idea of the rest of the proof is to use a suitably modified interval halving procedure
to obtain two sequences (an)n>1 and (bn)n>1 and at the same time a binary sequence
(λn)n>1 , which keeps track whether a point with the desired property is found. If this
happens the sequence (λn)n>1 becomes 1 from then on and the sequences (an)n>1 and
(bn)n>1 stabilise on this point. Of course we know that it is impossible that this never
happens. Working without the assumption of Markov’s principle though we have to, at
least implicitly, produce a bound for this event. This is achieved, by choosing (an)n>1

and (bn)n>1 to converge to a point y, which either has the desired property anyway or
for which f ′(y) and continuity around this point contains enough information to find
this bound.

Using dependent choice, we define a binary sequence (λn)n>1 and two sequences of
real numbers (an)n>1 and (bn)n>1 such that for every n ∈ N

(1) an 6 an+1 6 bn+1 6 bn ;

(2) |bn − an| 6
(2

3

)n |b− a|;
(3) λn = 0 implies that f (an) > 0 > f (bn), f ′(an) > ε/2 , f ′(bn) > ε/2 and an < bn ;

(4) λn = 1 implies that there exists x ∈ [a, b] such that|f ′(x)| < ε.

Notice that, since f ′(a) > 0, it follows from Corollary 13 that there exists a0 ∈ [a, b]
such that f (a0) > 0. Similarly there exists b0 ∈ [a, b] with f (b0) < 0. Again we might
assume that f ′(a0) > ε/2 and f ′(b0) > ε/2, since otherwise we are done. Also set
λ0 = 0.

Now assume we have constructed λn, an and bn for some n > 0. If λn = 1 simply set
λn+1 = 1, an+1 = bn+1 = an . If λn = 0 consider ξ = (an + bn)/2. Either |f ′(ξ)| < ε,
f ′(ξ) < ε/2 or f ′(ξ) > ε/2. In the second case we can use an approximate version of the
intermediate value theorem to find x ∈ [a, b] with |f ′(x)| < ε. So in the first two cases
set λn = 1, an+1 = bn+1 = an . In the third case we can use Lemma 12 to find a point ξ′
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10 H Diener and I Loeb

such that |ξ − ξ′| < 1
6 |bn − an| and f (ξ) 6= f (ξ′). Now either |f (ξ)| > 0 or |f (ξ′)| > 0.

We will only deal with the first possibility, since the second possibility can be dealt with
in an almost identical fashion. Once more we may assume that f ′(ξ) > ε/2, because
the other possibilities are obvious. If f (ξ) > 0 set λn+1 = 0, an+1 = ξ and bn+1 = bn .
If f (ξ) < 0 set λn+1 = 0, an+1 = an and bn+1 = ξ . Properties (1) and (2) ensure that
the so defined sequences (an)n>1 and (bn)n>1 are Cauchy, and converge to the same
limit y ∈ [a, b]. For the final time, we may assume that f ′(y) > ε/2, since we are done
in the other cases. Since f ′ is continuous we can find δ > 0 such that f ′(z) > ε/3 for
all z ∈ [a, b] with |z− y| < δ . Choose N such that [aN , bN] ⊂ By(δ). Now λN = 0
leads to a contradiction to Lemma 11 and hence λN = 1 and we are done.

Corollary 14 (Mean Value Theorem) If f : [a, b]→ R is continuously differentiable
and a < b, then for every ε > 0 there exists x ∈ [a, b] with∣∣∣∣f ′(x)− f (b)− f (a)

b− a

∣∣∣∣ < ε.

Proof Apply Rolle’s theorem 10 to

g(x) = f (x)− f (a)− f (b)− f (a)
b− a

(x− a).

The next notion that we introduce, uniform differentiability, coincides with Bishop’s
notion of differentiability in [9], if we would suppose that the functions involved are
uniformly continuous.

Definition 15 Let f be a continuous function on [0, 1]. We say that f is uniformly
differentiable if there exists a continuous function g on [0, 1] such that for each ε > 0
there exists δ > 0 such that if x, y in [0, 1] and |x− y| < δ , then

|f (y)− f (x)− g(x)(y− x)| 6 ε|y− x|.

However, a definition in the spirit of Bishop is not the only thinkable restriction of
Definition 9 to some kind of uniformity.

Definition 16 Let f be a continuous function on [0, 1]. We say that f is uniformly
continuously differentiable if the function f is differentiable and its derivative is
uniformly continuous.
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Constructive reverse investigations into differential equations 11

It is not difficult to see that uniformly continuous differentiability follows from uniform
differentiability. See also Proposition 2.2 in Chapter 6 of [25]. In fact both notions are
equivalent.

Theorem 17 Every real-valued function on [0, 1] is uniformly differentiable if and
only if it is uniformly continuously differentiable.

Proof Let f : [0, 1]→ R be a uniformly differentiable function. Let ε > 0. Determine
δ > 0 such that for all x, y ∈ [0, 1], if |x− y| < δ , then

|f (y)− f (x)− f ′(x)(y− x)| < 1
2
ε|y− x|.

Let x, y ∈ [0, 1] such that |x− y| < δ . Suppose now that |x− y| > 0; we see that:

(f ′(x)− f ′(y))(x− y) = −f ′(x)(y− x)− f ′(y)(x− y)

= (f (y)− f (x)− f ′(x)(y− x))+

(f (x)− f (y)− f ′(y)(x− y))

6 |f (y)− f (x)− f ′(x)(y− x)|+
|f (x)− f (y)− f ′(y)(x− y)|

6 2 · 1
2
· ε|y− x| = ε|y− x|.

Similarly
(f ′(x)− f ′(y))(y− x) 6 ε|y− x|.

Hence |f ′(x)− f ′(y)||y− x| 6 ε|y− x|. So for all n ∈ N+ we have:

|f ′(x)− f ′(y)||y− x|
|y− x|+ n−1 6

ε|y− x|
|y− x|+ n−1 .

By taking the limit (n→∞) we conclude that |f ′(x)− f ′(y)| < ε. This shows that a
uniformly differentiable function is uniformly continuously differentiable.

Conversely assume that f : [0, 1]→ R is uniformly continuously differentiable, and let
ε > 0 be arbitrary. Since f ′ is uniformly continuous there exists δ > 0 such that for all
x, ξ ∈ [0, 1]

|x− ξ| < δ =⇒
∣∣f ′(x)− f ′(ξ)

∣∣ < ε

2
.

Now assume that x, y ∈ [0, 1] are such that |y− x| < δ . Assume that |x− y| > 0. Then
by Corollary 14, there exists ξ such that |x− ξ| < |x− y| < δ and∣∣∣∣f ′(ξ)− f (y)− f (x)

y− x

∣∣∣∣ < ε

2
.

Journal of Logic & Analysis 3:8 (2011)



12 H Diener and I Loeb

Thus ∣∣∣∣f ′(x)− f (y)− f (x)
y− x

∣∣∣∣ < ε.

Multiplying the last equation with |y− x| gives

(5)
∣∣f (y)− f (x)− f ′(x)(y− x)

∣∣ 6 ε|y− x|.

Notice that the function

g(x, y) :=
∣∣f (y)− f (x)− f ′(x)(y− x)

∣∣− ε|y− x|

is continuous and that g(x, y) 6 0 on a dense subset of

{(x, y) ∈ [0, 1]2 : |x− y| 6 δ}.

We can therefore conclude that g(x, y) 6 0 for all x, y with |x− y| 6 δ . Thus Equation
5 holds for all such x, y and we are done.

Analogous to the Uniform Continuity Theorem, we identify the Uniform Differentiation
Theorem as follows:

UDT Every differentiable function on the interval [0, 1] is uniformly
continuously differentiable.

Trivially UCT implies UDT over BISH. We can prove the following partial converse:

Proposition 18 UDT implies AS [0,1] .

Proof Similar to the proof of Lemma 5, we use spike functions—with the difference
that we have to take differentiable spikes. Let sx,ε : [0, 1]→ [0, 1] be a differentiable
spike with the following properties:

(1) sx,ε is uniformly continuously differentiable.

(2) sx,ε(x) = 1,

(3) sx,ε(y) = 0 for any y such that |y− x| > ε/2,

An example for such a family of functions would be defined by

sx,ε(t) =

{
1
2

(
cos
(
2πε−1(t − x)

)
+ 1
)
, if t ∈ [x− ε

2 , x +
ε
2 ];

0, if t /∈ [x− ε
2 , x +

ε
2 ];

For brevity’s sake we will omit the proof that these particular functions are well-defined
and satisfy the properties above (see also Lemma 2). Using the approximate version of
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Constructive reverse investigations into differential equations 13

the mean value theorem (Corollary 14) we can, for every x and ε, find a point y ∈ [0, 1]
with

(6) s′x,ε(y) >
1
ε
.

Now consider a sequence (xn)n>1 that is bounded away from every point in [0, 1]. Again,
let (xkn)n>1 and (εn)n>1 be a sequences as in Lemma 4. Furthermore, we may, perforce,
assume that (εn)n>1 is decreasing and that εn <

1
22n for all n ∈ N. Since (xn)n>1 is

bounded away from every point in [0, 1] we may also assume that if xkn ∈ [0, 1] then
0 < xkn − εn < xkn + εn < 1. Since locally we only sum over at most one term that is
non-zero, the function f : [0, 1]→ [0, 1] defined by

f (x) =
∑

n:xkn∈[0,1]

1
2n sxn,εn(x)

is well-defined, uniformly continuous and continuously differentiable on [0, 1]. Fur-
thermore

f ′ =
∑

n:xkn∈[0,1]

1
2n s′xn,εn

Now assume that f is uniformly continuously differentiable. Then its derivative f ′

would be bounded. So choose a natural number M such that |f ′| < M . Assume there is
n > M such that xkn ∈ [0, 1]. Equation (6) shows that there is a point y ∈ [0, 1] such
that

s′xkn ,εn
(y) >

1
εn
> 22n.

Now

f ′(y) =
1
2n s′xkn ,εn

(y) >
22n

2n > M;

a contradiction. Hence xkn /∈ [0, 1] for every n > M . Since (xkn)n>1 is also bounded
away from 0 and 1 it is eventually bounded away from the entire interval [0, 1].
By the properties of the chosen subsequence (xn)n>1 is bounded away from the unit
interval.

The following implications hold:

UCT =⇒ UDT =⇒ AS [0,1] .

It remains an open question, whether any of the reverse implications hold. Notice that,
to prove the reverse of the first implication, given a continuous function f one cannot
simply apply UDT to a function F such that F′ = f , since it is not clear, how to find
such a function, without the knowledge that f is uniformly continuous.

Notice the following:
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14 H Diener and I Loeb

Proposition 19

(1) If a function is uniformly differentiable, it is uniformly (actually even Lipschitz)
continuous.4

(2) If a function is continuously differentiable, it is locally uniformly (actually even
locally Lipschitz) continuous.

Proof Simple consequence of the mean value theorem (Theorem 14). Consider
f : [a, b]→ R continuously differentiable such that its derivative f is bounded. Hence
we can find M such that |f ′| 6 M . Now take any x, y ∈ [a, b] with x < y. By Corollary
14 there exists ξ ∈ [x, y] such that∣∣∣∣f ′(ξ)− f (y)− f (x)

y− x

∣∣∣∣ < 1.

Then ∣∣∣∣ f (y)− f (x)
y− x

∣∣∣∣ 6 ∣∣f ′(ξ)
∣∣+ ∣∣∣∣f ′(ξ)− f (y)− f (x)

y− x

∣∣∣∣ < M + 1,

and therefore |f (y)− f (x)| 6 (M + 1)|x− y|. By continuity, this holds for any x, y; and
so f is Lipschitz continuous on [a, b].

The same argument applies to a continuously differentiable function on a suitable
sub-interval, since every continuous function is locally bounded.

For integration we take the standard definition ([9]). That means that we have to be
aware to integrate only uniformly continuous functions, because otherwise the integral
is not well-defined.

Because we now have the Mean Value Theorem for continuously differentiable functions,
we can expand the Fundamental Theorem of Calculus as found in [25] (Theorem 2.14)
to get a result for continuously differentiable functions that is more comparable to
Theorem 6.8 in [9].

Theorem 20 (Fundamental Theorem of Calculus) Let f : [0, 1]→ R be a uniformly
continuous function, let a ∈ [0, 1], and write

g(x) :=
∫ x

a
f (t)dt.

Then g is uniformly differentiable and g′ = f . Also, if g0 is any differentiable function
on [0, 1] with g′0 = f , then the difference g− g0 is a constant function.

4This part of the proposition can already be found in [25, Proposition 6.2.2], where it is
stated without proof.
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Constructive reverse investigations into differential equations 15

The statement follows from Theorem 2.6.8 in [9] and Theorem 17. In [9] g0 is taken to be
uniformly differentiable, whereas in our version we assume continuous differentiability.
Note that he proof of Theorem 20 makes an indirect use of the strong version of the
mean value theorem (Corollary 14).

Theorem 2.14 of [25] does not contain any statement about differentiable functions of
which the derivative equals f .

4 Picard’s Theorem

Many variations of Picard’s Theorem, which mainly differ in the level of abstractness,
can be found in the literature. Because we work constructively, there is also an additional
choice to make between classical equivalent formulations: Do we require the involved
continuous functions to be uniformly continuous, or not?

In this section we will look at two choices. In the first, constructive version of
Picard’s Theorem we require the given function—the one that defines the differential
equation—to be uniformly continuous.

Anticipating another version, in which we will not require the given function to be
uniformly continuous, our formulation of the interval on which the solution can be
found is vaguer than usual. Often that interval is characterised in terms of the supremum
or an upper bound of the given function. Because it will not be clear later on that such a
number exists, we are less distinctive about the size of the interval.

Theorem 21 (Constructive Picard’s Theorem) Let a, b, c, d ∈ R; (x0, y0) ∈ X =

(a, b) × (c, d), and r > 0 such that if |x − x0| 6 r and |y − y0| 6 r , then (x, y) ∈
[a, b]× [c, d]. Let f : X → R be uniformly continuous, such that there exists L > 0
with

|f (x, y0)− f (x, y1)| 6 L|y0 − y1|

for all applicable x, y1, y2 . Then there exist a real number h > 0 and a unique uniformly
differentiable mapping φ on the interval I = [x0 − h, x0 + h], such that

φ(x0) = y0

and
φ′(x) = f (x, φ(x)) for all x ∈ I

Proof The standard proof applies (see e.g. [11]). We conclude that the solution
is uniformly continuously differentiable by the Fundamental Theorem of Calculus
(Theorem 20).
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16 H Diener and I Loeb

Note that the version in [21], called the Cauchy/Lipschitz Theorem, is a weaker
formulation than we have here. There the solution to the equation is not proven to have
a uniformly continuous derivative.

The second version of Picard’s Theorem requires only pointwise continuity for the
defining function, and is hence stronger.

Strong Picard’s Theorem Let a, b, c, d ∈ R; let (x0, y0) ∈ X =

(a, b) × (c, d), and let r > 0 such that if |x − x0| 6 r and |y − y0| 6 r ,
then (x, y) ∈ [a, b]× [c, d]. Let f : X → R be continuous, such that there
exists L > 0 with

|f (x, y0)− f (x, y1)| 6 L|y0 − y1|

for all applicable x, y1, y2 . Then there exist a real number h > 0 and a
unique uniformly continuously differentiable mapping φ on the interval
I = [x0 − h, x0 + h], such that

φ(x0) = y0

and
φ′(x) = f (x, φ(x))for all x ∈ I.

This formulation bears some similarity to uniform continuity theorems: We start out
with an pointwise continuous function and end up with a uniformly continuous one,
although there it concerns exactly the same function. An additional similarity in the case
of LUCT is that Picard’s Theorem concludes uniform continuity only on subintervals.

Indeed it can be shown through LUCT that this, stronger, version of Picard’s Theorem
is equivalent to UCT.

Theorem 22 LUCT ⇔ Strong Picard’s Theorem

Proof To prove the direction ⇒, assume LUCT. Determine h > 0 such that f is
uniformly continuous on [x0 + h, x0 − h]. Now we can apply Constructive Picard’s
Theorem (Theorem 21). This gives us a uniformly continuously differential function φ on
[x0−h1, x0+h1] such that φ(x0) = y0 and φ′(x) = f (x, φ(x)) for all x ∈ [x0−h1, x0+h1].

We now prove the direction ⇐. Let f : [a, b] → R be a continuous function and let
x0 ∈ [a, b]. Define g : [a− 1, b + 1]× [0, 1] by

g(x, y) =


f (a) if x 6 a
f (x) if a 6 x 6 b
f (b) if b 6 x
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Constructive reverse investigations into differential equations 17

Then g is continuous by Lemma 2, and Lipschitz in the second variable. By Strong
Picard’s Theorem, the differential equation:

φ(x0) = 0

φ′(x) = g(x, φ(x))

has a uniformly continuously differential solution φ on an interval [x0 − h, x0 + h].
Because φ′(x) = f (x) on [a, b], we now see that f is locally uniformly continuous.

Remark 23 In the proof of LUCT out of Strong Picard’s Theorem we have not
used the fact that the solution is unique.

5 Peano’s Theorem

Although Picard’s Theorem has thus a constructive core, the same cannot be said for
Peano’s Theorem.

Peano’s Theorem Let a, b, c, d ∈ R; let (x0, y0) ∈ X = (a, b)× (c, d),
and let r > 0 such that if |x − x0| 6 r and |y − y0| 6 r , then (x, y) ∈
[a, b]× [c, d]. Let f : X → R be uniformly continuous; let

M > sup{|f (x, y)| : |x− x0| < r, |y− y0| < r},

and let h := min{r, rM−1}. Then there exists a continuously differentiable
mapping φ on the interval I = [x0 − h, x0 + h], such that

φ(x0) = y0

and
φ′(x) = f (x, φ(x)) for all x ∈ I.

This theorem is inherently nonconstructive: it is equivalent to the nonconstructive
Lesser Limited Principle of Omniscience [4, 10]:

LLPO For each binary sequence α with at most one term equal to 1,
either α(2n) = 0 for all n or α(2n + 1) = 0 for all n.

It is instructive to look at the classical standard proof of Peano’s Theorem and find out
what goes “wrong” (see for example [11]). Given a (uniformly) continuous function f ,
a sequence of polynomial functions (pn)n>1 is constructed that converges uniformly to
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18 H Diener and I Loeb

it. Then, invoking Picard’s Theorem and the Fundamental Theorem of Calculus, we
find solutions (φn)n>1 to the integral equation

y(x) = y0 +

∫ x

x0

pn(t, y(t))dt.

Some calculations now show that the sequence (φn)n>1 is bounded and equicontinuous.
Applying Ascoli’s Lemma, we now pass to a subsequence that converges uniformly to
a limit φ. We conclude that φ is the solution to our original differential equation by
some further calculations.

The main problem lies, of course, in the application of Ascoli’s Lemma5, which seems
nonconstructive beyond repair, at least as far as finding a convergent subsequence is
concerned ([23] and [14]).

To obtain a constructive version of Peano’s Theorem, we therefore assume such a
uniformly convergent subsequence. (In the classical proof the fact that this sequence
originates from polynomial functions does not play a role after the application of
Ascoli’s Lemma. Note also that the equicontinuity of the sequence is only used to be
able to apply Ascoli’s Lemma and conclude uniform convergence, so we can dispense
with that in the constructive version.)

Theorem 24 (Constructive Peano’s Theorem) Let a, b, c, d ∈ R; let (x0, y0) ∈
(a, b)× (c, d) and define

X = [a, b]× [c, d].

Let f : X → R be uniformly continuous and let h > 0. There exists a uniformly
convergent sequence of uniformly continuously differentiable functions (φn)n>1 :
[x0 − h, x0 + h]→ R with φn(x0) = y0 and such that for all ε > 0 there exists N ∈ N
with

sup
t∈[x0−h,x0+h]

|f (t, φn(t))− φ′n(t)| < ε

for all n > N

if and only if

there exists a uniformly continuously differentiable function φ on the interval I =

[x0 − h, x0 + h], such that
φ(x0) = y0

5In classical Reverse mathematics, Peano’s Theorem is equivalent to Weak König’s Lemma
over RCA0 . The proof in [21] avoids Ascoli’s Lemma, which is classically equivalent to
arithmetical comprehension, but is still non-constructive. We will not go into details.
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and
φ′(x) = f (x, φ(x)) for all x ∈ I.

Proof Assume that there exists h > 0 and a sequence (φn)>1 with the required
properties. Note that φ is a uniformly continuous function (by [14], Lemma 12). Let
n ∈ N. By uniform continuity of f , take δ > 0 such that for each (x1, y1), (x2, y2) ∈ X ,
if ||(x1, y1), (x2, y2)|| < δ , then we can conclude that

|f (x1, y1)− f (x2, y2)| < 2−n.

Choose N such that for all m > N

||φ− φm|| < min{δ, 2−n},

where || || denotes the supremum norm, and

sup
t∈[x0−h,x0+h]

|f (t, φm(t))− φ′m(t)| < 2−n.

We now have∣∣∣∣∫ x

x0

f (t, φ(t))dt −
∫ x

x0

f (t, φN(t))dt
∣∣∣∣ 6 2−n|x− x0| < 2−n|I|

and therefore∣∣∣∣φ(x)− y0 −
∫ x

x0

f (t, φ(t))dt
∣∣∣∣ 6 |φ(x)− φN(x)|+∣∣∣∣φN(x)− y0 −

∫ x

x0

φ′N(t)dt
∣∣∣∣+∣∣∣∣∫ x

x0

(φ′N(t)− f (t, φN(t)))dt
∣∣∣∣+∣∣∣∣∫ x

x0

(f (t, φN(t))− f (t, φ(t)))dt
∣∣∣∣

< 2−n + 0 + |I|2−n + |I|2−n

= (1 + 2|I|)2−n.

We conclude that

φ(x) = y0 +

∫ x

x0

f (t, φ(t))dt.

A final application of the Fundamental Theorem of Calculus (Theorem 20) shows that
φ is uniformly continuously differentiable and satisfies the desired conditions.

To prove the other direction of the equivalence, suppose that we have a uniformly
continuously differentiable solution φ : [x0−h, x0 +h]→ R to the differential equation.
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20 H Diener and I Loeb

Now take (φn)n>1 to be the constant sequence defined by φn := φ for every n > 1. It
is easily seen that this sequence satisfies the requirements.

Remark 25 Note that the solution φ that we find in the proof of Theorem 24, is the
limit of the sequence (φn)n>1 . So we have that

( lim
n→∞

φn)′(x) = f (x, ( lim
n→∞

φn)(x)) for all x ∈ I.

It remains to be seen how useful this constructive version will be in practice. Given any
function f , it is in general not possible to find such a sequence (φn)n>1 , as this would,
again, imply LLPO. So the question is how we can restrict the (classical) theorem, such
that such a sequence can be found. We will come back to this at the end of this section.

One case where it is possible, is when f is Lipschitz in the second variable, as in
Constructive Picard’s Theorem.

Lemma 26 Let f be a function as in the assumptions of Constructive Picard’s Theorem
(Theorem 21). Then there exists a (non-trivial) uniformly convergent sequence of
uniformly continuously differentiable functions (φn)n>1 : [x0 − h, x0 + h]→ R with
φn(x0) = y0 and such that for all ε > 0 there exists N ∈ N with

sup
t∈[x0−h,x0+h]

|f (t, φn(t))− φ′n(t)| < ε

for all n > N .

Proof Let the sequence (φn)n>1 on [x0 − h, x0 + h] be defined by:

φ0(x) = y0

and

φn+1(x) = y0 +

∫ x

x0

f (t, φn(t))dt

for all n > 1. Note that φn is uniformly continuously differentiable for each n by the
Fundamental Theorem of Calculus (Theorem 20). See Exercise 4.7.5.4 of [11] for a
sketch of a proof that this sequence converges uniformly and that φ := limn→∞ φn is
the solution to the differential equation. Let ε > 0. Determine N ∈ N such that for all
x ∈ [x0 − h, x0 + h] and for all n > N

|φ(x)− φn(x)| < L−1ε.
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Let t ∈ [x0 − h, x0 + h] and n > N . Then

|f (t, φn+1(t))− φ′n+1(t)| = |f (t, φn+1(t)− f (t, φn(t))|
6 L · |φn+1(t)− φn(t)|
< L · L−1 · ε = ε.

Hence
sup

t∈[x0−h,x0+h]
|f (t, φn(t))− φ′n(t)| < ε

It now follows from Lemma 26 that, similar to the classical case, Constructive Picard’s
Theorem is a special case of Constructive Peano’s Theorem, without the uniqueness of
the result.

Next, we strengthen the constructive version of Peano’s Theorem by neither requiring f
to be uniformly continuous nor the φn ’s to be uniformly differentiable. We also replace
‘uniformly convergent’ by ‘equicontinuous and convergent’.

Strong Peano’s Theorem Let a, b, c, d ∈ R, (x0, y0) ∈ (a, b)× (c, d)
and define

X = [a, b]× [c, d].

Let f : X → R be continuous and let h > 0. There exists an
equicontinuous, convergent sequence of differentiable functions (φn)n>1 :
[x0 − h, x0 + h]→ R with φn(x0) = y0 and such that for all ε > 0 there
exists N ∈ N with

sup
t∈[x0−h,x0+h]

|f (t, φn(t))− φ′n(t)| < ε

for all n > N
if and only if

there exists a uniformly continuously differentiable function φ on the
interval I = [x0 − h, x0 + h], such that

φ(x0) = y0

and
φ′(x) = f (x, φ(x)) for all x ∈ I.

Theorem 27 UCT and Strong Peano’s Theorem are equivalent over BISH.
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Proof First assume UCT; we have to prove Strong Peano’s Theorem. Let f : X → R
and let h > 0. Then f and each of the functions in the sequence (φn)n>1 are uniformly
continuous by UCT. It also follows from UCT that φn is uniformly continuously
differentiable. Suppose that (φn)n>1 : I → R is an equicontinuous, convergent
sequence of differentiable functions with the properties as described in the theorem.
Then (φn)n>1 is uniformly convergent (by Theorem 18 of [14]). It now follows from
Constructive Peano’s Theorem (Theorem 24) that there exists a uniformly continuously
differentiable solution φ to the differential equation.

To prove the other direction, we assume that there exists a uniformly continuously
differentiable solution φ : I → R to the differential equation. Again we take

φn := φ

for all n > 1.

Now assume Strong Peano’s Theorem; we have to prove UCT. Because Strong
Peano’s Theorem implies Strong Picard’s Theorem without the uniqueness, UCT
now follows by Theorem 22 and Remark 23.

Let us now come back to the question how we can restrict Peano’s Theorem in order
for such a sequence (φn)n>1 to be found. It is a general believe that classical existence
theorems can be made constructive by requiering that any solution is (locally) unique.
(See Bridges as quoted in [4] and [19].) It is therefore natural to consider a “uniqueness
version” of Peano’s Theorem, and to find out whether the condition that the differential
equation has at most one solution enables us to find a sequence (φn)n>1 constructively.

Aberth showed, however, in [1] that this is not possible by proving the existence of a
differential equation as in Peano’s Theorem without a computable solution.6

Some other, more recent papers [8, 7, 20] relate theorems with uniqueness conditions
to versions of the Fan Theorem. One could say here that they show that uniqueness
does not as much constructivise the theorems, but makes them intuitionistically valid.
Bridges has shown in [10] that this also holds for Peano’s Theorem. The Fan Theorem
for decidable Bars (FTD ) implies Peano’s Theorem if we additionally assume that there
exists at most one solution to the differential equation. It would be interesting to know
whether “Unique Peano Theorem” is equivalent to FTD . Another open question is how
FTD enables us to construct a non-trivial sequence (φn)n>1 given that there is at most
one solution. See also the discussion in [10].

6Having no solution implies of course having at most one.
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6 A recursive excursus

One of the stranger objects in the world of Russian recursive mathematics is “the”
Specker sequence, that is a sequence in [0, 1] that is bounded away from every point in
[0, 1].7 Obviously, when such a sequence exists, AS [0,1] fails to hold. Using the same
construction as in Lemma 18, one can construct a bounded, continuous function, that
fails to be uniformly continuous. Another such function, with a similar construction,
can be found in [13]. Using this function and the same construction as in the proof
of Proposition 7 we get the existence of a function s̃ : [0, 1] → R that is not locally
uniformly continuous. To be more precise s̃ fails to be uniformly continuous on any non-
degenerate interval containing 1. This function already is a recursive counterexample
to Strong Picard’s Theorem.

Similarly, we can use the Specker sequence to turn the proof of Proposition 18 into
a construction of a differentiable function that fails to be uniformly continuously
differentiable.

There seems to be a general pattern here which one might like to call the constructive
dialectic excursus: An equivalence to some version of the Fan theorem or UCT and a
recursive counterexample all stemming from the same construction.

7 Conclusion and Discussion

Because the theorems in the field of differential equations that we have studied state the
existence of a solution only on subintervals, we had to shift our attention from global to
local properties. So instead of looking at uniformly continuous functions, we now used
functions that are locally uniformly continuous. This has led to the identification of two
new variants of the Uniform Continuity Theorem: The Uniform Continuity Theorem
for Bounded Functions and the Locally Uniform Continuity Theorem.

Next we have reconsidered the definitions of differentiation that can be found in the
literature. We have shown that pointwise differentiability is a useful notion by proving
Rolle’s theorem, the mean value theorem and a version of the fundamental theorem of
calculus for pointwise (or: continuously) differentiable functions.

After that we have considered two ways to bring a notion of uniformity into the definition
of differentiation. The first one, uniform differentiability, is well-known and seemed

7The original Specker sequence constructed in [22], and other such sequences, employs even
stronger properties—they are increasing sequences of rational numbers.
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in first instance stronger than the new notion of uniformly continuous differentiability.
By applying the new theorems on pointwise differentiability we were, however, able to
demonstrate that these two uniformity notions are equivalent.

Then we have defined the Uniform Differentiation Theorem and placed it into the
hierarchy of fan theorems and associated notions. It turned out to be in between UCT
and AS [a,b] , the latter of which is equivalent to the fan theorem for c-bars. The uniform
continuity theorem and the fan theorem for c-bars seem already very close, so it might
be slightly surprising that anything can fit between them. It is therefore hoped that UDT
will turn out to be equivalent to one of them.

Finally Picard’s Theorem and Peano’s Theorem, two existence theorems in the field
of differential equations, were studied in the light of constructive reverse mathematics.
Picard’s Theorem has a constructive core and we have seen both a constructive version of
it and a version that we proved equivalent to the Locally Uniform Continuity Theorem.
Peano’s theorem is essentially non-constructive. By a careful examination of the
standard proof we were able to formulate a much weaker constructive version, and one
that we have also shown to be equivalent to the Uniform Continuity Theorem.
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